/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_sha256.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" #define SNMPV3_SALT_MAX 1500 #define SNMPV3_ENGINEID_MAX 34 #define SNMPV3_MSG_AUTH_PARAMS_MAX 24 #define SNMPV3_ROUNDS 1048576 #define SNMPV3_MAX_PW_LENGTH 64 #define SNMPV3_TMP_ELEMS 4096 // 4096 = (256 (max pw length) * 64) / sizeof (u32) #define SNMPV3_HASH_ELEMS 8 #define SNMPV3_MAX_SALT_ELEMS 512 // 512 * 4 = 2048 > 1500, also has to be multiple of 64 #define SNMPV3_MAX_ENGINE_ELEMS 16 // 16 * 4 = 64 > 32, also has to be multiple of 64 #define SNMPV3_MAX_PNUM_ELEMS 4 // 4 * 4 = 16 > 9 #define SNMPV3_MAX_PW_LENGTH_OPT 64 #define SNMPV3_TMP_ELEMS_OPT ((SNMPV3_MAX_PW_LENGTH_OPT * SNMPV3_MAX_PW_LENGTH) / 4) // (64 * 64) / 4 = 1024 // for pw length > 64 we use global memory reads typedef struct hmac_sha256_tmp { u32 tmp[SNMPV3_TMP_ELEMS]; u32 h[SNMPV3_HASH_ELEMS]; } hmac_sha256_tmp_t; typedef struct snmpv3 { u32 salt_buf[SNMPV3_MAX_SALT_ELEMS]; u32 salt_len; u32 engineID_buf[SNMPV3_MAX_ENGINE_ELEMS]; u32 engineID_len; u32 packet_number[SNMPV3_MAX_PNUM_ELEMS]; } snmpv3_t; KERNEL_FQ void m26800_init (KERN_ATTR_TMPS_ESALT (hmac_sha256_tmp_t, snmpv3_t)) { /** * modifier */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; /** * base */ const u32 pw_len = pws[gid].pw_len; u32 w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } u8 *src_ptr = (u8 *) w; // password 64 times, also swapped u32 dst_buf[16]; u8 *dst_ptr = (u8 *) dst_buf; int tmp_idx = 0; for (int i = 0; i < 64; i++) { for (int j = 0; j < pw_len; j++) { const int dst_idx = tmp_idx & 63; dst_ptr[dst_idx] = src_ptr[j]; // write to global memory every time 64 byte are written into cache if (dst_idx == 63) { const int tmp_idx4 = (tmp_idx - 63) / 4; tmps[gid].tmp[tmp_idx4 + 0] = hc_swap32_S (dst_buf[ 0]); tmps[gid].tmp[tmp_idx4 + 1] = hc_swap32_S (dst_buf[ 1]); tmps[gid].tmp[tmp_idx4 + 2] = hc_swap32_S (dst_buf[ 2]); tmps[gid].tmp[tmp_idx4 + 3] = hc_swap32_S (dst_buf[ 3]); tmps[gid].tmp[tmp_idx4 + 4] = hc_swap32_S (dst_buf[ 4]); tmps[gid].tmp[tmp_idx4 + 5] = hc_swap32_S (dst_buf[ 5]); tmps[gid].tmp[tmp_idx4 + 6] = hc_swap32_S (dst_buf[ 6]); tmps[gid].tmp[tmp_idx4 + 7] = hc_swap32_S (dst_buf[ 7]); tmps[gid].tmp[tmp_idx4 + 8] = hc_swap32_S (dst_buf[ 8]); tmps[gid].tmp[tmp_idx4 + 9] = hc_swap32_S (dst_buf[ 9]); tmps[gid].tmp[tmp_idx4 + 10] = hc_swap32_S (dst_buf[10]); tmps[gid].tmp[tmp_idx4 + 11] = hc_swap32_S (dst_buf[11]); tmps[gid].tmp[tmp_idx4 + 12] = hc_swap32_S (dst_buf[12]); tmps[gid].tmp[tmp_idx4 + 13] = hc_swap32_S (dst_buf[13]); tmps[gid].tmp[tmp_idx4 + 14] = hc_swap32_S (dst_buf[14]); tmps[gid].tmp[tmp_idx4 + 15] = hc_swap32_S (dst_buf[15]); } tmp_idx++; } } // hash tmps[gid].h[0] = SHA256M_A; tmps[gid].h[1] = SHA256M_B; tmps[gid].h[2] = SHA256M_C; tmps[gid].h[3] = SHA256M_D; tmps[gid].h[4] = SHA256M_E; tmps[gid].h[5] = SHA256M_F; tmps[gid].h[6] = SHA256M_G; tmps[gid].h[7] = SHA256M_H; } KERNEL_FQ void m26800_loop (KERN_ATTR_TMPS_ESALT (hmac_sha256_tmp_t, snmpv3_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; u32 h[8]; h[0] = tmps[gid].h[0]; h[1] = tmps[gid].h[1]; h[2] = tmps[gid].h[2]; h[3] = tmps[gid].h[3]; h[4] = tmps[gid].h[4]; h[5] = tmps[gid].h[5]; h[6] = tmps[gid].h[6]; h[7] = tmps[gid].h[7]; const u32 pw_len = pws[gid].pw_len; const int pw_len64 = pw_len * 64; if (pw_len <= SNMPV3_MAX_PW_LENGTH_OPT) { u32 tmp[SNMPV3_TMP_ELEMS_OPT]; for (int i = 0; i < pw_len64 / 4; i++) { tmp[i] = tmps[gid].tmp[i]; } for (int i = 0, j = LOOP_POS; i < LOOP_CNT; i += 64, j += 64) { const int idx = (j % pw_len64) / 4; // the optimization trick is to be able to do this u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = tmp[idx + 0]; w0[1] = tmp[idx + 1]; w0[2] = tmp[idx + 2]; w0[3] = tmp[idx + 3]; w1[0] = tmp[idx + 4]; w1[1] = tmp[idx + 5]; w1[2] = tmp[idx + 6]; w1[3] = tmp[idx + 7]; w2[0] = tmp[idx + 8]; w2[1] = tmp[idx + 9]; w2[2] = tmp[idx + 10]; w2[3] = tmp[idx + 11]; w3[0] = tmp[idx + 12]; w3[1] = tmp[idx + 13]; w3[2] = tmp[idx + 14]; w3[3] = tmp[idx + 15]; sha256_transform (w0, w1, w2, w3, h); } } else { for (int i = 0, j = LOOP_POS; i < LOOP_CNT; i += 64, j += 64) { const int idx = (j % pw_len64) / 4; // the optimization trick is to be able to do this u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = tmps[gid].tmp[idx + 0]; w0[1] = tmps[gid].tmp[idx + 1]; w0[2] = tmps[gid].tmp[idx + 2]; w0[3] = tmps[gid].tmp[idx + 3]; w1[0] = tmps[gid].tmp[idx + 4]; w1[1] = tmps[gid].tmp[idx + 5]; w1[2] = tmps[gid].tmp[idx + 6]; w1[3] = tmps[gid].tmp[idx + 7]; w2[0] = tmps[gid].tmp[idx + 8]; w2[1] = tmps[gid].tmp[idx + 9]; w2[2] = tmps[gid].tmp[idx + 10]; w2[3] = tmps[gid].tmp[idx + 11]; w3[0] = tmps[gid].tmp[idx + 12]; w3[1] = tmps[gid].tmp[idx + 13]; w3[2] = tmps[gid].tmp[idx + 14]; w3[3] = tmps[gid].tmp[idx + 15]; sha256_transform (w0, w1, w2, w3, h); } } tmps[gid].h[0] = h[0]; tmps[gid].h[1] = h[1]; tmps[gid].h[2] = h[2]; tmps[gid].h[3] = h[3]; tmps[gid].h[4] = h[4]; tmps[gid].h[5] = h[5]; tmps[gid].h[6] = h[6]; tmps[gid].h[7] = h[7]; } KERNEL_FQ void m26800_comp (KERN_ATTR_TMPS_ESALT (hmac_sha256_tmp_t, snmpv3_t)) { /** * modifier */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 1048576 * 8; u32 h[8]; h[0] = tmps[gid].h[0]; h[1] = tmps[gid].h[1]; h[2] = tmps[gid].h[2]; h[3] = tmps[gid].h[3]; h[4] = tmps[gid].h[4]; h[5] = tmps[gid].h[5]; h[6] = tmps[gid].h[6]; h[7] = tmps[gid].h[7]; sha256_transform (w0, w1, w2, w3, h); sha256_ctx_t ctx; sha256_init (&ctx); u32 w[16]; w[ 0] = h[0]; w[ 1] = h[1]; w[ 2] = h[2]; w[ 3] = h[3]; w[ 4] = h[4]; w[ 5] = h[5]; w[ 6] = h[6]; w[ 7] = h[7]; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; sha256_update (&ctx, w, 32); sha256_update_global_swap (&ctx, esalt_bufs[DIGESTS_OFFSET_HOST].engineID_buf, esalt_bufs[DIGESTS_OFFSET_HOST].engineID_len); w[ 0] = h[0]; w[ 1] = h[1]; w[ 2] = h[2]; w[ 3] = h[3]; w[ 4] = h[4]; w[ 5] = h[5]; w[ 6] = h[6]; w[ 7] = h[7]; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; sha256_update (&ctx, w, 32); sha256_final (&ctx); w[ 0] = ctx.h[0]; w[ 1] = ctx.h[1]; w[ 2] = ctx.h[2]; w[ 3] = ctx.h[3]; w[ 4] = ctx.h[4]; w[ 5] = ctx.h[5]; w[ 6] = ctx.h[6]; w[ 7] = ctx.h[7]; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; sha256_hmac_ctx_t hmac_ctx; sha256_hmac_init (&hmac_ctx, w, 32); sha256_hmac_update_global_swap (&hmac_ctx, esalt_bufs[DIGESTS_OFFSET_HOST].salt_buf, esalt_bufs[DIGESTS_OFFSET_HOST].salt_len); sha256_hmac_final (&hmac_ctx); const u32 r0 = hmac_ctx.opad.h[DGST_R0]; const u32 r1 = hmac_ctx.opad.h[DGST_R1]; const u32 r2 = hmac_ctx.opad.h[DGST_R2]; const u32 r3 = hmac_ctx.opad.h[DGST_R3]; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }