/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #include "inc_vendor.cl" #include "inc_hash_constants.h" #include "inc_hash_functions.cl" #include "inc_types.cl" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_md5.cl" #include "inc_hash_sha1.cl" #include "inc_hash_sha256.cl" #include "inc_cipher_aes.cl" #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" void make_kn (u32 *k) { u32 kl[4]; u32 kr[4]; kl[0] = (k[0] << 1) & 0xfefefefe; kl[1] = (k[1] << 1) & 0xfefefefe; kl[2] = (k[2] << 1) & 0xfefefefe; kl[3] = (k[3] << 1) & 0xfefefefe; kr[0] = (k[0] >> 7) & 0x01010101; kr[1] = (k[1] >> 7) & 0x01010101; kr[2] = (k[2] >> 7) & 0x01010101; kr[3] = (k[3] >> 7) & 0x01010101; const u32 c = kr[0] & 1; kr[0] = kr[0] >> 8 | kr[1] << 24; kr[1] = kr[1] >> 8 | kr[2] << 24; kr[2] = kr[2] >> 8 | kr[3] << 24; kr[3] = kr[3] >> 8; kr[3] ^= c * 0x87000000; k[0] = kl[0] | kr[0]; k[1] = kl[1] | kr[1]; k[2] = kl[2] | kr[2]; k[3] = kl[3] | kr[3]; } void hmac_sha1_run_V (u32x w0[4], u32x w1[4], u32x w2[4], u32x w3[4], u32x ipad[5], u32x opad[5], u32x digest[5]) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); } __kernel void m02500_init (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global wpa_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const wpa_t *wpa_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u64 gid_max) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; sha1_hmac_ctx_t sha1_hmac_ctx; sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4]; tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4]; sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[salt_pos].salt_buf, salt_bufs[salt_pos].salt_len); for (u32 i = 0, j = 1; i < 8; i += 5, j += 1) { sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4); sha1_hmac_final (&sha1_hmac_ctx2); tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0]; tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1]; tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2]; tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3]; tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4]; tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0]; tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1]; tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2]; tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3]; tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4]; } } __kernel void m02500_loop (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global wpa_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const wpa_t *wpa_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u64 gid_max) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= gid_max) return; u32x ipad[5]; u32x opad[5]; ipad[0] = packv (tmps, ipad, gid, 0); ipad[1] = packv (tmps, ipad, gid, 1); ipad[2] = packv (tmps, ipad, gid, 2); ipad[3] = packv (tmps, ipad, gid, 3); ipad[4] = packv (tmps, ipad, gid, 4); opad[0] = packv (tmps, opad, gid, 0); opad[1] = packv (tmps, opad, gid, 1); opad[2] = packv (tmps, opad, gid, 2); opad[3] = packv (tmps, opad, gid, 3); opad[4] = packv (tmps, opad, gid, 4); for (u32 i = 0; i < 8; i += 5) { u32x dgst[5]; u32x out[5]; dgst[0] = packv (tmps, dgst, gid, i + 0); dgst[1] = packv (tmps, dgst, gid, i + 1); dgst[2] = packv (tmps, dgst, gid, i + 2); dgst[3] = packv (tmps, dgst, gid, i + 3); dgst[4] = packv (tmps, dgst, gid, i + 4); out[0] = packv (tmps, out, gid, i + 0); out[1] = packv (tmps, out, gid, i + 1); out[2] = packv (tmps, out, gid, i + 2); out[3] = packv (tmps, out, gid, i + 3); out[4] = packv (tmps, out, gid, i + 4); for (u32 j = 0; j < loop_cnt; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; } unpackv (tmps, dgst, gid, i + 0, dgst[0]); unpackv (tmps, dgst, gid, i + 1, dgst[1]); unpackv (tmps, dgst, gid, i + 2, dgst[2]); unpackv (tmps, dgst, gid, i + 3, dgst[3]); unpackv (tmps, dgst, gid, i + 4, dgst[4]); unpackv (tmps, out, gid, i + 0, out[0]); unpackv (tmps, out, gid, i + 1, out[1]); unpackv (tmps, out, gid, i + 2, out[2]); unpackv (tmps, out, gid, i + 3, out[3]); unpackv (tmps, out, gid, i + 4, out[4]); } } __kernel void m02500_comp (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global wpa_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const wpa_t *wpa_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u64 gid_max) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM __local u32 s_td0[256]; __local u32 s_td1[256]; __local u32 s_td2[256]; __local u32 s_td3[256]; __local u32 s_td4[256]; __local u32 s_te0[256]; __local u32 s_te1[256]; __local u32 s_te2[256]; __local u32 s_te3[256]; __local u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } barrier (CLK_LOCAL_MEM_FENCE); #else __constant u32a *s_td0 = td0; __constant u32a *s_td1 = td1; __constant u32a *s_td2 = td2; __constant u32a *s_td3 = td3; __constant u32a *s_td4 = td4; __constant u32a *s_te0 = te0; __constant u32a *s_te1 = te1; __constant u32a *s_te2 = te2; __constant u32a *s_te3 = te3; __constant u32a *s_te4 = te4; #endif if (gid >= gid_max) return; u32 out[8]; out[0] = tmps[gid].out[0]; out[1] = tmps[gid].out[1]; out[2] = tmps[gid].out[2]; out[3] = tmps[gid].out[3]; out[4] = tmps[gid].out[4]; out[5] = tmps[gid].out[5]; out[6] = tmps[gid].out[6]; out[7] = tmps[gid].out[7]; const u32 digest_pos = loop_pos; const u32 digest_cur = digests_offset + digest_pos; __global const wpa_t *wpa = &wpa_bufs[digest_cur]; u32 pke[32]; pke[ 0] = wpa->pke[ 0]; pke[ 1] = wpa->pke[ 1]; pke[ 2] = wpa->pke[ 2]; pke[ 3] = wpa->pke[ 3]; pke[ 4] = wpa->pke[ 4]; pke[ 5] = wpa->pke[ 5]; pke[ 6] = wpa->pke[ 6]; pke[ 7] = wpa->pke[ 7]; pke[ 8] = wpa->pke[ 8]; pke[ 9] = wpa->pke[ 9]; pke[10] = wpa->pke[10]; pke[11] = wpa->pke[11]; pke[12] = wpa->pke[12]; pke[13] = wpa->pke[13]; pke[14] = wpa->pke[14]; pke[15] = wpa->pke[15]; pke[16] = wpa->pke[16]; pke[17] = wpa->pke[17]; pke[18] = wpa->pke[18]; pke[19] = wpa->pke[19]; pke[20] = wpa->pke[20]; pke[21] = wpa->pke[21]; pke[22] = wpa->pke[22]; pke[23] = wpa->pke[23]; pke[24] = wpa->pke[24]; pke[25] = wpa->pke[25]; pke[26] = wpa->pke[26]; pke[27] = wpa->pke[27]; pke[28] = wpa->pke[28]; pke[29] = wpa->pke[29]; pke[30] = wpa->pke[30]; pke[31] = wpa->pke[31]; u32 to; if (wpa->nonce_compare < 0) { to = pke[15] << 24 | pke[16] >> 8; } else { to = pke[23] << 24 | pke[24] >> 8; } const u32 nonce_error_corrections = wpa->nonce_error_corrections; for (u32 nonce_error_correction = 0; nonce_error_correction <= nonce_error_corrections; nonce_error_correction++) { u32 t = to; t = swap32_S (t); t -= nonce_error_corrections / 2; t += nonce_error_correction; t = swap32_S (t); if (wpa->nonce_compare < 0) { pke[15] = (pke[15] & ~0x000000ff) | (t >> 24); pke[16] = (pke[16] & ~0xffffff00) | (t << 8); } else { pke[23] = (pke[23] & ~0x000000ff) | (t >> 24); pke[24] = (pke[24] & ~0xffffff00) | (t << 8); } u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = out[0]; w0[1] = out[1]; w0[2] = out[2]; w0[3] = out[3]; w1[0] = out[4]; w1[1] = out[5]; w1[2] = out[6]; w1[3] = out[7]; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; u32 keymic[4]; keymic[0] = 0; keymic[1] = 0; keymic[2] = 0; keymic[3] = 0; if (wpa->keyver == 1) { sha1_hmac_ctx_t ctx1; sha1_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha1_hmac_update (&ctx1, pke, 100); sha1_hmac_final (&ctx1); u32 digest[4]; digest[0] = ctx1.opad.h[0]; digest[1] = ctx1.opad.h[1]; digest[2] = ctx1.opad.h[2]; digest[3] = ctx1.opad.h[3]; u32 t0[4]; u32 t1[4]; u32 t2[4]; u32 t3[4]; t0[0] = swap32_S (digest[0]); t0[1] = swap32_S (digest[1]); t0[2] = swap32_S (digest[2]); t0[3] = swap32_S (digest[3]); t1[0] = 0; t1[1] = 0; t1[2] = 0; t1[3] = 0; t2[0] = 0; t2[1] = 0; t2[2] = 0; t2[3] = 0; t3[0] = 0; t3[1] = 0; t3[2] = 0; t3[3] = 0; md5_hmac_ctx_t ctx2; md5_hmac_init_64 (&ctx2, t0, t1, t2, t3); md5_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len); md5_hmac_final (&ctx2); keymic[0] = ctx2.opad.h[0]; keymic[1] = ctx2.opad.h[1]; keymic[2] = ctx2.opad.h[2]; keymic[3] = ctx2.opad.h[3]; } else if (wpa->keyver == 2) { sha1_hmac_ctx_t ctx1; sha1_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha1_hmac_update (&ctx1, pke, 100); sha1_hmac_final (&ctx1); u32 digest[4]; digest[0] = ctx1.opad.h[0]; digest[1] = ctx1.opad.h[1]; digest[2] = ctx1.opad.h[2]; digest[3] = ctx1.opad.h[3]; u32 t0[4]; u32 t1[4]; u32 t2[4]; u32 t3[4]; t0[0] = digest[0]; t0[1] = digest[1]; t0[2] = digest[2]; t0[3] = digest[3]; t1[0] = 0; t1[1] = 0; t1[2] = 0; t1[3] = 0; t2[0] = 0; t2[1] = 0; t2[2] = 0; t2[3] = 0; t3[0] = 0; t3[1] = 0; t3[2] = 0; t3[3] = 0; sha1_hmac_ctx_t ctx2; sha1_hmac_init_64 (&ctx2, t0, t1, t2, t3); sha1_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len); sha1_hmac_final (&ctx2); keymic[0] = ctx2.opad.h[0]; keymic[1] = ctx2.opad.h[1]; keymic[2] = ctx2.opad.h[2]; keymic[3] = ctx2.opad.h[3]; } else if (wpa->keyver == 3) { sha256_hmac_ctx_t ctx1; sha256_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha256_hmac_update (&ctx1, pke, 102); sha256_hmac_final (&ctx1); u32 digest[4]; digest[0] = swap32_S (ctx1.opad.h[0]); digest[1] = swap32_S (ctx1.opad.h[1]); digest[2] = swap32_S (ctx1.opad.h[2]); digest[3] = swap32_S (ctx1.opad.h[3]); // AES CMAC u32 ks[44]; aes128_set_encrypt_key (ks, digest, s_te0, s_te1, s_te2, s_te3, s_te4); u32 m[4]; m[0] = 0; m[1] = 0; m[2] = 0; m[3] = 0; u32 iv[4]; iv[0] = 0; iv[1] = 0; iv[2] = 0; iv[3] = 0; int eapol_left; int eapol_idx; for (eapol_left = wpa->eapol_len, eapol_idx = 0; eapol_left > 16; eapol_left -= 16, eapol_idx += 4) { m[0] = wpa->eapol[eapol_idx + 0] ^ iv[0]; m[1] = wpa->eapol[eapol_idx + 1] ^ iv[1]; m[2] = wpa->eapol[eapol_idx + 2] ^ iv[2]; m[3] = wpa->eapol[eapol_idx + 3] ^ iv[3]; aes128_encrypt (ks, m, iv, s_te0, s_te1, s_te2, s_te3, s_te4); } m[0] = wpa->eapol[eapol_idx + 0]; m[1] = wpa->eapol[eapol_idx + 1]; m[2] = wpa->eapol[eapol_idx + 2]; m[3] = wpa->eapol[eapol_idx + 3]; u32 k[4]; k[0] = 0; k[1] = 0; k[2] = 0; k[3] = 0; aes128_encrypt (ks, k, k, s_te0, s_te1, s_te2, s_te3, s_te4); make_kn (k); if (eapol_left < 16) { make_kn (k); } m[0] ^= k[0]; m[1] ^= k[1]; m[2] ^= k[2]; m[3] ^= k[3]; m[0] ^= iv[0]; m[1] ^= iv[1]; m[2] ^= iv[2]; m[3] ^= iv[3]; aes128_encrypt (ks, m, keymic, s_te0, s_te1, s_te2, s_te3, s_te4); } /** * final compare */ if ((keymic[0] == wpa->keymic[0]) && (keymic[1] == wpa->keymic[1]) && (keymic[2] == wpa->keymic[2]) && (keymic[3] == wpa->keymic[3])) { if (atomic_inc (&hashes_shown[digest_cur]) == 0) { mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0); } } } // the same code again, but with BE order for the t++ for (u32 nonce_error_correction = 0; nonce_error_correction <= nonce_error_corrections; nonce_error_correction++) { u32 t = to; t -= nonce_error_corrections / 2; t += nonce_error_correction; if (t == to) continue; // we already had this checked in the LE loop if (wpa->nonce_compare < 0) { pke[15] = (pke[15] & ~0x000000ff) | (t >> 24); pke[16] = (pke[16] & ~0xffffff00) | (t << 8); } else { pke[23] = (pke[23] & ~0x000000ff) | (t >> 24); pke[24] = (pke[24] & ~0xffffff00) | (t << 8); } u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = out[0]; w0[1] = out[1]; w0[2] = out[2]; w0[3] = out[3]; w1[0] = out[4]; w1[1] = out[5]; w1[2] = out[6]; w1[3] = out[7]; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; u32 keymic[4]; keymic[0] = 0; keymic[1] = 0; keymic[2] = 0; keymic[3] = 0; if (wpa->keyver == 1) { sha1_hmac_ctx_t ctx1; sha1_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha1_hmac_update (&ctx1, pke, 100); sha1_hmac_final (&ctx1); u32 digest[4]; digest[0] = ctx1.opad.h[0]; digest[1] = ctx1.opad.h[1]; digest[2] = ctx1.opad.h[2]; digest[3] = ctx1.opad.h[3]; u32 t0[4]; u32 t1[4]; u32 t2[4]; u32 t3[4]; t0[0] = swap32_S (digest[0]); t0[1] = swap32_S (digest[1]); t0[2] = swap32_S (digest[2]); t0[3] = swap32_S (digest[3]); t1[0] = 0; t1[1] = 0; t1[2] = 0; t1[3] = 0; t2[0] = 0; t2[1] = 0; t2[2] = 0; t2[3] = 0; t3[0] = 0; t3[1] = 0; t3[2] = 0; t3[3] = 0; md5_hmac_ctx_t ctx2; md5_hmac_init_64 (&ctx2, t0, t1, t2, t3); md5_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len); md5_hmac_final (&ctx2); keymic[0] = ctx2.opad.h[0]; keymic[1] = ctx2.opad.h[1]; keymic[2] = ctx2.opad.h[2]; keymic[3] = ctx2.opad.h[3]; } else if (wpa->keyver == 2) { sha1_hmac_ctx_t ctx1; sha1_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha1_hmac_update (&ctx1, pke, 100); sha1_hmac_final (&ctx1); u32 digest[4]; digest[0] = ctx1.opad.h[0]; digest[1] = ctx1.opad.h[1]; digest[2] = ctx1.opad.h[2]; digest[3] = ctx1.opad.h[3]; u32 t0[4]; u32 t1[4]; u32 t2[4]; u32 t3[4]; t0[0] = digest[0]; t0[1] = digest[1]; t0[2] = digest[2]; t0[3] = digest[3]; t1[0] = 0; t1[1] = 0; t1[2] = 0; t1[3] = 0; t2[0] = 0; t2[1] = 0; t2[2] = 0; t2[3] = 0; t3[0] = 0; t3[1] = 0; t3[2] = 0; t3[3] = 0; sha1_hmac_ctx_t ctx2; sha1_hmac_init_64 (&ctx2, t0, t1, t2, t3); sha1_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len); sha1_hmac_final (&ctx2); keymic[0] = ctx2.opad.h[0]; keymic[1] = ctx2.opad.h[1]; keymic[2] = ctx2.opad.h[2]; keymic[3] = ctx2.opad.h[3]; } else if (wpa->keyver == 3) { sha256_hmac_ctx_t ctx1; sha256_hmac_init_64 (&ctx1, w0, w1, w2, w3); sha256_hmac_update (&ctx1, pke, 102); sha256_hmac_final (&ctx1); u32 digest[4]; digest[0] = swap32_S (ctx1.opad.h[0]); digest[1] = swap32_S (ctx1.opad.h[1]); digest[2] = swap32_S (ctx1.opad.h[2]); digest[3] = swap32_S (ctx1.opad.h[3]); // AES CMAC u32 ks[44]; aes128_set_encrypt_key (ks, digest, s_te0, s_te1, s_te2, s_te3, s_te4); u32 m[4]; m[0] = 0; m[1] = 0; m[2] = 0; m[3] = 0; u32 iv[4]; iv[0] = 0; iv[1] = 0; iv[2] = 0; iv[3] = 0; int eapol_left; int eapol_idx; for (eapol_left = wpa->eapol_len, eapol_idx = 0; eapol_left > 16; eapol_left -= 16, eapol_idx += 4) { m[0] = wpa->eapol[eapol_idx + 0] ^ iv[0]; m[1] = wpa->eapol[eapol_idx + 1] ^ iv[1]; m[2] = wpa->eapol[eapol_idx + 2] ^ iv[2]; m[3] = wpa->eapol[eapol_idx + 3] ^ iv[3]; aes128_encrypt (ks, m, iv, s_te0, s_te1, s_te2, s_te3, s_te4); } m[0] = wpa->eapol[eapol_idx + 0]; m[1] = wpa->eapol[eapol_idx + 1]; m[2] = wpa->eapol[eapol_idx + 2]; m[3] = wpa->eapol[eapol_idx + 3]; u32 k[4]; k[0] = 0; k[1] = 0; k[2] = 0; k[3] = 0; aes128_encrypt (ks, k, k, s_te0, s_te1, s_te2, s_te3, s_te4); make_kn (k); if (eapol_left < 16) { make_kn (k); } m[0] ^= k[0]; m[1] ^= k[1]; m[2] ^= k[2]; m[3] ^= k[3]; m[0] ^= iv[0]; m[1] ^= iv[1]; m[2] ^= iv[2]; m[3] ^= iv[3]; aes128_encrypt (ks, m, keymic, s_te0, s_te1, s_te2, s_te3, s_te4); } /** * final compare */ if ((keymic[0] == wpa->keymic[0]) && (keymic[1] == wpa->keymic[1]) && (keymic[2] == wpa->keymic[2]) && (keymic[3] == wpa->keymic[3])) { if (atomic_inc (&hashes_shown[digest_cur]) == 0) { mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0); } } } }