/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_scalar.cl" #include "inc_hash_md5.cl" #include "inc_cipher_des.cl" #endif typedef struct pem { u32 data_buf[16384]; int data_len; int cipher; } pem_t; KERNEL_FQ void m22921_mxx (KERN_ATTR_VECTOR_ESALT (pem_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); #ifdef REAL_SHM LOCAL_VK u32 s_SPtrans[8][64]; LOCAL_VK u32 s_skb[8][64]; for (u32 i = lid; i < 64; i += lsz) { s_SPtrans[0][i] = c_SPtrans[0][i]; s_SPtrans[1][i] = c_SPtrans[1][i]; s_SPtrans[2][i] = c_SPtrans[2][i]; s_SPtrans[3][i] = c_SPtrans[3][i]; s_SPtrans[4][i] = c_SPtrans[4][i]; s_SPtrans[5][i] = c_SPtrans[5][i]; s_SPtrans[6][i] = c_SPtrans[6][i]; s_SPtrans[7][i] = c_SPtrans[7][i]; s_skb[0][i] = c_skb[0][i]; s_skb[1][i] = c_skb[1][i]; s_skb[2][i] = c_skb[2][i]; s_skb[3][i] = c_skb[3][i]; s_skb[4][i] = c_skb[4][i]; s_skb[5][i] = c_skb[5][i]; s_skb[6][i] = c_skb[6][i]; s_skb[7][i] = c_skb[7][i]; } SYNC_THREADS (); #else CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans; CONSTANT_AS u32a (*s_skb)[64] = c_skb; #endif if (gid >= gid_max) return; /** * digest */ const u32 search[4] = { digests_buf[digests_offset].digest_buf[0], digests_buf[digests_offset].digest_buf[1], digests_buf[digests_offset].digest_buf[2], digests_buf[digests_offset].digest_buf[3] }; /** * base */ u32 s[2]; s[0] = salt_bufs[salt_pos].salt_buf[0]; s[1] = salt_bufs[salt_pos].salt_buf[1]; u32 first_data[2]; first_data[0] = esalt_bufs[digests_offset].data_buf[0]; first_data[1] = esalt_bufs[digests_offset].data_buf[1]; const int data_len = esalt_bufs[digests_offset].data_len; const int last_pad_pos = data_len - 1; const int last_pad_elem = last_pad_pos / 4; u32 iv[2]; iv[0] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 3]; iv[1] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 2]; u32 enc[2]; enc[0] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 1]; enc[1] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 0]; /** * base */ const u32 pw_len = pws[gid].pw_len; u32x w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; md5_ctx_t ctx; md5_init (&ctx); md5_update (&ctx, w, pw_len); u32 t[16]; t[ 0] = s[0]; t[ 1] = s[1]; t[ 2] = 0; t[ 3] = 0; t[ 4] = 0; t[ 5] = 0; t[ 6] = 0; t[ 7] = 0; t[ 8] = 0; t[ 9] = 0; t[10] = 0; t[11] = 0; t[12] = 0; t[13] = 0; t[14] = 0; t[15] = 0; md5_update (&ctx, t, 8); md5_final (&ctx); u32 ukey[2]; ukey[0] = ctx.h[0]; ukey[1] = ctx.h[1]; // DES u32 K0[16]; u32 K1[16]; _des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb); u32 dec[2]; // first check the padding _des_crypt_decrypt (dec, enc, K0, K1, s_SPtrans); dec[0] ^= iv[0]; dec[1] ^= iv[1]; const int paddingv = pkcs_padding_bs8 (dec, 8); if (paddingv == -1) continue; // second check (naive code) ASN.1 structure _des_crypt_decrypt (dec, first_data, K0, K1, s_SPtrans); dec[0] ^= s[0]; dec[1] ^= s[1]; const int real_len = (data_len - 8) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) continue; const u32 r0 = search[0]; const u32 r1 = search[1]; const u32 r2 = search[2]; const u32 r3 = search[3]; COMPARE_M_SCALAR (r0, r1, r2, r3); } } KERNEL_FQ void m22921_sxx (KERN_ATTR_VECTOR_ESALT (pem_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); #ifdef REAL_SHM LOCAL_VK u32 s_SPtrans[8][64]; LOCAL_VK u32 s_skb[8][64]; for (u32 i = lid; i < 64; i += lsz) { s_SPtrans[0][i] = c_SPtrans[0][i]; s_SPtrans[1][i] = c_SPtrans[1][i]; s_SPtrans[2][i] = c_SPtrans[2][i]; s_SPtrans[3][i] = c_SPtrans[3][i]; s_SPtrans[4][i] = c_SPtrans[4][i]; s_SPtrans[5][i] = c_SPtrans[5][i]; s_SPtrans[6][i] = c_SPtrans[6][i]; s_SPtrans[7][i] = c_SPtrans[7][i]; s_skb[0][i] = c_skb[0][i]; s_skb[1][i] = c_skb[1][i]; s_skb[2][i] = c_skb[2][i]; s_skb[3][i] = c_skb[3][i]; s_skb[4][i] = c_skb[4][i]; s_skb[5][i] = c_skb[5][i]; s_skb[6][i] = c_skb[6][i]; s_skb[7][i] = c_skb[7][i]; } SYNC_THREADS (); #else CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans; CONSTANT_AS u32a (*s_skb)[64] = c_skb; #endif if (gid >= gid_max) return; /** * digest */ const u32 search[4] = { digests_buf[digests_offset].digest_buf[0], digests_buf[digests_offset].digest_buf[1], digests_buf[digests_offset].digest_buf[2], digests_buf[digests_offset].digest_buf[3] }; /** * base */ u32 s[2]; s[0] = salt_bufs[salt_pos].salt_buf[0]; s[1] = salt_bufs[salt_pos].salt_buf[1]; u32 first_data[2]; first_data[0] = esalt_bufs[digests_offset].data_buf[0]; first_data[1] = esalt_bufs[digests_offset].data_buf[1]; const int data_len = esalt_bufs[digests_offset].data_len; const int last_pad_pos = data_len - 1; const int last_pad_elem = last_pad_pos / 4; u32 iv[2]; iv[0] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 3]; iv[1] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 2]; u32 enc[2]; enc[0] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 1]; enc[1] = esalt_bufs[digests_offset].data_buf[last_pad_elem - 0]; /** * base */ const u32 pw_len = pws[gid].pw_len; u32x w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; md5_ctx_t ctx; md5_init (&ctx); md5_update (&ctx, w, pw_len); u32 t[16]; t[ 0] = s[0]; t[ 1] = s[1]; t[ 2] = 0; t[ 3] = 0; t[ 4] = 0; t[ 5] = 0; t[ 6] = 0; t[ 7] = 0; t[ 8] = 0; t[ 9] = 0; t[10] = 0; t[11] = 0; t[12] = 0; t[13] = 0; t[14] = 0; t[15] = 0; md5_update (&ctx, t, 8); md5_final (&ctx); u32 ukey[2]; ukey[0] = ctx.h[0]; ukey[1] = ctx.h[1]; // DES u32 K0[16]; u32 K1[16]; _des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb); u32 dec[2]; // first check the padding _des_crypt_decrypt (dec, enc, K0, K1, s_SPtrans); dec[0] ^= iv[0]; dec[1] ^= iv[1]; const int paddingv = pkcs_padding_bs8 (dec, 8); if (paddingv == -1) continue; // second check (naive code) ASN.1 structure _des_crypt_decrypt (dec, first_data, K0, K1, s_SPtrans); dec[0] ^= s[0]; dec[1] ^= s[1]; const int real_len = (data_len - 8) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) continue; const u32 r0 = search[0]; const u32 r1 = search[1]; const u32 r2 = search[2]; const u32 r3 = search[3]; COMPARE_S_SCALAR (r0, r1, r2, r3); } }