/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.h) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_rp.h) #include M2S(INCLUDE_PATH/inc_rp.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_scalar.cl) #include M2S(INCLUDE_PATH/inc_hash_sha256.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.h) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #endif DECLSPEC void shift_buffer_by_offset (PRIVATE_AS u32 *w0, const u32 offset) { const int offset_switch = offset / 4; #if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC switch (offset_switch) { case 0: w0[3] = hc_bytealign_be_S (w0[2], w0[3], offset); w0[2] = hc_bytealign_be_S (w0[1], w0[2], offset); w0[1] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[0] = hc_bytealign_be_S ( 0, w0[0], offset); break; case 1: w0[3] = hc_bytealign_be_S (w0[1], w0[2], offset); w0[2] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[1] = hc_bytealign_be_S ( 0, w0[0], offset); w0[0] = 0; break; case 2: w0[3] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[2] = hc_bytealign_be_S ( 0, w0[0], offset); w0[1] = 0; w0[0] = 0; break; case 3: w0[3] = hc_bytealign_be_S ( 0, w0[0], offset); w0[2] = 0; w0[1] = 0; w0[0] = 0; break; default: w0[3] = 0; w0[2] = 0; w0[1] = 0; w0[0] = 0; break; } #endif #if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV #if defined IS_NV const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff; #endif #if (defined IS_AMD || defined IS_HIP) const int selector = l32_from_64_S (0x0706050403020100UL >> ((offset & 3) * 8)); #endif switch (offset_switch) { case 0: w0[3] = hc_byte_perm_S (w0[3], w0[2], selector); w0[2] = hc_byte_perm_S (w0[2], w0[1], selector); w0[1] = hc_byte_perm_S (w0[1], w0[0], selector); w0[0] = hc_byte_perm_S (w0[0], 0, selector); break; case 1: w0[3] = hc_byte_perm_S (w0[2], w0[1], selector); w0[2] = hc_byte_perm_S (w0[1], w0[0], selector); w0[1] = hc_byte_perm_S (w0[0], 0, selector); w0[0] = 0; break; case 2: w0[3] = hc_byte_perm_S (w0[1], w0[0], selector); w0[2] = hc_byte_perm_S (w0[0], 0, selector); w0[1] = 0; w0[0] = 0; break; case 3: w0[3] = hc_byte_perm_S (w0[0], 0, selector); w0[2] = 0; w0[1] = 0; w0[0] = 0; break; default: w0[3] = 0; w0[2] = 0; w0[1] = 0; w0[0] = 0; break; } #endif } DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const int pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4) { AES256_set_encrypt_key(aes_ks, hash, s_te0, s_te1, s_te2, s_te3); shift_buffer_by_offset(hash,pw_len+4); hash[0] = hc_swap32(pw_len); hash[1] |= hc_swap32(pw[0]); hash[2] |= hc_swap32(pw[1]); hash[3] |= hc_swap32(pw[2]); AES256_encrypt (aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4); } KERNEL_FQ void m31400_mxx (KERN_ATTR_RULES ()) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS(); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * base */ COPY_PW (pws[gid]); /** * loop */ u32 ks[60]; for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++) { pw_t tmp = PASTE_PW; tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len); sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, tmp.i, tmp.pw_len); sha256_final (&ctx); u32 out[4]={0}; aes256_scrt_format(ks,tmp.i,tmp.pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4); const u32 r0 = out[DGST_R0]; const u32 r1 = out[DGST_R1]; const u32 r2 = out[DGST_R2]; const u32 r3 = out[DGST_R3]; COMPARE_M_SCALAR (r0, r1, r2, r3); } } KERNEL_FQ void m31400_sxx (KERN_ATTR_RULES ()) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * digest */ const u32 search[4] = { digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3] }; /** * base */ COPY_PW (pws[gid]); u32 ks[60]; /** * loop */ for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++) { pw_t tmp = PASTE_PW; tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len); sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, tmp.i, tmp.pw_len); sha256_final (&ctx); u32 out[4]={0}; aes256_scrt_format(ks,tmp.i,tmp.pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4); const u32 r0 = out[DGST_R0]; const u32 r1 = out[DGST_R1]; const u32 r2 = out[DGST_R2]; const u32 r3 = out[DGST_R3]; COMPARE_S_SCALAR (r0, r1, r2, r3); } }