/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #define XSTR(x) #x #define STR(x) XSTR(x) #ifdef KERNEL_STATIC #include STR(INCLUDE_PATH/inc_vendor.h) #include STR(INCLUDE_PATH/inc_types.h) #include STR(INCLUDE_PATH/inc_platform.cl) #include STR(INCLUDE_PATH/inc_common.cl) #include STR(INCLUDE_PATH/inc_simd.cl) #include STR(INCLUDE_PATH/inc_hash_sha1.cl) #include STR(INCLUDE_PATH/inc_cipher_aes.cl) #endif #define COMPARE_S STR(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M STR(INCLUDE_PATH/inc_comp_multi.cl) typedef struct iphone_passcode_tmp { u32 key0[4]; // original key from pbkdf2 u32 key1[4]; // original key from pbkdf2 u32 iterated_key0[4]; // updated key from pbkdf2 with iterations u32 iterated_key1[4]; // updated key from pbkdf2 with iterations u32 iv[4]; // current iv } iphone_passcode_tmp_t; typedef struct iphone_passcode { u32 uidkey[4]; u32 classkey1[10]; } iphone_passcode_t; DECLSPEC void hmac_sha1_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); } KERNEL_FQ void m26500_init (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; sha1_hmac_ctx_t sha1_hmac_ctx0; sha1_hmac_init_global_swap (&sha1_hmac_ctx0, pws[gid].i, pws[gid].pw_len); sha1_hmac_update_global (&sha1_hmac_ctx0, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len); // we can reuse context intermediate buffer values for pbkdf2 sha1_hmac_ctx_t sha1_hmac_ctx1 = sha1_hmac_ctx0; sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx0; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = 1; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_hmac_update_64 (&sha1_hmac_ctx1, w0, w1, w2, w3, 4); sha1_hmac_final (&sha1_hmac_ctx1); w0[0] = 2; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4); sha1_hmac_final (&sha1_hmac_ctx2); // save tmps[gid].key0[0] = hc_swap32_S (sha1_hmac_ctx1.opad.h[0]); tmps[gid].key0[1] = hc_swap32_S (sha1_hmac_ctx1.opad.h[1]); tmps[gid].key0[2] = hc_swap32_S (sha1_hmac_ctx1.opad.h[2]); tmps[gid].key0[3] = hc_swap32_S (sha1_hmac_ctx1.opad.h[3]); tmps[gid].key1[0] = hc_swap32_S (sha1_hmac_ctx1.opad.h[4]); tmps[gid].key1[1] = hc_swap32_S (sha1_hmac_ctx2.opad.h[0]); tmps[gid].key1[2] = hc_swap32_S (sha1_hmac_ctx2.opad.h[1]); tmps[gid].key1[3] = hc_swap32_S (sha1_hmac_ctx2.opad.h[2]); tmps[gid].iterated_key0[0] = tmps[gid].key0[0]; tmps[gid].iterated_key0[1] = tmps[gid].key0[1]; tmps[gid].iterated_key0[2] = tmps[gid].key0[2]; tmps[gid].iterated_key0[3] = tmps[gid].key0[3]; tmps[gid].iterated_key1[0] = tmps[gid].key1[0]; tmps[gid].iterated_key1[1] = tmps[gid].key1[1]; tmps[gid].iterated_key1[2] = tmps[gid].key1[2]; tmps[gid].iterated_key1[3] = tmps[gid].key1[3]; tmps[gid].iv[0] = 0; tmps[gid].iv[1] = 0; tmps[gid].iv[2] = 0; tmps[gid].iv[3] = 0; } KERNEL_FQ void m26500_loop (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; // load stuff u32 key0[4]; u32 key1[4]; key0[0] = tmps[gid].key0[0]; key0[1] = tmps[gid].key0[1]; key0[2] = tmps[gid].key0[2]; key0[3] = tmps[gid].key0[3]; key1[0] = tmps[gid].key1[0]; key1[1] = tmps[gid].key1[1]; key1[2] = tmps[gid].key1[2]; key1[3] = tmps[gid].key1[3]; u32 iterated_key0[4]; u32 iterated_key1[4]; iterated_key0[0] = tmps[gid].iterated_key0[0]; iterated_key0[1] = tmps[gid].iterated_key0[1]; iterated_key0[2] = tmps[gid].iterated_key0[2]; iterated_key0[3] = tmps[gid].iterated_key0[3]; iterated_key1[0] = tmps[gid].iterated_key1[0]; iterated_key1[1] = tmps[gid].iterated_key1[1]; iterated_key1[2] = tmps[gid].iterated_key1[2]; iterated_key1[3] = tmps[gid].iterated_key1[3]; u32 iv[4]; iv[0] = tmps[gid].iv[0]; iv[1] = tmps[gid].iv[1]; iv[2] = tmps[gid].iv[2]; iv[3] = tmps[gid].iv[3]; u32 ukey[4]; ukey[0] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[0]; ukey[1] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[1]; ukey[2] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[2]; ukey[3] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[3]; u32 ks[44]; AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); // here's what counts for (u32 i = 0, xorkey = LOOP_POS + 1; i < LOOP_CNT; i++, xorkey++) { u32 in[4]; in[0] = key0[0] ^ iv[0] ^ xorkey; in[1] = key0[1] ^ iv[1] ^ xorkey; in[2] = key0[2] ^ iv[2] ^ xorkey; in[3] = key0[3] ^ iv[3] ^ xorkey; aes128_encrypt (ks, in, iv, s_te0, s_te1, s_te2, s_te3, s_te4); iterated_key0[0] ^= iv[0]; iterated_key0[1] ^= iv[1]; iterated_key0[2] ^= iv[2]; iterated_key0[3] ^= iv[3]; in[0] = key1[0] ^ iv[0] ^ xorkey; in[1] = key1[1] ^ iv[1] ^ xorkey; in[2] = key1[2] ^ iv[2] ^ xorkey; in[3] = key1[3] ^ iv[3] ^ xorkey; aes128_encrypt (ks, in, iv, s_te0, s_te1, s_te2, s_te3, s_te4); iterated_key1[0] ^= iv[0]; iterated_key1[1] ^= iv[1]; iterated_key1[2] ^= iv[2]; iterated_key1[3] ^= iv[3]; } tmps[gid].iterated_key0[0] = iterated_key0[0]; tmps[gid].iterated_key0[1] = iterated_key0[1]; tmps[gid].iterated_key0[2] = iterated_key0[2]; tmps[gid].iterated_key0[3] = iterated_key0[3]; tmps[gid].iterated_key1[0] = iterated_key1[0]; tmps[gid].iterated_key1[1] = iterated_key1[1]; tmps[gid].iterated_key1[2] = iterated_key1[2]; tmps[gid].iterated_key1[3] = iterated_key1[3]; tmps[gid].iv[0] = iv[0]; tmps[gid].iv[1] = iv[1]; tmps[gid].iv[2] = iv[2]; tmps[gid].iv[3] = iv[3]; } KERNEL_FQ void m26500_comp (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * aes */ u32 ukey[8]; ukey[0] = tmps[gid].iterated_key0[0]; ukey[1] = tmps[gid].iterated_key0[1]; ukey[2] = tmps[gid].iterated_key0[2]; ukey[3] = tmps[gid].iterated_key0[3]; ukey[4] = tmps[gid].iterated_key1[0]; ukey[5] = tmps[gid].iterated_key1[1]; ukey[6] = tmps[gid].iterated_key1[2]; ukey[7] = tmps[gid].iterated_key1[3]; u32 ks[60]; aes256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 cipher[4]; cipher[0] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[0]; cipher[1] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[1]; cipher[2] = 0; cipher[3] = 0; u32 lsb[8]; lsb[0] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[8]; lsb[1] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[9]; lsb[2] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[6]; lsb[3] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[7]; lsb[4] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[4]; lsb[5] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[5]; lsb[6] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[2]; lsb[7] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[3]; for (int j = 5; j >= 0; j--) { // 1st cipher[1] ^= (4 * j + 4); cipher[2] = lsb[0]; cipher[3] = lsb[1]; AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4); lsb[0] = cipher[2]; lsb[1] = cipher[3]; // 2nd cipher[1] ^= (4 * j + 3); cipher[2] = lsb[2]; cipher[3] = lsb[3]; AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4); lsb[2] = cipher[2]; lsb[3] = cipher[3]; // 3rd cipher[1] ^= (4 * j + 2); cipher[2] = lsb[4]; cipher[3] = lsb[5]; AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4); lsb[4] = cipher[2]; lsb[5] = cipher[3]; // 4th cipher[1] ^= (4 * j + 1); cipher[2] = lsb[6]; cipher[3] = lsb[7]; AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4); lsb[6] = cipher[2]; lsb[7] = cipher[3]; } if ((cipher[0] == 0xa6a6a6a6) && (cipher[1] == 0xa6a6a6a6)) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } return; } }