/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #define XSTR(x) #x #define STR(x) XSTR(x) #ifdef KERNEL_STATIC #include STR(INCLUDE_PATH/inc_vendor.h) #include STR(INCLUDE_PATH/inc_types.h) #include STR(INCLUDE_PATH/inc_platform.cl) #include STR(INCLUDE_PATH/inc_common.cl) #include STR(INCLUDE_PATH/inc_simd.cl) #include STR(INCLUDE_PATH/inc_hash_sha256.cl) #include STR(INCLUDE_PATH/inc_cipher_aes.cl) #include STR(INCLUDE_PATH/inc_cipher_des.cl) #endif #define COMPARE_S STR(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M STR(INCLUDE_PATH/inc_comp_multi.cl) typedef struct pkcs_sha256_tmp { u32 ipad[8]; u32 opad[8]; u32 dgst[32]; u32 out[32]; } pkcs_sha256_tmp_t; typedef struct pkcs { int cipher; u32 data_buf[16384]; int data_len; u32 iv_buf[4]; } pkcs_t; DECLSPEC void hmac_sha256_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; digest[5] = ipad[5]; digest[6] = ipad[6]; digest[7] = ipad[7]; sha256_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = digest[5]; w1[2] = digest[6]; w1[3] = digest[7]; w2[0] = 0x80000000; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 32) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; digest[5] = opad[5]; digest[6] = opad[6]; digest[7] = opad[7]; sha256_transform_vector (w0, w1, w2, w3, digest); } KERNEL_FQ void m24420_init (KERN_ATTR_TMPS_ESALT (pkcs_sha256_tmp_t, pkcs_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; sha256_hmac_ctx_t sha256_hmac_ctx; sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad[0] = sha256_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha256_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha256_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha256_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha256_hmac_ctx.ipad.h[4]; tmps[gid].ipad[5] = sha256_hmac_ctx.ipad.h[5]; tmps[gid].ipad[6] = sha256_hmac_ctx.ipad.h[6]; tmps[gid].ipad[7] = sha256_hmac_ctx.ipad.h[7]; tmps[gid].opad[0] = sha256_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha256_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha256_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha256_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha256_hmac_ctx.opad.h[4]; tmps[gid].opad[5] = sha256_hmac_ctx.opad.h[5]; tmps[gid].opad[6] = sha256_hmac_ctx.opad.h[6]; tmps[gid].opad[7] = sha256_hmac_ctx.opad.h[7]; sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len); for (u32 i = 0, j = 1; i < 8; i += 8, j += 1) { sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4); sha256_hmac_final (&sha256_hmac_ctx2); tmps[gid].dgst[i + 0] = sha256_hmac_ctx2.opad.h[0]; tmps[gid].dgst[i + 1] = sha256_hmac_ctx2.opad.h[1]; tmps[gid].dgst[i + 2] = sha256_hmac_ctx2.opad.h[2]; tmps[gid].dgst[i + 3] = sha256_hmac_ctx2.opad.h[3]; tmps[gid].dgst[i + 4] = sha256_hmac_ctx2.opad.h[4]; tmps[gid].dgst[i + 5] = sha256_hmac_ctx2.opad.h[5]; tmps[gid].dgst[i + 6] = sha256_hmac_ctx2.opad.h[6]; tmps[gid].dgst[i + 7] = sha256_hmac_ctx2.opad.h[7]; tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0]; tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1]; tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2]; tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3]; tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4]; tmps[gid].out[i + 5] = tmps[gid].dgst[i + 5]; tmps[gid].out[i + 6] = tmps[gid].dgst[i + 6]; tmps[gid].out[i + 7] = tmps[gid].dgst[i + 7]; } } KERNEL_FQ void m24420_loop (KERN_ATTR_TMPS_ESALT (pkcs_sha256_tmp_t, pkcs_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= GID_CNT) return; u32x ipad[8]; u32x opad[8]; ipad[0] = packv (tmps, ipad, gid, 0); ipad[1] = packv (tmps, ipad, gid, 1); ipad[2] = packv (tmps, ipad, gid, 2); ipad[3] = packv (tmps, ipad, gid, 3); ipad[4] = packv (tmps, ipad, gid, 4); ipad[5] = packv (tmps, ipad, gid, 5); ipad[6] = packv (tmps, ipad, gid, 6); ipad[7] = packv (tmps, ipad, gid, 7); opad[0] = packv (tmps, opad, gid, 0); opad[1] = packv (tmps, opad, gid, 1); opad[2] = packv (tmps, opad, gid, 2); opad[3] = packv (tmps, opad, gid, 3); opad[4] = packv (tmps, opad, gid, 4); opad[5] = packv (tmps, opad, gid, 5); opad[6] = packv (tmps, opad, gid, 6); opad[7] = packv (tmps, opad, gid, 7); for (u32 i = 0; i < 8; i += 8) { u32x dgst[8]; u32x out[8]; dgst[0] = packv (tmps, dgst, gid, i + 0); dgst[1] = packv (tmps, dgst, gid, i + 1); dgst[2] = packv (tmps, dgst, gid, i + 2); dgst[3] = packv (tmps, dgst, gid, i + 3); dgst[4] = packv (tmps, dgst, gid, i + 4); dgst[5] = packv (tmps, dgst, gid, i + 5); dgst[6] = packv (tmps, dgst, gid, i + 6); dgst[7] = packv (tmps, dgst, gid, i + 7); out[0] = packv (tmps, out, gid, i + 0); out[1] = packv (tmps, out, gid, i + 1); out[2] = packv (tmps, out, gid, i + 2); out[3] = packv (tmps, out, gid, i + 3); out[4] = packv (tmps, out, gid, i + 4); out[5] = packv (tmps, out, gid, i + 5); out[6] = packv (tmps, out, gid, i + 6); out[7] = packv (tmps, out, gid, i + 7); for (u32 j = 0; j < LOOP_CNT; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = dgst[5]; w1[2] = dgst[6]; w1[3] = dgst[7]; w2[0] = 0x80000000; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 32) * 8; hmac_sha256_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; out[5] ^= dgst[5]; out[6] ^= dgst[6]; out[7] ^= dgst[7]; } unpackv (tmps, dgst, gid, i + 0, dgst[0]); unpackv (tmps, dgst, gid, i + 1, dgst[1]); unpackv (tmps, dgst, gid, i + 2, dgst[2]); unpackv (tmps, dgst, gid, i + 3, dgst[3]); unpackv (tmps, dgst, gid, i + 4, dgst[4]); unpackv (tmps, dgst, gid, i + 5, dgst[5]); unpackv (tmps, dgst, gid, i + 6, dgst[6]); unpackv (tmps, dgst, gid, i + 7, dgst[7]); unpackv (tmps, out, gid, i + 0, out[0]); unpackv (tmps, out, gid, i + 1, out[1]); unpackv (tmps, out, gid, i + 2, out[2]); unpackv (tmps, out, gid, i + 3, out[3]); unpackv (tmps, out, gid, i + 4, out[4]); unpackv (tmps, out, gid, i + 5, out[5]); unpackv (tmps, out, gid, i + 6, out[6]); unpackv (tmps, out, gid, i + 7, out[7]); } } KERNEL_FQ void m24420_comp (KERN_ATTR_TMPS_ESALT (pkcs_sha256_tmp_t, pkcs_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } LOCAL_VK u32 s_SPtrans[8][64]; LOCAL_VK u32 s_skb[8][64]; for (u32 i = lid; i < 64; i += lsz) { s_SPtrans[0][i] = c_SPtrans[0][i]; s_SPtrans[1][i] = c_SPtrans[1][i]; s_SPtrans[2][i] = c_SPtrans[2][i]; s_SPtrans[3][i] = c_SPtrans[3][i]; s_SPtrans[4][i] = c_SPtrans[4][i]; s_SPtrans[5][i] = c_SPtrans[5][i]; s_SPtrans[6][i] = c_SPtrans[6][i]; s_SPtrans[7][i] = c_SPtrans[7][i]; s_skb[0][i] = c_skb[0][i]; s_skb[1][i] = c_skb[1][i]; s_skb[2][i] = c_skb[2][i]; s_skb[3][i] = c_skb[3][i]; s_skb[4][i] = c_skb[4][i]; s_skb[5][i] = c_skb[5][i]; s_skb[6][i] = c_skb[6][i]; s_skb[7][i] = c_skb[7][i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans; CONSTANT_AS u32a (*s_skb)[64] = c_skb; #endif if (gid >= GID_CNT) return; u32 ukey[8]; ukey[0] = tmps[gid].out[0]; ukey[1] = tmps[gid].out[1]; ukey[2] = tmps[gid].out[2]; ukey[3] = tmps[gid].out[3]; ukey[4] = tmps[gid].out[4]; ukey[5] = tmps[gid].out[5]; ukey[6] = tmps[gid].out[6]; ukey[7] = tmps[gid].out[7]; const int data_len = esalt_bufs[DIGESTS_OFFSET_HOST].data_len; const int last_pad_pos = data_len - 1; const int last_pad_elem = last_pad_pos / 4; const int cipher = esalt_bufs[DIGESTS_OFFSET_HOST].cipher; u32 iv[4]; u32 enc[4]; u32 dec[4]; if (cipher == 1) { ukey[0] = hc_swap32_S (ukey[0]); ukey[1] = hc_swap32_S (ukey[1]); ukey[2] = hc_swap32_S (ukey[2]); ukey[3] = hc_swap32_S (ukey[3]); ukey[4] = hc_swap32_S (ukey[4]); ukey[5] = hc_swap32_S (ukey[5]); u32 K0[16]; u32 K1[16]; u32 K2[16]; u32 K3[16]; u32 K4[16]; u32 K5[16]; _des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb); _des_crypt_keysetup (ukey[2], ukey[3], K2, K3, s_skb); _des_crypt_keysetup (ukey[4], ukey[5], K4, K5, s_skb); // first check the padding iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0]; u32 p1[2]; u32 p2[2]; _des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans); _des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans); _des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans); dec[0] ^= iv[0]; dec[1] ^= iv[1]; const int paddingv = pkcs_padding_bs8 (dec, 8); if (paddingv == -1) return; // second check (naive code) ASN.1 structure iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1]; _des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans); _des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans); _des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans); dec[0] ^= iv[0]; dec[1] ^= iv[1]; const int real_len = (data_len - 8) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) return; } else if (cipher == 2) { u32 ks[44]; AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); // first check the padding iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0]; aes128_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int paddingv = pkcs_padding_bs16 (dec, 16); if (paddingv == -1) return; // second check (naive code) ASN.1 structure iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3]; aes128_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int real_len = (data_len - 16) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) return; } else if (cipher == 3) { u32 ks[52]; AES192_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); // first check the padding iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0]; aes192_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int paddingv = pkcs_padding_bs16 (dec, 16); if (paddingv == -1) return; // second check (naive code) ASN.1 structure iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3]; aes192_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int real_len = (data_len - 16) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) return; } else if (cipher == 4) { u32 ks[60]; AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); // first check the padding iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0]; aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int paddingv = pkcs_padding_bs16 (dec, 16); if (paddingv == -1) return; // second check (naive code) ASN.1 structure iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0]; iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1]; iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2]; iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3]; enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0]; enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1]; enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2]; enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3]; aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; const int real_len = (data_len - 16) + paddingv; const int asn1_ok = asn1_detect (dec, real_len); if (asn1_ok == 0) return; } else { return; } const u32 r0 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0]; const u32 r1 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1]; const u32 r2 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2]; const u32 r3 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3]; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }