/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_hash_sha256.cl) #include M2S(INCLUDE_PATH/inc_hash_scrypt.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #include M2S(INCLUDE_PATH/inc_cipher_twofish.cl) #include M2S(INCLUDE_PATH/inc_cipher_serpent.cl) #include M2S(INCLUDE_PATH/inc_cipher_camellia.cl) #endif typedef struct bestcrypt_scrypt { u32 salt_buf[24]; u32 ciphertext[96]; u32 version; } bestcrypt_scrypt_t; #ifndef KECCAK_ROUNDS #define KECCAK_ROUNDS 24 #endif #define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s]) #define Theta2(s) \ { \ st[ 0 + s] ^= t; \ st[ 5 + s] ^= t; \ st[10 + s] ^= t; \ st[15 + s] ^= t; \ st[20 + s] ^= t; \ } #define Rho_Pi(s) \ { \ u32 j = keccakf_piln[s]; \ u32 k = keccakf_rotc[s]; \ bc0 = st[j]; \ st[j] = hc_rotl64_S (t, k); \ t = bc0; \ } #define Chi(s) \ { \ bc0 = st[0 + s]; \ bc1 = st[1 + s]; \ bc2 = st[2 + s]; \ bc3 = st[3 + s]; \ bc4 = st[4 + s]; \ st[0 + s] ^= ~bc1 & bc2; \ st[1 + s] ^= ~bc2 & bc3; \ st[2 + s] ^= ~bc3 & bc4; \ st[3 + s] ^= ~bc4 & bc0; \ st[4 + s] ^= ~bc0 & bc1; \ } CONSTANT_VK u64a keccakf_rndc[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; DECLSPEC void keccak_transform_S (PRIVATE_AS u64 *st) { const u8 keccakf_rotc[24] = { 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44 }; const u8 keccakf_piln[24] = { 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1 }; /** * Keccak */ int round; for (round = 0; round < KECCAK_ROUNDS; round++) { // Theta u64 bc0 = Theta1 (0); u64 bc1 = Theta1 (1); u64 bc2 = Theta1 (2); u64 bc3 = Theta1 (3); u64 bc4 = Theta1 (4); u64 t; t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0); t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1); t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2); t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3); t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4); // Rho Pi t = st[1]; Rho_Pi (0); Rho_Pi (1); Rho_Pi (2); Rho_Pi (3); Rho_Pi (4); Rho_Pi (5); Rho_Pi (6); Rho_Pi (7); Rho_Pi (8); Rho_Pi (9); Rho_Pi (10); Rho_Pi (11); Rho_Pi (12); Rho_Pi (13); Rho_Pi (14); Rho_Pi (15); Rho_Pi (16); Rho_Pi (17); Rho_Pi (18); Rho_Pi (19); Rho_Pi (20); Rho_Pi (21); Rho_Pi (22); Rho_Pi (23); // Chi Chi (0); Chi (5); Chi (10); Chi (15); Chi (20); // Iota st[0] ^= keccakf_rndc[round]; } } KERNEL_FQ KERNEL_FA void m24000_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, bestcrypt_scrypt_t)) { const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; scrypt_pbkdf2_ggg (pws[gid].i, pws[gid].pw_len, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len, tmps[gid].in, SCRYPT_SZ); scrypt_blockmix_in (tmps[gid].in, tmps[gid].out, SCRYPT_SZ); } KERNEL_FQ KERNEL_FA void m24000_loop_prepare (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, bestcrypt_scrypt_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); const u64 bid = get_group_id (0); if (gid >= GID_CNT) return; u32 X[STATE_CNT4]; GLOBAL_AS u32 *P = tmps[gid].out + (SALT_REPEAT * STATE_CNT4); scrypt_smix_init (P, X, d_extra0_buf, d_extra1_buf, d_extra2_buf, d_extra3_buf, gid, lid, lsz, bid); } KERNEL_FQ KERNEL_FA void m24000_loop (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, bestcrypt_scrypt_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); const u64 bid = get_group_id (0); if (gid >= GID_CNT) return; u32 X[STATE_CNT4]; u32 T[STATE_CNT4]; GLOBAL_AS u32 *P = tmps[gid].out + (SALT_REPEAT * STATE_CNT4); scrypt_smix_loop (P, X, T, d_extra0_buf, d_extra1_buf, d_extra2_buf, d_extra3_buf, gid, lid, lsz, bid); } KERNEL_FQ KERNEL_FA void m24000_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, bestcrypt_scrypt_t)) { /** * base */ const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; scrypt_blockmix_out (tmps[gid].out, tmps[gid].in, SCRYPT_SZ); u32 out[8]; scrypt_pbkdf2_ggp (pws[gid].i, pws[gid].pw_len, tmps[gid].in, SCRYPT_SZ, out, 32); u32 version = esalt_bufs[DIGESTS_OFFSET_HOST].version; u32 iv[4] = { 0 }; u32 res[20]; // full would be 24 x u32 (96 bytes) u32 key[8]; key[0] = out[0]; key[1] = out[1]; key[2] = out[2]; key[3] = out[3]; key[4] = out[4]; key[5] = out[5]; key[6] = out[6]; key[7] = out[7]; if (version == 0x38) //0x38 is char for '8' which is the crypto type passed in position 3 of hash ( $08$ ) { #define KEYLEN 60 u32 ks[KEYLEN]; aes256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); for (u32 i = 0; i < 20; i += 4) // 96 bytes output would contain the full 32 byte checksum { u32 data[4]; data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 0]; data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 1]; data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 2]; data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 3]; u32 out[4]; aes256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); res[i + 0] = hc_swap32_S (out[0] ^ iv[0]); res[i + 1] = hc_swap32_S (out[1] ^ iv[1]); res[i + 2] = hc_swap32_S (out[2] ^ iv[2]); res[i + 3] = hc_swap32_S (out[3] ^ iv[3]); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; } } if (version == 0x39) //0x39 is char for '9' which is the crypto type passed in position 3 of hash ( $09$ ) { u32 sk[4]; u32 lk[40]; twofish256_set_key (sk, lk, key); for (u32 i = 0; i < 20; i += 4) // 96 bytes output would contain the full 32 byte checksum { u32 data[4]; data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 0]; data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 1]; data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 2]; data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 3]; u32 out[4]; twofish256_decrypt (sk, lk, data, out); res[i + 0] = hc_swap32_S (out[0] ^ iv[0]); res[i + 1] = hc_swap32_S (out[1] ^ iv[1]); res[i + 2] = hc_swap32_S (out[2] ^ iv[2]); res[i + 3] = hc_swap32_S (out[3] ^ iv[3]); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; } } if (version == 0x61) //0x61 is char for 'a' which is the crypto type passed in position 3 of hash ( $0a$ ) { u32 ks_serpent[140]; serpent256_set_key (ks_serpent, key); for (u32 i = 0; i < 20; i += 4) // 96 bytes output would contain the full 32 byte checksum { u32 data[4]; data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 0]; data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 1]; data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 2]; data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 3]; u32 out[4]; serpent256_decrypt (ks_serpent, data, out); res[i + 0] = hc_swap32_S (out[0] ^ iv[0]); res[i + 1] = hc_swap32_S (out[1] ^ iv[1]); res[i + 2] = hc_swap32_S (out[2] ^ iv[2]); res[i + 3] = hc_swap32_S (out[3] ^ iv[3]); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; } } if (version == 0x66) //0x66 is char for 'f' which is the crypto type passed in position 3 of hash ( $0f$ ) { u32 ks_camellia[68]; camellia256_set_key (ks_camellia, key); for (u32 i = 0; i < 20; i += 4) // 96 bytes output would contain the full 32 byte checksum { u32 data[4]; data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 0]; data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 1]; data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 2]; data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[i + 3]; u32 out[4]; camellia256_decrypt (ks_camellia, data, out); res[i + 0] = hc_swap32_S (out[0] ^ iv[0]); res[i + 1] = hc_swap32_S (out[1] ^ iv[1]); res[i + 2] = hc_swap32_S (out[2] ^ iv[2]); res[i + 3] = hc_swap32_S (out[3] ^ iv[3]); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; } } u32 digest[8]; digest[0] = SHA256M_A; digest[1] = SHA256M_B; digest[2] = SHA256M_C; digest[3] = SHA256M_D; digest[4] = SHA256M_E; digest[5] = SHA256M_F; digest[6] = SHA256M_G; digest[7] = SHA256M_H; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = res[ 0]; w0[1] = res[ 1]; w0[2] = res[ 2]; w0[3] = res[ 3]; w1[0] = res[ 4]; w1[1] = res[ 5]; w1[2] = res[ 6]; w1[3] = res[ 7]; w2[0] = res[ 8]; w2[1] = res[ 9]; w2[2] = res[10]; w2[3] = res[11]; w3[0] = res[12]; w3[1] = res[13]; w3[2] = res[14]; w3[3] = res[15]; sha256_transform (w0, w1, w2, w3, digest); w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 64 * 8; sha256_transform (w0, w1, w2, w3, digest); if ((digest[0] == res[16]) && (digest[1] == res[17]) && (digest[2] == res[18]) && (digest[3] == res[19])) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } return; } }