/** * Author......: See docs/credits.txt * License.....: MIT */ #define XSTR(x) #x #define STR(x) XSTR(x) #ifdef KERNEL_STATIC #include STR(INCLUDE_PATH/inc_vendor.h) #include STR(INCLUDE_PATH/inc_types.h) #include STR(INCLUDE_PATH/inc_platform.cl) #include STR(INCLUDE_PATH/inc_common.cl) #include STR(INCLUDE_PATH/inc_hash_sha256.cl) #include STR(INCLUDE_PATH/inc_cipher_aes.cl) #endif #define COMPARE_S STR(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M STR(INCLUDE_PATH/inc_comp_multi.cl) // fixed MultiBit salt (not a bug) #define MULTIBIT_S0 0x35510380 #define MULTIBIT_S1 0x75a3b0c5 #define MULTIBIT_IV0 0x1f3944a3 #define MULTIBIT_IV1 0xb3118353 #define MULTIBIT_IV2 0x16865429 #define MULTIBIT_IV3 0x3e7289c4 typedef struct { #ifndef SCRYPT_TMP_ELEM #define SCRYPT_TMP_ELEM 1 #endif uint4 P[SCRYPT_TMP_ELEM]; } scrypt_tmp_t; DECLSPEC int is_valid_bitcoinj_8 (const u8 v) { // .abcdefghijklmnopqrstuvwxyz if (v > (u8) 'z') return 0; if (v < (u8) '.') return 0; if ((v > (u8) '.') && (v < (u8) 'a')) return 0; return 1; } DECLSPEC int is_valid_bitcoinj (PRIVATE_AS const u32 *w) { if ((w[0] & 0x000000ff) != 0x0000000a) return 0; if ((w[0] & 0x0000ff00) > 0x00007f00) return 0; // check for "org." substring: if ((w[0] & 0xffff0000) != 0x726f0000) return 0; if ((w[1] & 0x0000ffff) != 0x00002e67) return 0; if (is_valid_bitcoinj_8 (w[1] >> 16) == 0) return 0; if (is_valid_bitcoinj_8 (w[1] >> 24) == 0) return 0; if (is_valid_bitcoinj_8 (w[2] >> 0) == 0) return 0; if (is_valid_bitcoinj_8 (w[2] >> 8) == 0) return 0; if (is_valid_bitcoinj_8 (w[2] >> 16) == 0) return 0; if (is_valid_bitcoinj_8 (w[2] >> 24) == 0) return 0; if (is_valid_bitcoinj_8 (w[3] >> 0) == 0) return 0; if (is_valid_bitcoinj_8 (w[3] >> 8) == 0) return 0; return 1; } #if defined IS_CUDA || defined IS_HIP inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); } inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); } inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); } inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); } inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); } inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); } inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; } inline __device__ uint4 rotate (const uint4 a, const int n) { return ((a << n) | ((a >> (32 - n)))); } #endif DECLSPEC uint4 hc_swap32_4 (uint4 v) { return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u)); } #define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p)) #define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N)) #define GET_STATE_CNT(r) (2 * (r) * 16) #define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P) #define SCRYPT_CNT4 (SCRYPT_CNT / 4) #define STATE_CNT GET_STATE_CNT (SCRYPT_R) #define STATE_CNT4 (STATE_CNT / 4) #define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s)); #if defined IS_CUDA || defined IS_HIP #define SALSA20_2R() \ { \ ADD_ROTATE_XOR (X1, X0, X3, 7); \ ADD_ROTATE_XOR (X2, X1, X0, 9); \ ADD_ROTATE_XOR (X3, X2, X1, 13); \ ADD_ROTATE_XOR (X0, X3, X2, 18); \ \ X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \ X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \ X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \ \ ADD_ROTATE_XOR (X3, X0, X1, 7); \ ADD_ROTATE_XOR (X2, X3, X0, 9); \ ADD_ROTATE_XOR (X1, X2, X3, 13); \ ADD_ROTATE_XOR (X0, X1, X2, 18); \ \ X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \ X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \ X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \ } #elif defined IS_METAL #define SALSA20_2R() \ { \ ADD_ROTATE_XOR (X1, X0, X3, 7); \ ADD_ROTATE_XOR (X2, X1, X0, 9); \ ADD_ROTATE_XOR (X3, X2, X1, 13); \ ADD_ROTATE_XOR (X0, X3, X2, 18); \ \ X1 = X1.wxyz; \ X2 = X2.zwxy; \ X3 = X3.yzwx; \ \ ADD_ROTATE_XOR (X3, X0, X1, 7); \ ADD_ROTATE_XOR (X2, X3, X0, 9); \ ADD_ROTATE_XOR (X1, X2, X3, 13); \ ADD_ROTATE_XOR (X0, X1, X2, 18); \ \ X1 = X1.yzwx; \ X2 = X2.zwxy; \ X3 = X3.wxyz; \ } #else #define SALSA20_2R() \ { \ ADD_ROTATE_XOR (X1, X0, X3, 7); \ ADD_ROTATE_XOR (X2, X1, X0, 9); \ ADD_ROTATE_XOR (X3, X2, X1, 13); \ ADD_ROTATE_XOR (X0, X3, X2, 18); \ \ X1 = X1.s3012; \ X2 = X2.s2301; \ X3 = X3.s1230; \ \ ADD_ROTATE_XOR (X3, X0, X1, 7); \ ADD_ROTATE_XOR (X2, X3, X0, 9); \ ADD_ROTATE_XOR (X1, X2, X3, 13); \ ADD_ROTATE_XOR (X0, X1, X2, 18); \ \ X1 = X1.s1230; \ X2 = X2.s2301; \ X3 = X3.s3012; \ } #endif #define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z)) #define CO Coord(xd4,y,z) DECLSPEC void salsa_r (PRIVATE_AS uint4 *TI) { uint4 R0 = TI[STATE_CNT4 - 4]; uint4 R1 = TI[STATE_CNT4 - 3]; uint4 R2 = TI[STATE_CNT4 - 2]; uint4 R3 = TI[STATE_CNT4 - 1]; for (int i = 0; i < STATE_CNT4; i += 4) { uint4 Y0 = TI[i + 0]; uint4 Y1 = TI[i + 1]; uint4 Y2 = TI[i + 2]; uint4 Y3 = TI[i + 3]; R0 = R0 ^ Y0; R1 = R1 ^ Y1; R2 = R2 ^ Y2; R3 = R3 ^ Y3; uint4 X0 = R0; uint4 X1 = R1; uint4 X2 = R2; uint4 X3 = R3; SALSA20_2R (); SALSA20_2R (); SALSA20_2R (); SALSA20_2R (); R0 = R0 + X0; R1 = R1 + X1; R2 = R2 + X2; R3 = R3 + X3; TI[i + 0] = R0; TI[i + 1] = R1; TI[i + 2] = R2; TI[i + 3] = R3; } #if SCRYPT_R > 1 uint4 TT[STATE_CNT4 / 2]; for (int dst_off = 0, src_off = 4; src_off < STATE_CNT4; dst_off += 4, src_off += 8) { TT[dst_off + 0] = TI[src_off + 0]; TT[dst_off + 1] = TI[src_off + 1]; TT[dst_off + 2] = TI[src_off + 2]; TT[dst_off + 3] = TI[src_off + 3]; } for (int dst_off = 4, src_off = 8; src_off < STATE_CNT4; dst_off += 4, src_off += 8) { TI[dst_off + 0] = TI[src_off + 0]; TI[dst_off + 1] = TI[src_off + 1]; TI[dst_off + 2] = TI[src_off + 2]; TI[dst_off + 3] = TI[src_off + 3]; } for (int dst_off = STATE_CNT4 / 2, src_off = 0; dst_off < STATE_CNT4; dst_off += 4, src_off += 4) { TI[dst_off + 0] = TT[src_off + 0]; TI[dst_off + 1] = TT[src_off + 1]; TI[dst_off + 2] = TT[src_off + 2]; TI[dst_off + 3] = TT[src_off + 3]; } #endif } DECLSPEC void scrypt_smix_init (PRIVATE_AS uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3, const u64 gid) { const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO; const u32 zSIZE = STATE_CNT4; const u32 x = (u32) gid; const u32 xd4 = x / 4; const u32 xm4 = x & 3; GLOBAL_AS uint4 *V; switch (xm4) { case 0: V = V0; break; case 1: V = V1; break; case 2: V = V2; break; case 3: V = V3; break; } for (u32 y = 0; y < ySIZE; y++) { for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z]; for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X); } } DECLSPEC void scrypt_smix_loop (PRIVATE_AS uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3, const u64 gid) { const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO; const u32 zSIZE = STATE_CNT4; const u32 x = (u32) gid; const u32 xd4 = x / 4; const u32 xm4 = x & 3; GLOBAL_AS uint4 *V; switch (xm4) { case 0: V = V0; break; case 1: V = V1; break; case 2: V = V2; break; case 3: V = V3; break; } // note: fixed 1024 iterations = forced -u 1024 for (u32 N_pos = 0; N_pos < 1024; N_pos++) { const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1); const u32 y = k / SCRYPT_TMTO; const u32 km = k - (y * SCRYPT_TMTO); uint4 T[STATE_CNT4]; for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO]; for (u32 i = 0; i < km; i++) salsa_r (T); for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z]; salsa_r (X); } } KERNEL_FQ void m22700_init (KERN_ATTR_TMPS (scrypt_tmp_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; u32 w[128] = { 0 }; hc_enc_t hc_enc; hc_enc_init (&hc_enc); const u32 w_len = hc_enc_next_global (&hc_enc, pws[gid].i, pws[gid].pw_len, 256, w, sizeof (w)); // utf16le to utf16be for (int i = 0, j = 0; i < w_len; i += 4, j += 1) { w[j] = ((w[j] >> 8) & 0x00ff00ff) | ((w[j] << 8) & 0xff00ff00); } sha256_hmac_ctx_t sha256_hmac_ctx; sha256_hmac_init_swap (&sha256_hmac_ctx, w, w_len); u32 s0[4] = { 0 }; u32 s1[4] = { 0 }; u32 s2[4] = { 0 }; u32 s3[4] = { 0 }; s0[0] = MULTIBIT_S0; s0[1] = MULTIBIT_S1; sha256_hmac_update_64 (&sha256_hmac_ctx, s0, s1, s2, s3, 8); for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2) { sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4); sha256_hmac_final (&sha256_hmac_ctx2); u32 digest[8]; digest[0] = sha256_hmac_ctx2.opad.h[0]; digest[1] = sha256_hmac_ctx2.opad.h[1]; digest[2] = sha256_hmac_ctx2.opad.h[2]; digest[3] = sha256_hmac_ctx2.opad.h[3]; digest[4] = sha256_hmac_ctx2.opad.h[4]; digest[5] = sha256_hmac_ctx2.opad.h[5]; digest[6] = sha256_hmac_ctx2.opad.h[6]; digest[7] = sha256_hmac_ctx2.opad.h[7]; #if defined IS_CUDA const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]); const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]); #else const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]); const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]); #endif tmps[gid].P[k + 0] = tmp0; tmps[gid].P[k + 1] = tmp1; } for (u32 l = 0; l < SCRYPT_CNT4; l += 4) { uint4 T[4]; T[0] = tmps[gid].P[l + 0]; T[1] = tmps[gid].P[l + 1]; T[2] = tmps[gid].P[l + 2]; T[3] = tmps[gid].P[l + 3]; T[0] = hc_swap32_4 (T[0]); T[1] = hc_swap32_4 (T[1]); T[2] = hc_swap32_4 (T[2]); T[3] = hc_swap32_4 (T[3]); uint4 X[4]; #if defined IS_CUDA X[0] = make_uint4 (T[0].x, T[1].y, T[2].z, T[3].w); X[1] = make_uint4 (T[1].x, T[2].y, T[3].z, T[0].w); X[2] = make_uint4 (T[2].x, T[3].y, T[0].z, T[1].w); X[3] = make_uint4 (T[3].x, T[0].y, T[1].z, T[2].w); #else X[0] = (uint4) (T[0].x, T[1].y, T[2].z, T[3].w); X[1] = (uint4) (T[1].x, T[2].y, T[3].z, T[0].w); X[2] = (uint4) (T[2].x, T[3].y, T[0].z, T[1].w); X[3] = (uint4) (T[3].x, T[0].y, T[1].z, T[2].w); #endif tmps[gid].P[l + 0] = X[0]; tmps[gid].P[l + 1] = X[1]; tmps[gid].P[l + 2] = X[2]; tmps[gid].P[l + 3] = X[3]; } } KERNEL_FQ void m22700_loop_prepare (KERN_ATTR_TMPS (scrypt_tmp_t)) { /** * base */ const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); if (gid >= GID_CNT) return; // SCRYPT part, init V GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf; GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf; GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf; GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf; uint4 X[STATE_CNT4]; const u32 P_offset = SALT_REPEAT * STATE_CNT4; GLOBAL_AS uint4 *P = tmps[gid].P + P_offset; for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z]; scrypt_smix_init (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf, gid); for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z]; } KERNEL_FQ void m22700_loop (KERN_ATTR_TMPS (scrypt_tmp_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); if (gid >= GID_CNT) return; GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf; GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf; GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf; GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf; uint4 X[STATE_CNT4]; const u32 P_offset = SALT_REPEAT * STATE_CNT4; GLOBAL_AS uint4 *P = tmps[gid].P + P_offset; for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z]; scrypt_smix_loop (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf, gid); for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z]; } KERNEL_FQ void m22700_comp (KERN_ATTR_TMPS (scrypt_tmp_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * 2nd pbkdf2, creates B */ u32 w[128] = { 0 }; hc_enc_t hc_enc; hc_enc_init (&hc_enc); const u32 w_len = hc_enc_next_global (&hc_enc, pws[gid].i, pws[gid].pw_len, 256, w, sizeof (w)); // utf16le to utf16be for (int i = 0, j = 0; i < w_len; i += 4, j += 1) { w[j] = ((w[j] >> 8) & 0x00ff00ff) | ((w[j] << 8) & 0xff00ff00); } sha256_hmac_ctx_t ctx; sha256_hmac_init_swap (&ctx, w, w_len); u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; for (u32 l = 0; l < SCRYPT_CNT4; l += 4) { uint4 X[4]; X[0] = tmps[gid].P[l + 0]; X[1] = tmps[gid].P[l + 1]; X[2] = tmps[gid].P[l + 2]; X[3] = tmps[gid].P[l + 3]; uint4 T[4]; #if defined IS_CUDA T[0] = make_uint4 (X[0].x, X[3].y, X[2].z, X[1].w); T[1] = make_uint4 (X[1].x, X[0].y, X[3].z, X[2].w); T[2] = make_uint4 (X[2].x, X[1].y, X[0].z, X[3].w); T[3] = make_uint4 (X[3].x, X[2].y, X[1].z, X[0].w); #else T[0] = (uint4) (X[0].x, X[3].y, X[2].z, X[1].w); T[1] = (uint4) (X[1].x, X[0].y, X[3].z, X[2].w); T[2] = (uint4) (X[2].x, X[1].y, X[0].z, X[3].w); T[3] = (uint4) (X[3].x, X[2].y, X[1].z, X[0].w); #endif T[0] = hc_swap32_4 (T[0]); T[1] = hc_swap32_4 (T[1]); T[2] = hc_swap32_4 (T[2]); T[3] = hc_swap32_4 (T[3]); w0[0] = T[0].x; w0[1] = T[0].y; w0[2] = T[0].z; w0[3] = T[0].w; w1[0] = T[1].x; w1[1] = T[1].y; w1[2] = T[1].z; w1[3] = T[1].w; w2[0] = T[2].x; w2[1] = T[2].y; w2[2] = T[2].z; w2[3] = T[2].w; w3[0] = T[3].x; w3[1] = T[3].y; w3[2] = T[3].z; w3[3] = T[3].w; sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64); } w0[0] = 1; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4); sha256_hmac_final (&ctx); // AES256-CBC decrypt with IV from salt buffer (dynamic, alternative 1): u32 key[8]; key[0] = ctx.opad.h[0]; key[1] = ctx.opad.h[1]; key[2] = ctx.opad.h[2]; key[3] = ctx.opad.h[3]; key[4] = ctx.opad.h[4]; key[5] = ctx.opad.h[5]; key[6] = ctx.opad.h[6]; key[7] = ctx.opad.h[7]; #define KEYLEN 60 u32 ks[KEYLEN]; AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 iv[4]; iv[0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; iv[1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; iv[2] = salt_bufs[SALT_POS_HOST].salt_buf[2]; iv[3] = salt_bufs[SALT_POS_HOST].salt_buf[3]; u32 enc[4]; enc[0] = salt_bufs[SALT_POS_HOST].salt_buf[4]; enc[1] = salt_bufs[SALT_POS_HOST].salt_buf[5]; enc[2] = salt_bufs[SALT_POS_HOST].salt_buf[6]; enc[3] = salt_bufs[SALT_POS_HOST].salt_buf[7]; u32 dec[4]; aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= iv[0]; dec[1] ^= iv[1]; dec[2] ^= iv[2]; dec[3] ^= iv[3]; if (is_valid_bitcoinj (dec) == 1) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } return; } // alternative 2 (second block, fixed IV): enc[0] = salt_bufs[SALT_POS_HOST].salt_buf[ 8]; enc[1] = salt_bufs[SALT_POS_HOST].salt_buf[ 9]; enc[2] = salt_bufs[SALT_POS_HOST].salt_buf[10]; enc[3] = salt_bufs[SALT_POS_HOST].salt_buf[11]; aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4); dec[0] ^= MULTIBIT_IV0; dec[1] ^= MULTIBIT_IV1; dec[2] ^= MULTIBIT_IV2; dec[3] ^= MULTIBIT_IV3; if (is_valid_bitcoinj (dec) == 1) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } return; } }