/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_sha1.cl" #include "inc_hash_sha256.cl" #include "inc_cipher_aes.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" typedef struct odf12_tmp { u32 ipad[5]; u32 opad[5]; u32 dgst[10]; u32 out[10]; } odf12_tmp_t; typedef struct odf12 { u32 iterations; u32 iv[4]; u32 checksum[8]; u32 encrypted_data[256]; } odf12_t; DECLSPEC static void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); } KERNEL_FQ void m18400_init (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; sha256_ctx_t sha256_ctx; sha256_init (&sha256_ctx); sha256_update_global_swap (&sha256_ctx, pws[gid].i, pws[gid].pw_len); sha256_final (&sha256_ctx); // hmac key = hashed passphrase u32 k0[4]; u32 k1[4]; u32 k2[4]; u32 k3[4]; k0[0] = sha256_ctx.h[0]; k0[1] = sha256_ctx.h[1]; k0[2] = sha256_ctx.h[2]; k0[3] = sha256_ctx.h[3]; k1[0] = sha256_ctx.h[4]; k1[1] = sha256_ctx.h[5]; k1[2] = sha256_ctx.h[6]; k1[3] = sha256_ctx.h[7]; k2[0] = 0; k2[1] = 0; k2[2] = 0; k2[3] = 0; k3[0] = 0; k3[1] = 0; k3[2] = 0; k3[3] = 0; // hmac message = salt u32 m0[4]; u32 m1[4]; u32 m2[4]; u32 m3[4]; m0[0] = hc_swap32_S (salt_bufs[digests_offset].salt_buf[0]); m0[1] = hc_swap32_S (salt_bufs[digests_offset].salt_buf[1]); m0[2] = hc_swap32_S (salt_bufs[digests_offset].salt_buf[2]); m0[3] = hc_swap32_S (salt_bufs[digests_offset].salt_buf[3]); m1[0] = 0; m1[1] = 0; m1[2] = 0; m1[3] = 0; m2[0] = 0; m2[1] = 0; m2[2] = 0; m2[3] = 0; m3[0] = 0; m3[1] = 0; m3[2] = 0; m3[3] = 0; sha1_hmac_ctx_t sha1_hmac_ctx; sha1_hmac_init_64 (&sha1_hmac_ctx, k0, k1, k2, k3); tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4]; tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4]; // first pbkdf iteration; key stretching for (u32 i = 0, j = 1; i < 8; i += 5, j += 1) { m1[0] = j; sha1_hmac_ctx_t sha1_hmac_ctx_loop = sha1_hmac_ctx; sha1_hmac_update_64 (&sha1_hmac_ctx_loop, m0, m1, m2, m3, 20); sha1_hmac_final (&sha1_hmac_ctx_loop); tmps[gid].dgst[i + 0] = sha1_hmac_ctx_loop.opad.h[0]; tmps[gid].dgst[i + 1] = sha1_hmac_ctx_loop.opad.h[1]; tmps[gid].dgst[i + 2] = sha1_hmac_ctx_loop.opad.h[2]; tmps[gid].dgst[i + 3] = sha1_hmac_ctx_loop.opad.h[3]; tmps[gid].dgst[i + 4] = sha1_hmac_ctx_loop.opad.h[4]; tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0]; tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1]; tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2]; tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3]; tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4]; } } KERNEL_FQ void m18400_loop (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= gid_max) return; u32x ipad[5]; u32x opad[5]; ipad[0] = packv (tmps, ipad, gid, 0); ipad[1] = packv (tmps, ipad, gid, 1); ipad[2] = packv (tmps, ipad, gid, 2); ipad[3] = packv (tmps, ipad, gid, 3); ipad[4] = packv (tmps, ipad, gid, 4); opad[0] = packv (tmps, opad, gid, 0); opad[1] = packv (tmps, opad, gid, 1); opad[2] = packv (tmps, opad, gid, 2); opad[3] = packv (tmps, opad, gid, 3); opad[4] = packv (tmps, opad, gid, 4); // key stretching for (u32 i = 0; i < 8; i += 5) { u32x dgst[5]; u32x out[5]; dgst[0] = packv (tmps, dgst, gid, i + 0); dgst[1] = packv (tmps, dgst, gid, i + 1); dgst[2] = packv (tmps, dgst, gid, i + 2); dgst[3] = packv (tmps, dgst, gid, i + 3); dgst[4] = packv (tmps, dgst, gid, i + 4); out[0] = packv (tmps, out, gid, i + 0); out[1] = packv (tmps, out, gid, i + 1); out[2] = packv (tmps, out, gid, i + 2); out[3] = packv (tmps, out, gid, i + 3); out[4] = packv (tmps, out, gid, i + 4); for (u32 j = 0; j < loop_cnt; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; } unpackv (tmps, dgst, gid, i + 0, dgst[0]); unpackv (tmps, dgst, gid, i + 1, dgst[1]); unpackv (tmps, dgst, gid, i + 2, dgst[2]); unpackv (tmps, dgst, gid, i + 3, dgst[3]); unpackv (tmps, dgst, gid, i + 4, dgst[4]); unpackv (tmps, out, gid, i + 0, out[0]); unpackv (tmps, out, gid, i + 1, out[1]); unpackv (tmps, out, gid, i + 2, out[2]); unpackv (tmps, out, gid, i + 3, out[3]); unpackv (tmps, out, gid, i + 4, out[4]); } } KERNEL_FQ void m18400_comp (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_AS u32 s_td0[256]; LOCAL_AS u32 s_td1[256]; LOCAL_AS u32 s_td2[256]; LOCAL_AS u32 s_td3[256]; LOCAL_AS u32 s_td4[256]; LOCAL_AS u32 s_te0[256]; LOCAL_AS u32 s_te1[256]; LOCAL_AS u32 s_te2[256]; LOCAL_AS u32 s_te3[256]; LOCAL_AS u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } barrier (CLK_LOCAL_MEM_FENCE); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= gid_max) return; /** * base */ u32 ukey[8]; ukey[0] = hc_swap32_S (tmps[gid].out[0]); ukey[1] = hc_swap32_S (tmps[gid].out[1]); ukey[2] = hc_swap32_S (tmps[gid].out[2]); ukey[3] = hc_swap32_S (tmps[gid].out[3]); ukey[4] = hc_swap32_S (tmps[gid].out[4]); ukey[5] = hc_swap32_S (tmps[gid].out[5]); ukey[6] = hc_swap32_S (tmps[gid].out[6]); ukey[7] = hc_swap32_S (tmps[gid].out[7]); u32 ks[60]; aes256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); GLOBAL_AS const odf12_t *es = &esalt_bufs[digests_offset]; u32 iv[4]; iv[0] = es->iv[0]; iv[1] = es->iv[1]; iv[2] = es->iv[2]; iv[3] = es->iv[3]; u32 ct[4]; u32 pt1[4]; u32 pt2[4]; u32 pt3[4]; u32 pt4[4]; sha256_ctx_t sha256_ctx; sha256_init (&sha256_ctx); // decrypt aes-cbc and calculate plaintext checksum at the same time for (int i = 0; i < 16; i++) { const int i16 = i * 16; ct[0] = es->encrypted_data[i16 + 0]; ct[1] = es->encrypted_data[i16 + 1]; ct[2] = es->encrypted_data[i16 + 2]; ct[3] = es->encrypted_data[i16 + 3]; aes256_decrypt (ks, ct, pt1, s_td0, s_td1, s_td2, s_td3, s_td4); pt1[0] ^= iv[0]; pt1[1] ^= iv[1]; pt1[2] ^= iv[2]; pt1[3] ^= iv[3]; iv[0] = ct[0]; iv[1] = ct[1]; iv[2] = ct[2]; iv[3] = ct[3]; ct[0] = es->encrypted_data[i16 + 4]; ct[1] = es->encrypted_data[i16 + 5]; ct[2] = es->encrypted_data[i16 + 6]; ct[3] = es->encrypted_data[i16 + 7]; aes256_decrypt (ks, ct, pt2, s_td0, s_td1, s_td2, s_td3, s_td4); pt2[0] ^= iv[0]; pt2[1] ^= iv[1]; pt2[2] ^= iv[2]; pt2[3] ^= iv[3]; iv[0] = ct[0]; iv[1] = ct[1]; iv[2] = ct[2]; iv[3] = ct[3]; ct[0] = es->encrypted_data[i16 + 8]; ct[1] = es->encrypted_data[i16 + 9]; ct[2] = es->encrypted_data[i16 + 10]; ct[3] = es->encrypted_data[i16 + 11]; aes256_decrypt (ks, ct, pt3, s_td0, s_td1, s_td2, s_td3, s_td4); pt3[0] ^= iv[0]; pt3[1] ^= iv[1]; pt3[2] ^= iv[2]; pt3[3] ^= iv[3]; iv[0] = ct[0]; iv[1] = ct[1]; iv[2] = ct[2]; iv[3] = ct[3]; ct[0] = es->encrypted_data[i16 + 12]; ct[1] = es->encrypted_data[i16 + 13]; ct[2] = es->encrypted_data[i16 + 14]; ct[3] = es->encrypted_data[i16 + 15]; aes256_decrypt (ks, ct, pt4, s_td0, s_td1, s_td2, s_td3, s_td4); pt4[0] ^= iv[0]; pt4[1] ^= iv[1]; pt4[2] ^= iv[2]; pt4[3] ^= iv[3]; iv[0] = ct[0]; iv[1] = ct[1]; iv[2] = ct[2]; iv[3] = ct[3]; pt1[0] = hc_swap32_S (pt1[0]); pt1[1] = hc_swap32_S (pt1[1]); pt1[2] = hc_swap32_S (pt1[2]); pt1[3] = hc_swap32_S (pt1[3]); pt2[0] = hc_swap32_S (pt2[0]); pt2[1] = hc_swap32_S (pt2[1]); pt2[2] = hc_swap32_S (pt2[2]); pt2[3] = hc_swap32_S (pt2[3]); pt3[0] = hc_swap32_S (pt3[0]); pt3[1] = hc_swap32_S (pt3[1]); pt3[2] = hc_swap32_S (pt3[2]); pt3[3] = hc_swap32_S (pt3[3]); pt4[0] = hc_swap32_S (pt4[0]); pt4[1] = hc_swap32_S (pt4[1]); pt4[2] = hc_swap32_S (pt4[2]); pt4[3] = hc_swap32_S (pt4[3]); sha256_update_64 (&sha256_ctx, pt1, pt2, pt3, pt4, 64); } sha256_final (&sha256_ctx); const u32 r0 = hc_swap32_S (sha256_ctx.h[0]); const u32 r1 = hc_swap32_S (sha256_ctx.h[1]); const u32 r2 = hc_swap32_S (sha256_ctx.h[2]); const u32 r3 = hc_swap32_S (sha256_ctx.h[3]); #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }