/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_common.cl" #include "inc_hash_sha1.cl" #include "inc_cipher_aes.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" #define ROUNDS 0x40000 #define PUTCHAR(a,p,c) ((u8 *)(a))[(p)] = (u8) (c) #define GETCHAR(a,p) ((u8 *)(a))[(p)] #define PUTCHAR_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c) #define GETCHAR_BE(a,p) ((u8 *)(a))[(p) ^ 3] #define MIN(a,b) (((a) < (b)) ? (a) : (b)) typedef struct pbkdf2_sha1 { u32 salt_buf[64]; } pbkdf2_sha1_t; typedef struct rar3_tmp { u32 dgst[17][5]; } rar3_tmp_t; DECLSPEC static void sha1_transform_intern (const u32 *w, u32 *digest) { u32 A = digest[0]; u32 B = digest[1]; u32 C = digest[2]; u32 D = digest[3]; u32 E = digest[4]; u32 w0_t = w[ 0]; u32 w1_t = w[ 1]; u32 w2_t = w[ 2]; u32 w3_t = w[ 3]; u32 w4_t = w[ 4]; u32 w5_t = w[ 5]; u32 w6_t = w[ 6]; u32 w7_t = w[ 7]; u32 w8_t = w[ 8]; u32 w9_t = w[ 9]; u32 wa_t = w[10]; u32 wb_t = w[11]; u32 wc_t = w[12]; u32 wd_t = w[13]; u32 we_t = w[14]; u32 wf_t = w[15]; #undef K #define K SHA1C00 SHA1_STEP (SHA1_F0o, A, B, C, D, E, w0_t); SHA1_STEP (SHA1_F0o, E, A, B, C, D, w1_t); SHA1_STEP (SHA1_F0o, D, E, A, B, C, w2_t); SHA1_STEP (SHA1_F0o, C, D, E, A, B, w3_t); SHA1_STEP (SHA1_F0o, B, C, D, E, A, w4_t); SHA1_STEP (SHA1_F0o, A, B, C, D, E, w5_t); SHA1_STEP (SHA1_F0o, E, A, B, C, D, w6_t); SHA1_STEP (SHA1_F0o, D, E, A, B, C, w7_t); SHA1_STEP (SHA1_F0o, C, D, E, A, B, w8_t); SHA1_STEP (SHA1_F0o, B, C, D, E, A, w9_t); SHA1_STEP (SHA1_F0o, A, B, C, D, E, wa_t); SHA1_STEP (SHA1_F0o, E, A, B, C, D, wb_t); SHA1_STEP (SHA1_F0o, D, E, A, B, C, wc_t); SHA1_STEP (SHA1_F0o, C, D, E, A, B, wd_t); SHA1_STEP (SHA1_F0o, B, C, D, E, A, we_t); SHA1_STEP (SHA1_F0o, A, B, C, D, E, wf_t); w0_t = hc_rotl32 ((wd_t ^ w8_t ^ w2_t ^ w0_t), 1u); SHA1_STEP (SHA1_F0o, E, A, B, C, D, w0_t); w1_t = hc_rotl32 ((we_t ^ w9_t ^ w3_t ^ w1_t), 1u); SHA1_STEP (SHA1_F0o, D, E, A, B, C, w1_t); w2_t = hc_rotl32 ((wf_t ^ wa_t ^ w4_t ^ w2_t), 1u); SHA1_STEP (SHA1_F0o, C, D, E, A, B, w2_t); w3_t = hc_rotl32 ((w0_t ^ wb_t ^ w5_t ^ w3_t), 1u); SHA1_STEP (SHA1_F0o, B, C, D, E, A, w3_t); #undef K #define K SHA1C01 w4_t = hc_rotl32 ((w1_t ^ wc_t ^ w6_t ^ w4_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, w4_t); w5_t = hc_rotl32 ((w2_t ^ wd_t ^ w7_t ^ w5_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, w5_t); w6_t = hc_rotl32 ((w3_t ^ we_t ^ w8_t ^ w6_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, w6_t); w7_t = hc_rotl32 ((w4_t ^ wf_t ^ w9_t ^ w7_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, w7_t); w8_t = hc_rotl32 ((w5_t ^ w0_t ^ wa_t ^ w8_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, w8_t); w9_t = hc_rotl32 ((w6_t ^ w1_t ^ wb_t ^ w9_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, w9_t); wa_t = hc_rotl32 ((w7_t ^ w2_t ^ wc_t ^ wa_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, wa_t); wb_t = hc_rotl32 ((w8_t ^ w3_t ^ wd_t ^ wb_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, wb_t); wc_t = hc_rotl32 ((w9_t ^ w4_t ^ we_t ^ wc_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, wc_t); wd_t = hc_rotl32 ((wa_t ^ w5_t ^ wf_t ^ wd_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, wd_t); we_t = hc_rotl32 ((wb_t ^ w6_t ^ w0_t ^ we_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, we_t); wf_t = hc_rotl32 ((wc_t ^ w7_t ^ w1_t ^ wf_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, wf_t); w0_t = hc_rotl32 ((wd_t ^ w8_t ^ w2_t ^ w0_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, w0_t); w1_t = hc_rotl32 ((we_t ^ w9_t ^ w3_t ^ w1_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, w1_t); w2_t = hc_rotl32 ((wf_t ^ wa_t ^ w4_t ^ w2_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, w2_t); w3_t = hc_rotl32 ((w0_t ^ wb_t ^ w5_t ^ w3_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, w3_t); w4_t = hc_rotl32 ((w1_t ^ wc_t ^ w6_t ^ w4_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, w4_t); w5_t = hc_rotl32 ((w2_t ^ wd_t ^ w7_t ^ w5_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, w5_t); w6_t = hc_rotl32 ((w3_t ^ we_t ^ w8_t ^ w6_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, w6_t); w7_t = hc_rotl32 ((w4_t ^ wf_t ^ w9_t ^ w7_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, w7_t); #undef K #define K SHA1C02 w8_t = hc_rotl32 ((w5_t ^ w0_t ^ wa_t ^ w8_t), 1u); SHA1_STEP (SHA1_F2o, A, B, C, D, E, w8_t); w9_t = hc_rotl32 ((w6_t ^ w1_t ^ wb_t ^ w9_t), 1u); SHA1_STEP (SHA1_F2o, E, A, B, C, D, w9_t); wa_t = hc_rotl32 ((w7_t ^ w2_t ^ wc_t ^ wa_t), 1u); SHA1_STEP (SHA1_F2o, D, E, A, B, C, wa_t); wb_t = hc_rotl32 ((w8_t ^ w3_t ^ wd_t ^ wb_t), 1u); SHA1_STEP (SHA1_F2o, C, D, E, A, B, wb_t); wc_t = hc_rotl32 ((w9_t ^ w4_t ^ we_t ^ wc_t), 1u); SHA1_STEP (SHA1_F2o, B, C, D, E, A, wc_t); wd_t = hc_rotl32 ((wa_t ^ w5_t ^ wf_t ^ wd_t), 1u); SHA1_STEP (SHA1_F2o, A, B, C, D, E, wd_t); we_t = hc_rotl32 ((wb_t ^ w6_t ^ w0_t ^ we_t), 1u); SHA1_STEP (SHA1_F2o, E, A, B, C, D, we_t); wf_t = hc_rotl32 ((wc_t ^ w7_t ^ w1_t ^ wf_t), 1u); SHA1_STEP (SHA1_F2o, D, E, A, B, C, wf_t); w0_t = hc_rotl32 ((wd_t ^ w8_t ^ w2_t ^ w0_t), 1u); SHA1_STEP (SHA1_F2o, C, D, E, A, B, w0_t); w1_t = hc_rotl32 ((we_t ^ w9_t ^ w3_t ^ w1_t), 1u); SHA1_STEP (SHA1_F2o, B, C, D, E, A, w1_t); w2_t = hc_rotl32 ((wf_t ^ wa_t ^ w4_t ^ w2_t), 1u); SHA1_STEP (SHA1_F2o, A, B, C, D, E, w2_t); w3_t = hc_rotl32 ((w0_t ^ wb_t ^ w5_t ^ w3_t), 1u); SHA1_STEP (SHA1_F2o, E, A, B, C, D, w3_t); w4_t = hc_rotl32 ((w1_t ^ wc_t ^ w6_t ^ w4_t), 1u); SHA1_STEP (SHA1_F2o, D, E, A, B, C, w4_t); w5_t = hc_rotl32 ((w2_t ^ wd_t ^ w7_t ^ w5_t), 1u); SHA1_STEP (SHA1_F2o, C, D, E, A, B, w5_t); w6_t = hc_rotl32 ((w3_t ^ we_t ^ w8_t ^ w6_t), 1u); SHA1_STEP (SHA1_F2o, B, C, D, E, A, w6_t); w7_t = hc_rotl32 ((w4_t ^ wf_t ^ w9_t ^ w7_t), 1u); SHA1_STEP (SHA1_F2o, A, B, C, D, E, w7_t); w8_t = hc_rotl32 ((w5_t ^ w0_t ^ wa_t ^ w8_t), 1u); SHA1_STEP (SHA1_F2o, E, A, B, C, D, w8_t); w9_t = hc_rotl32 ((w6_t ^ w1_t ^ wb_t ^ w9_t), 1u); SHA1_STEP (SHA1_F2o, D, E, A, B, C, w9_t); wa_t = hc_rotl32 ((w7_t ^ w2_t ^ wc_t ^ wa_t), 1u); SHA1_STEP (SHA1_F2o, C, D, E, A, B, wa_t); wb_t = hc_rotl32 ((w8_t ^ w3_t ^ wd_t ^ wb_t), 1u); SHA1_STEP (SHA1_F2o, B, C, D, E, A, wb_t); #undef K #define K SHA1C03 wc_t = hc_rotl32 ((w9_t ^ w4_t ^ we_t ^ wc_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, wc_t); wd_t = hc_rotl32 ((wa_t ^ w5_t ^ wf_t ^ wd_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, wd_t); we_t = hc_rotl32 ((wb_t ^ w6_t ^ w0_t ^ we_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, we_t); wf_t = hc_rotl32 ((wc_t ^ w7_t ^ w1_t ^ wf_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, wf_t); w0_t = hc_rotl32 ((wd_t ^ w8_t ^ w2_t ^ w0_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, w0_t); w1_t = hc_rotl32 ((we_t ^ w9_t ^ w3_t ^ w1_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, w1_t); w2_t = hc_rotl32 ((wf_t ^ wa_t ^ w4_t ^ w2_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, w2_t); w3_t = hc_rotl32 ((w0_t ^ wb_t ^ w5_t ^ w3_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, w3_t); w4_t = hc_rotl32 ((w1_t ^ wc_t ^ w6_t ^ w4_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, w4_t); w5_t = hc_rotl32 ((w2_t ^ wd_t ^ w7_t ^ w5_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, w5_t); w6_t = hc_rotl32 ((w3_t ^ we_t ^ w8_t ^ w6_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, w6_t); w7_t = hc_rotl32 ((w4_t ^ wf_t ^ w9_t ^ w7_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, w7_t); w8_t = hc_rotl32 ((w5_t ^ w0_t ^ wa_t ^ w8_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, w8_t); w9_t = hc_rotl32 ((w6_t ^ w1_t ^ wb_t ^ w9_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, w9_t); wa_t = hc_rotl32 ((w7_t ^ w2_t ^ wc_t ^ wa_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, wa_t); wb_t = hc_rotl32 ((w8_t ^ w3_t ^ wd_t ^ wb_t), 1u); SHA1_STEP (SHA1_F1, A, B, C, D, E, wb_t); wc_t = hc_rotl32 ((w9_t ^ w4_t ^ we_t ^ wc_t), 1u); SHA1_STEP (SHA1_F1, E, A, B, C, D, wc_t); wd_t = hc_rotl32 ((wa_t ^ w5_t ^ wf_t ^ wd_t), 1u); SHA1_STEP (SHA1_F1, D, E, A, B, C, wd_t); we_t = hc_rotl32 ((wb_t ^ w6_t ^ w0_t ^ we_t), 1u); SHA1_STEP (SHA1_F1, C, D, E, A, B, we_t); wf_t = hc_rotl32 ((wc_t ^ w7_t ^ w1_t ^ wf_t), 1u); SHA1_STEP (SHA1_F1, B, C, D, E, A, wf_t); digest[0] += A; digest[1] += B; digest[2] += C; digest[3] += D; digest[4] += E; } KERNEL_FQ void m12500_init (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; tmps[gid].dgst[0][0] = SHA1M_A; tmps[gid].dgst[0][1] = SHA1M_B; tmps[gid].dgst[0][2] = SHA1M_C; tmps[gid].dgst[0][3] = SHA1M_D; tmps[gid].dgst[0][4] = SHA1M_E; } KERNEL_FQ void m12500_loop (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t)) { const u64 gid = get_global_id (0); if (gid >= gid_max) return; u32 pw_buf[5]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; const u32 pw_len = MIN (pws[gid].pw_len, 20); u32 salt_buf[2]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; const u32 salt_len = 8; // this is large enough to hold all possible w[] arrays for 64 iterations #define LARGEBLOCK_ELEMS ((40 + 8 + 3) * 16) u32 largeblock[LARGEBLOCK_ELEMS]; for (u32 i = 0; i < LARGEBLOCK_ELEMS; i++) largeblock[i] = 0; for (u32 i = 0, p = 0; i < 64; i++) { for (u32 j = 0; j < pw_len; j++, p += 2) { PUTCHAR_BE (largeblock, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (largeblock, p, GETCHAR (salt_buf, j)); } PUTCHAR_BE (largeblock, p + 2, (loop_pos >> 16) & 0xff); p += 3; } const u32 p3 = (pw_len * 2) + salt_len + 3; const u32 init_pos = loop_pos / (ROUNDS / 16); u32 dgst[5]; dgst[0] = tmps[gid].dgst[init_pos][0]; dgst[1] = tmps[gid].dgst[init_pos][1]; dgst[2] = tmps[gid].dgst[init_pos][2]; dgst[3] = tmps[gid].dgst[init_pos][3]; dgst[4] = tmps[gid].dgst[init_pos][4]; u32 iter = loop_pos; for (u32 i = 0; i < 256; i += 4) { for (u32 j = 0; j < 64; j++) { const u32 p = ((j + 1) * p3) - 2; PUTCHAR_BE (largeblock, p, iter >> 8); } for (u32 k = 0; k < 4; k++) { for (u32 j = 0; j < 64; j++) { const u32 p = ((j + 1) * p3) - 3; PUTCHAR_BE (largeblock, p, iter >> 0); iter++; } for (u32 j = 0; j < p3; j++) { const u32 j16 = j * 16; sha1_transform_intern (&largeblock[j16], dgst); } } } tmps[gid].dgst[init_pos + 1][0] = dgst[0]; tmps[gid].dgst[init_pos + 1][1] = dgst[1]; tmps[gid].dgst[init_pos + 1][2] = dgst[2]; tmps[gid].dgst[init_pos + 1][3] = dgst[3]; tmps[gid].dgst[init_pos + 1][4] = dgst[4]; } KERNEL_FQ void m12500_comp (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_AS u32 s_td0[256]; LOCAL_AS u32 s_td1[256]; LOCAL_AS u32 s_td2[256]; LOCAL_AS u32 s_td3[256]; LOCAL_AS u32 s_td4[256]; LOCAL_AS u32 s_te0[256]; LOCAL_AS u32 s_te1[256]; LOCAL_AS u32 s_te2[256]; LOCAL_AS u32 s_te3[256]; LOCAL_AS u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } barrier (CLK_LOCAL_MEM_FENCE); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= gid_max) return; /** * base */ const u32 pw_len = MIN (pws[gid].pw_len, 20); const u32 salt_len = 8; const u32 p3 = (pw_len * 2) + salt_len + 3; u32 w_buf[16]; w_buf[ 0] = 0x80000000; w_buf[ 1] = 0; w_buf[ 2] = 0; w_buf[ 3] = 0; w_buf[ 4] = 0; w_buf[ 5] = 0; w_buf[ 6] = 0; w_buf[ 7] = 0; w_buf[ 8] = 0; w_buf[ 9] = 0; w_buf[10] = 0; w_buf[11] = 0; w_buf[12] = 0; w_buf[13] = 0; w_buf[14] = 0; w_buf[15] = (p3 * ROUNDS) * 8; u32 dgst[5]; dgst[0] = tmps[gid].dgst[16][0]; dgst[1] = tmps[gid].dgst[16][1]; dgst[2] = tmps[gid].dgst[16][2]; dgst[3] = tmps[gid].dgst[16][3]; dgst[4] = tmps[gid].dgst[16][4]; sha1_transform_intern (w_buf, dgst); u32 ukey[4]; ukey[0] = hc_swap32_S (dgst[0]); ukey[1] = hc_swap32_S (dgst[1]); ukey[2] = hc_swap32_S (dgst[2]); ukey[3] = hc_swap32_S (dgst[3]); u32 ks[44]; AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 data[4]; data[0] = salt_bufs[salt_pos].salt_buf[2]; data[1] = salt_bufs[salt_pos].salt_buf[3]; data[2] = salt_bufs[salt_pos].salt_buf[4]; data[3] = salt_bufs[salt_pos].salt_buf[5]; u32 out[4]; AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); u32 iv[4]; iv[0] = 0; iv[1] = 0; iv[2] = 0; iv[3] = 0; for (int i = 0; i < 16; i++) { u32 pw_buf[5]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; //const u32 pw_len = pws[gid].pw_len; u32 salt_buf[2]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; //const u32 salt_len = 8; //const u32 p3 = (pw_len * 2) + salt_len + 3; u32 w[16]; w[ 0] = 0; w[ 1] = 0; w[ 2] = 0; w[ 3] = 0; w[ 4] = 0; w[ 5] = 0; w[ 6] = 0; w[ 7] = 0; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; u32 p = 0; for (u32 j = 0; j < pw_len; j++, p += 2) { PUTCHAR_BE (w, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (w, p, GETCHAR (salt_buf, j)); } const u32 iter_pos = i * (ROUNDS / 16); PUTCHAR_BE (w, p + 0, (iter_pos >> 0) & 0xff); PUTCHAR_BE (w, p + 1, (iter_pos >> 8) & 0xff); PUTCHAR_BE (w, p + 2, (iter_pos >> 16) & 0xff); PUTCHAR_BE (w, p3, 0x80); w[15] = ((iter_pos + 1) * p3) * 8; u32 dgst[5]; dgst[0] = tmps[gid].dgst[i][0]; dgst[1] = tmps[gid].dgst[i][1]; dgst[2] = tmps[gid].dgst[i][2]; dgst[3] = tmps[gid].dgst[i][3]; dgst[4] = tmps[gid].dgst[i][4]; sha1_transform_intern (w, dgst); PUTCHAR (iv, i, dgst[4] & 0xff); } out[0] ^= hc_swap32_S (iv[0]); out[1] ^= hc_swap32_S (iv[1]); out[2] ^= hc_swap32_S (iv[2]); out[3] ^= hc_swap32_S (iv[3]); const u32 r0 = out[0]; const u32 r1 = out[1]; const u32 r2 = 0; const u32 r3 = 0; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }