/** * Author......: See docs/credits.txt * License.....: MIT */ /** * Based on bitcoin/libbase58 implementation * by Luke Dashjr * adapted by b0lek to run on GPUs as part of hashcat */ #include "inc_vendor.h" #include "inc_common.h" #include "inc_types.h" #include "inc_platform.h" #include "inc_hash_sha256.h" #include "inc_hash_base58.h" // (sizeof (u32) * 8): #define B58_BITS 32 // ((((u64) 1) << B58_BITS) - 1): #define B58_MASK 0xffffffff CONSTANT_VK u8 B58_DIGITS_ORDERED[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; CONSTANT_VK u32 B58_DIGITS_MAP[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; DECLSPEC bool is_valid_base58 (PRIVATE_AS const u32 *data, PRIVATE_AS const u32 offset, PRIVATE_AS const u32 len) { for (u32 i = offset; i < len; i++) { const u32 div = (i / 4); const u32 shift = (i % 4) * 8; const u32 b = (data[div] >> shift) & 0xff; const u32 c = B58_DIGITS_MAP[b]; // Invalid base58 digit if (c == (u32) -1) return false; } return true; } DECLSPEC bool b58dec (PRIVATE_AS u8 *bin, PRIVATE_AS u32 *binszp, PRIVATE_AS const u8 *b58, PRIVATE_AS const u32 b58sz) { u32 binsz = *binszp; const u8 *b58u = (u8*) b58; u8 *binu = (u8*) bin; u32 outisz = (binsz + sizeof (u32) - 1) / sizeof (u32); u32 outi[200]; u8 bytesleft = binsz % sizeof (u32); u32 zero_mask = bytesleft ? (B58_MASK << (bytesleft * 8)) : 0; unsigned zerocount = 0; for (u32 i = 0; i < outisz; i++) { outi[i] = 0; } // Leading zeros, just count u32 i = 0; for (; i < b58sz && b58u[i] == '1'; i++) { ++zerocount; } for (; i < b58sz; i++) { u32 c = B58_DIGITS_MAP[b58u[i]]; // Invalid base58 digit if (c == (u32) -1) return false; for (u32 j = outisz; j--; ) { u64 t = ((u64) outi[j]) * 58 + c; c = t >> B58_BITS; outi[j] = t & B58_MASK; } // Output number too big (carry to the next int32) if (c != 0) return false; // Output number too big (last int32 filled too far) if (outi[0] & zero_mask) return false; } u32 j = 0; if (bytesleft) { for (u32 i = bytesleft; i > 0; i--) { *(binu++) = (outi[0] >> (8 * (i - 1))) & 0xff; } j++; } for (; j < outisz; j++) { for (u32 i = sizeof (*outi); i > 0; i--) { *(binu++) = (outi[j] >> (8 * (i - 1))) & 0xff; } } // Count canonical base58 byte count binu = (u8*) bin; for (u32 i = 0; i < binsz; i++) { if (binu[i]) break; --*binszp; } *binszp += zerocount; return true; } // special function to handle only input of 51 characters // attention: we use BE (big endian) here as output DECLSPEC bool b58dec_51 (PRIVATE_AS u32 *out, PRIVATE_AS const u32 *data) { // data length must be 51 and must be checked before calling the function for (u32 i = 0; i < 51; i++) { const u32 div = (i / 4); const u32 shift = (i % 4) * 8; const u32 b = (data[div] >> shift) & 0xff; u32 c = B58_DIGITS_MAP[b]; // checked with is_valid_base58 (): // if (c == (u32) -1) return false; // test speed with (manual or automatic) #pragma unroll for (u32 j = 0; j < 10; j++) { const u32 pos = 9 - j; const u64 t = ((u64) out[pos]) * 58 + c; c = t >> 32; // upper u32 out[pos] = t; // lower u32 (& 0xffffffff) } } // fix byte alignment: // #pragma unroll for (u32 i = 0; i < 10; i++) // offset of: 3 bytes { out[i] = (out[i + 0] << 24) | (out[i + 1] >> 8); } return true; } // special function to handle only input of 52 characters // attention: we use BE (big endian) here as output DECLSPEC bool b58dec_52 (PRIVATE_AS u32 *out, PRIVATE_AS const u32 *data) { // data length must be 52 and must be checked before calling the function for (u32 i = 0; i < 52; i++) { const u32 div = (i / 4); const u32 shift = (i % 4) * 8; const u32 b = (data[div] >> shift) & 0xff; u32 c = B58_DIGITS_MAP[b]; // checked with is_valid_base58 (): // if (c == (u32) -1) return false; // test speed with (manual or automatic) #pragma unroll for (u32 j = 0; j < 10; j++) { const u32 pos = 9 - j; const u64 t = ((u64) out[pos]) * 58 + c; c = t >> 32; // upper u32 out[pos] = t; // lower u32 (& 0xffffffff) } } // fix byte alignment: // #pragma unroll for (u32 i = 0; i < 10; i++) // offset of: 2 bytes { out[i] = (out[i + 0] << 16) | (out[i + 1] >> 16); } return true; } // maximum 256 bytes as input, mininum 4 bytes (checksum) DECLSPEC bool b58check (PRIVATE_AS const u8 *bin, PRIVATE_AS const u32 binsz) { u32 data[64] = { 0 }; // 64 * 4 = 256 bytes (should be enough) u8 *datac = (u8*) data; u8 *binc = (u8*) bin; if (binsz < 4) return false; if (binsz > 256) return false; for (u32 i = 0; i < binsz - 4; i++) { datac[i] = binc[i]; } sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, data, binsz-4); sha256_final (&ctx); for (u32 i = 0; i < 8; i++) // 32 / 4 { data[i] = ctx.h[i]; } for (u32 i = 8; i < 16; i++) // clear bytes: needed for sha256_update () { data[i] = 0; } sha256_init (&ctx); sha256_update (&ctx, data, 32); sha256_final (&ctx); ctx.h[0] = hc_swap32_S (ctx.h[0]); u8 * ph4 = (u8*) ctx.h; u8 * sum = (u8*) (binc + (binsz - 4)); // offset: binsz - 4, last 4 bytes if (ph4[0] != sum[0]) return false; if (ph4[1] != sum[1]) return false; if (ph4[2] != sum[2]) return false; if (ph4[3] != sum[3]) return false; return true; } // ATTENTION: this function expects a 64 byte data buffer, containing the checksum after the data DECLSPEC bool b58check64 (PRIVATE_AS const u32 *bin, PRIVATE_AS const u32 binsz) { if (binsz < 4) return false; // if (binsz > 63) return false; u32 data[16] = { 0 }; for (u32 i = 0; i < 15; i++) data[i] = bin[i]; const u32 div = binsz / 4; const u32 mod = binsz % 4; data[div] = 0; switch (mod) { case 0: data[div - 1] &= 0x00000000; break; case 1: data[div - 1] &= 0x000000ff; break; case 2: data[div - 1] &= 0x0000ffff; break; case 3: data[div - 1] &= 0x00ffffff; break; } sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, data, binsz - 4); sha256_final (&ctx); data[ 0] = ctx.h[0]; data[ 1] = ctx.h[1]; data[ 2] = ctx.h[2]; data[ 3] = ctx.h[3]; data[ 4] = ctx.h[4]; data[ 5] = ctx.h[5]; data[ 6] = ctx.h[6]; data[ 7] = ctx.h[7]; data[ 8] = 0; data[ 9] = 0; data[10] = 0; data[11] = 0; data[12] = 0; data[13] = 0; data[14] = 0; data[15] = 0; sha256_init (&ctx); sha256_update (&ctx, data, 32); sha256_final (&ctx); const u32 ph4 = hc_swap32_S (ctx.h[0]); u32 checksum = 0; switch (mod) { case 0: checksum = (bin[div - 1] >> 0); break; case 1: checksum = (bin[div] << 24) | (bin[div - 1] >> 8); break; case 2: checksum = (bin[div] << 16) | (bin[div - 1] >> 16); break; case 3: checksum = (bin[div] << 8) | (bin[div - 1] >> 24); break; } return (ph4 == checksum); } // optimized for 21 + 4 input bytes in buffer "bin" DECLSPEC bool b58check_25 (PRIVATE_AS const u32 *bin) { u32 data[16] = { 0 }; // for (u32 i = 0; i < 6; i++) data[i] = bin[i]; data[0] = bin[0]; data[1] = bin[1]; data[2] = bin[2]; data[3] = bin[3]; data[4] = bin[4]; data[5] = bin[5]; data[5] &= 0x000000ff; sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, data, 21); sha256_final (&ctx); data[ 0] = ctx.h[0]; data[ 1] = ctx.h[1]; data[ 2] = ctx.h[2]; data[ 3] = ctx.h[3]; data[ 4] = ctx.h[4]; data[ 5] = ctx.h[5]; data[ 6] = ctx.h[6]; data[ 7] = ctx.h[7]; data[ 8] = 0; data[ 9] = 0; data[10] = 0; data[11] = 0; data[12] = 0; data[13] = 0; data[14] = 0; data[15] = 0; sha256_init (&ctx); sha256_update (&ctx, data, 32); sha256_final (&ctx); const u32 ph4 = hc_swap32_S (ctx.h[0]); const u32 checksum = (bin[6] << 24) | (bin[5] >> 8); return (ph4 == checksum); } // optimized for 33 + 4 input bytes in buffer "bin" // attention: we use BE (big endian) here as input DECLSPEC bool b58check_37 (PRIVATE_AS const u32 *bin) { u32 data[16] = { 0 }; // for (u32 i = 0; i < 9; i++) data[i] = bin[i]; data[0] = bin[0]; data[1] = bin[1]; data[2] = bin[2]; data[3] = bin[3]; data[4] = bin[4]; data[5] = bin[5]; data[6] = bin[6]; data[7] = bin[7]; data[8] = bin[8]; data[8] &= 0xff000000; sha256_ctx_t ctx; sha256_init (&ctx); sha256_update (&ctx, data, 33); sha256_final (&ctx); data[ 0] = ctx.h[0]; data[ 1] = ctx.h[1]; data[ 2] = ctx.h[2]; data[ 3] = ctx.h[3]; data[ 4] = ctx.h[4]; data[ 5] = ctx.h[5]; data[ 6] = ctx.h[6]; data[ 7] = ctx.h[7]; data[ 8] = 0; data[ 9] = 0; data[10] = 0; data[11] = 0; data[12] = 0; data[13] = 0; data[14] = 0; data[15] = 0; sha256_init (&ctx); sha256_update (&ctx, data, 32); sha256_final (&ctx); const u32 ph4 = ctx.h[0]; const u32 checksum = (bin[8] << 8) | (bin[9] >> 24); return (ph4 == checksum); } // optimized for 34 + 4 input bytes in buffer "bin" // attention: we use BE (big endian) here as input DECLSPEC bool b58check_38 (PRIVATE_AS const u32 *bin) { u32 data[16] = { 0 }; // for (u32 i = 0; i < 9; i++) data[i] = bin[i]; data[0] = bin[0]; data[1] = bin[1]; data[2] = bin[2]; data[3] = bin[3]; data[4] = bin[4]; data[5] = bin[5]; data[6] = bin[6]; data[7] = bin[7]; data[8] = bin[8]; data[8] &= 0xffff0000; sha256_ctx_t ctx; sha256_init (&ctx); sha256_update (&ctx, data, 34); sha256_final (&ctx); data[ 0] = ctx.h[0]; data[ 1] = ctx.h[1]; data[ 2] = ctx.h[2]; data[ 3] = ctx.h[3]; data[ 4] = ctx.h[4]; data[ 5] = ctx.h[5]; data[ 6] = ctx.h[6]; data[ 7] = ctx.h[7]; data[ 8] = 0; data[ 9] = 0; data[10] = 0; data[11] = 0; data[12] = 0; data[13] = 0; data[14] = 0; data[15] = 0; sha256_init (&ctx); sha256_update (&ctx, data, 32); sha256_final (&ctx); const u32 ph4 = ctx.h[0]; const u32 checksum = (bin[8] << 16) | (bin[9] >> 16); return (ph4 == checksum); } DECLSPEC bool b58enc (PRIVATE_AS u8 *b58, PRIVATE_AS u32 *b58sz, PRIVATE_AS const u8 *data, PRIVATE_AS const u32 binsz) { const u8 *bin = (u8 *) data; int carry; u32 j = 0; u32 zcount = 0; while (zcount < binsz && !bin[zcount]) ++zcount; u32 size = (binsz - zcount) * 138 / 100 + 1; u8 buf[200] = { 0 }; u32 i = zcount; u32 high = size - 1; for (; i < binsz; i++, high = j) { for (carry = bin[i], j = size - 1; (j > high) || carry; j--) { carry += 256 * buf[j]; buf[j] = carry % 58; carry /= 58; if (! j) break; } } j = 0; for (; j < (size && !buf[j]); j++) {} if (*b58sz <= zcount + size - j) { *b58sz = zcount + size - j + 1; return false; } for (u32 i = 0; i < zcount; i++) { b58[i] = '1'; } for (i = zcount; j < size; i++, j++) { b58[i] = B58_DIGITS_ORDERED[buf[j]]; } b58[i] = '\0'; *b58sz = i + 1; return true; } DECLSPEC bool b58check_enc (PRIVATE_AS u8 *b58c, PRIVATE_AS u32 *b58c_sz, PRIVATE_AS const u8 ver, PRIVATE_AS const u8 *data, PRIVATE_AS const u32 datasz) { u8 buf[128] = { 0 }; u32 *buf32 = (u32*) buf; u8 *data8 = (u8 *) data; u8 *hash = &buf[1 + datasz]; buf[0] = ver; for (u32 i = 0; i < datasz; i++) { buf[i + 1] = data8[i]; } sha256_ctx_t ctx; sha256_init (&ctx); sha256_update_swap (&ctx, buf32, datasz + 1); sha256_final (&ctx); u32 data1[128] = { 0 }; for (u32 i = 0; i < 0x20; i++) { ((u8*) data1)[i] = ((u8*) ctx.h)[i]; } sha256_init (&ctx); sha256_update (&ctx, data1, 0x20); sha256_final (&ctx); ctx.h[0] = hc_swap32_S (ctx.h[0]); for (u32 i = 0; i < 4; i++) { ((u8 *) hash)[i] = ((u8 *) ctx.h)[i]; } return b58enc (b58c, b58c_sz, buf, 1 + datasz + 4); }