#include #include #include #include #include #include #include #include #include #include #include "binding.h" #include "impl.h" // Try 10,000 random floating point values for each test we run #define MAX_TEST_VALUE 10000 /* Pattern Matching for C macros. * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms */ /* catenate */ #define PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ #define IIF(c) PRIMITIVE_CAT(IIF_, c) /* run the 2nd parameter */ #define IIF_0(t, ...) __VA_ARGS__ /* run the 1st parameter */ #define IIF_1(t, ...) t // Some intrinsics operate on unaligned data types. #if defined(__GNUC__) || defined(__clang__) #define ALIGN_STRUCT(x) __attribute__((aligned(x))) #elif defined(_MSC_VER) #ifndef ALIGN_STRUCT #define ALIGN_STRUCT(x) __declspec(align(x)) #endif #endif typedef int16_t ALIGN_STRUCT(1) unaligned_int16_t; typedef int32_t ALIGN_STRUCT(1) unaligned_int32_t; typedef int64_t ALIGN_STRUCT(1) unaligned_int64_t; // This program a set of unit tests to ensure that each SSE call provide the // output we expect. If this fires an assert, then something didn't match up. // // Functions with "test_" prefix will be called in runSingleTest. namespace SSE2NEON { // Forward declaration class SSE2NEONTestImpl : public SSE2NEONTest { public: SSE2NEONTestImpl(void); result_t loadTestFloatPointers(uint32_t i); result_t loadTestIntPointers(uint32_t i); result_t runSingleTest(InstructionTest test, uint32_t i); float *mTestFloatPointer1; float *mTestFloatPointer2; int32_t *mTestIntPointer1; int32_t *mTestIntPointer2; float mTestFloats[MAX_TEST_VALUE]; int32_t mTestInts[MAX_TEST_VALUE]; int8_t mTestUnalignedInts[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, }; virtual ~SSE2NEONTestImpl(void) { platformAlignedFree(mTestFloatPointer1); platformAlignedFree(mTestFloatPointer2); platformAlignedFree(mTestIntPointer1); platformAlignedFree(mTestIntPointer2); } virtual void release(void) { delete this; } virtual result_t runTest(InstructionTest test) { result_t ret = TEST_SUCCESS; // Test a whole bunch of values for (uint32_t i = 0; i < (MAX_TEST_VALUE - 8); i++) { ret = loadTestFloatPointers(i); // Load some random float values if (ret == TEST_FAIL) break; // load test float failed?? ret = loadTestIntPointers(i); // load some random int values if (ret == TEST_FAIL) break; // load test float failed?? // If we are testing the reciprocal, then invert the input data // (easier for debugging) if (test == it_mm_rcp_ps) { mTestFloatPointer1[0] = 1.0f / mTestFloatPointer1[0]; mTestFloatPointer1[1] = 1.0f / mTestFloatPointer1[1]; mTestFloatPointer1[2] = 1.0f / mTestFloatPointer1[2]; mTestFloatPointer1[3] = 1.0f / mTestFloatPointer1[3]; } if (test == it_mm_rcp_ps || test == it_mm_rcp_ss || test == it_mm_rsqrt_ps || test == it_mm_rsqrt_ss) { if ((rand() & 3) == 0) { uint32_t r1 = rand() & 3; uint32_t r2 = rand() & 3; uint32_t r3 = rand() & 3; uint32_t r4 = rand() & 3; uint32_t r5 = rand() & 3; uint32_t r6 = rand() & 3; uint32_t r7 = rand() & 3; uint32_t r8 = rand() & 3; mTestFloatPointer1[r1] = 0.0f; mTestFloatPointer1[r2] = 0.0f; mTestFloatPointer1[r3] = 0.0f; mTestFloatPointer1[r4] = 0.0f; mTestFloatPointer1[r5] = -0.0f; mTestFloatPointer1[r6] = -0.0f; mTestFloatPointer1[r7] = -0.0f; mTestFloatPointer1[r8] = -0.0f; } } if (test == it_mm_cmpge_ps || test == it_mm_cmpge_ss || test == it_mm_cmple_ps || test == it_mm_cmple_ss || test == it_mm_cmpeq_ps || test == it_mm_cmpeq_ss) { // Make sure at least one value is the same. mTestFloatPointer1[3] = mTestFloatPointer2[3]; } if (test == it_mm_cmpord_ps || test == it_mm_cmpord_ss || test == it_mm_cmpunord_ps || test == it_mm_cmpunord_ss || test == it_mm_cmpeq_ps || test == it_mm_cmpeq_ss || test == it_mm_cmpge_ps || test == it_mm_cmpge_ss || test == it_mm_cmpgt_ps || test == it_mm_cmpgt_ss || test == it_mm_cmple_ps || test == it_mm_cmple_ss || test == it_mm_cmplt_ps || test == it_mm_cmplt_ss || test == it_mm_cmpneq_ps || test == it_mm_cmpneq_ss || test == it_mm_cmpnge_ps || test == it_mm_cmpnge_ss || test == it_mm_cmpngt_ps || test == it_mm_cmpngt_ss || test == it_mm_cmpnle_ps || test == it_mm_cmpnle_ss || test == it_mm_cmpnlt_ps || test == it_mm_cmpnlt_ss || test == it_mm_comieq_ss || test == it_mm_ucomieq_ss || test == it_mm_comige_ss || test == it_mm_ucomige_ss || test == it_mm_comigt_ss || test == it_mm_ucomigt_ss || test == it_mm_comile_ss || test == it_mm_ucomile_ss || test == it_mm_comilt_ss || test == it_mm_ucomilt_ss || test == it_mm_comineq_ss || test == it_mm_ucomineq_ss) { // Make sure the NaN values are included in the testing // one out of four times. if ((rand() & 3) == 0) { uint32_t r1 = rand() & 3; uint32_t r2 = rand() & 3; mTestFloatPointer1[r1] = nanf(""); mTestFloatPointer2[r2] = nanf(""); } } if (test == it_mm_cmpord_pd || test == it_mm_cmpord_sd || test == it_mm_cmpunord_pd || test == it_mm_cmpunord_sd || test == it_mm_cmpeq_pd || test == it_mm_cmpeq_sd || test == it_mm_cmpge_pd || test == it_mm_cmpge_sd || test == it_mm_cmpgt_pd || test == it_mm_cmpgt_sd || test == it_mm_cmple_pd || test == it_mm_cmple_sd || test == it_mm_cmplt_pd || test == it_mm_cmplt_sd || test == it_mm_cmpneq_pd || test == it_mm_cmpneq_sd || test == it_mm_cmpnge_pd || test == it_mm_cmpnge_sd || test == it_mm_cmpngt_pd || test == it_mm_cmpngt_sd || test == it_mm_cmpnle_pd || test == it_mm_cmpnle_sd || test == it_mm_cmpnlt_pd || test == it_mm_cmpnlt_sd || test == it_mm_comieq_sd || test == it_mm_ucomieq_sd || test == it_mm_comige_sd || test == it_mm_ucomige_sd || test == it_mm_comigt_sd || test == it_mm_ucomigt_sd || test == it_mm_comile_sd || test == it_mm_ucomile_sd || test == it_mm_comilt_sd || test == it_mm_ucomilt_sd || test == it_mm_comineq_sd || test == it_mm_ucomineq_sd) { // Make sure the NaN values are included in the testing // one out of four times. if ((rand() & 3) == 0) { // FIXME: // The argument "0xFFFFFFFFFFFF" is a tricky workaround to // set the NaN value for doubles. The code is not intuitive // and should be fixed in the future. uint32_t r1 = ((rand() & 1) << 1) + 1; uint32_t r2 = ((rand() & 1) << 1) + 1; mTestFloatPointer1[r1] = nanf("0xFFFFFFFFFFFF"); mTestFloatPointer2[r2] = nanf("0xFFFFFFFFFFFF"); } } if (test == it_mm_max_pd || test == it_mm_max_sd || test == it_mm_min_pd || test == it_mm_min_sd) { // Make sure the positive/negative inifinity values are included // in the testing one out of four times. if ((rand() & 3) == 0) { uint32_t r1 = ((rand() & 1) << 1) + 1; uint32_t r2 = ((rand() & 1) << 1) + 1; uint32_t r3 = ((rand() & 1) << 1) + 1; uint32_t r4 = ((rand() & 1) << 1) + 1; mTestFloatPointer1[r1] = INFINITY; mTestFloatPointer2[r2] = INFINITY; mTestFloatPointer1[r3] = -INFINITY; mTestFloatPointer1[r4] = -INFINITY; } } #if SSE2NEON_PRECISE_MINMAX if (test == it_mm_max_ps || test == it_mm_max_ss || test == it_mm_min_ps || test == it_mm_min_ss) { // Make sure the NaN values are included in the testing // one out of four times. if ((rand() & 3) == 0) { uint32_t r1 = rand() & 3; uint32_t r2 = rand() & 3; mTestFloatPointer1[r1] = nanf(""); mTestFloatPointer2[r2] = nanf(""); } } if (test == it_mm_max_pd || test == it_mm_max_sd || test == it_mm_min_pd || test == it_mm_min_sd) { // Make sure the NaN values are included in the testing // one out of four times. if ((rand() & 3) == 0) { // FIXME: // The argument "0xFFFFFFFFFFFF" is a tricky workaround to // set the NaN value for doubles. The code is not intuitive // and should be fixed in the future. uint32_t r1 = ((rand() & 1) << 1) + 1; uint32_t r2 = ((rand() & 1) << 1) + 1; mTestFloatPointer1[r1] = nanf("0xFFFFFFFFFFFF"); mTestFloatPointer2[r2] = nanf("0xFFFFFFFFFFFF"); } } #endif // one out of every random 64 times or so, mix up the test floats to // contain some integer values if ((rand() & 63) == 0) { uint32_t option = rand() & 3; switch (option) { // All integers.. case 0: mTestFloatPointer1[0] = float(mTestIntPointer1[0]); mTestFloatPointer1[1] = float(mTestIntPointer1[1]); mTestFloatPointer1[2] = float(mTestIntPointer1[2]); mTestFloatPointer1[3] = float(mTestIntPointer1[3]); mTestFloatPointer2[0] = float(mTestIntPointer2[0]); mTestFloatPointer2[1] = float(mTestIntPointer2[1]); mTestFloatPointer2[2] = float(mTestIntPointer2[2]); mTestFloatPointer2[3] = float(mTestIntPointer2[3]); break; case 1: { uint32_t index = rand() & 3; mTestFloatPointer1[index] = float(mTestIntPointer1[index]); index = rand() & 3; mTestFloatPointer2[index] = float(mTestIntPointer2[index]); } break; case 2: { uint32_t index1 = rand() & 3; uint32_t index2 = rand() & 3; mTestFloatPointer1[index1] = float(mTestIntPointer1[index1]); mTestFloatPointer1[index2] = float(mTestIntPointer1[index2]); index1 = rand() & 3; index2 = rand() & 3; mTestFloatPointer1[index1] = float(mTestIntPointer1[index1]); mTestFloatPointer1[index2] = float(mTestIntPointer1[index2]); } break; case 3: mTestFloatPointer1[0] = float(mTestIntPointer1[0]); mTestFloatPointer1[1] = float(mTestIntPointer1[1]); mTestFloatPointer1[2] = float(mTestIntPointer1[2]); mTestFloatPointer1[3] = float(mTestIntPointer1[3]); break; } if ((rand() & 3) == 0) { // one out of 4 times, make halves for (uint32_t j = 0; j < 4; j++) { mTestFloatPointer1[j] *= 0.5f; mTestFloatPointer2[j] *= 0.5f; } } } ret = runSingleTest(test, i); if (ret == TEST_FAIL) // the test failed... { // Set a breakpoint here if you want to step through the failure // case in the debugger ret = runSingleTest(test, i); break; } } return ret; } }; const char *instructionString[] = { #define _(x) #x, INTRIN_LIST #undef _ }; // Produce rounding which is the same as SSE instructions with _MM_ROUND_NEAREST // rounding mode static inline float bankersRounding(float val) { if (val < 0) return -bankersRounding(-val); float ret; float roundDown = floorf(val); // Round down value float roundUp = ceilf(val); // Round up value float diffDown = val - roundDown; float diffUp = roundUp - val; if (diffDown < diffUp) { /* If it's closer to the round down value, then use it */ ret = roundDown; } else if (diffDown > diffUp) { /* If it's closer to the round up value, then use it */ ret = roundUp; } else { /* If it's equidistant between round up and round down value, pick the * one which is an even number */ float half = roundDown / 2; if (half != floorf(half)) { /* If the round down value is odd, return the round up value */ ret = roundUp; } else { /* If the round up value is odd, return the round down value */ ret = roundDown; } } return ret; } static inline double bankersRounding(double val) { if (val < 0) return -bankersRounding(-val); double ret; double roundDown = floor(val); // Round down value double roundUp = ceil(val); // Round up value double diffDown = val - roundDown; double diffUp = roundUp - val; if (diffDown < diffUp) { /* If it's closer to the round down value, then use it */ ret = roundDown; } else if (diffDown > diffUp) { /* If it's closer to the round up value, then use it */ ret = roundUp; } else { /* If it's equidistant between round up and round down value, pick the * one which is an even number */ double half = roundDown / 2; if (half != floor(half)) { /* If the round down value is odd, return the round up value */ ret = roundUp; } else { /* If the round up value is odd, return the round down value */ ret = roundDown; } } return ret; } // SplitMix64 PRNG by Sebastiano Vigna, see: // static uint64_t state; // the state of SplitMix64 PRNG const double TWOPOWER64 = pow(2, 64); #define SSE2NEON_INIT_RNG(seed) \ do { \ state = seed; \ } while (0) static double next() { uint64_t z = (state += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return (double) (z ^ (z >> 31)); } static float ranf() { return (float) (next() / TWOPOWER64); } static float ranf(float low, float high) { return ranf() * (high - low) + low; } // Enable the tests which are using the macro of another tests result_t test_mm_slli_si128(const SSE2NEONTestImpl &impl, uint32_t iter); result_t test_mm_srli_si128(const SSE2NEONTestImpl &impl, uint32_t iter); result_t test_mm_shuffle_pi16(const SSE2NEONTestImpl &impl, uint32_t iter); // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_set_epi32". __m128i do_mm_set_epi32(int32_t x, int32_t y, int32_t z, int32_t w) { __m128i a = _mm_set_epi32(x, y, z, w); validateInt32(a, w, z, y, x); return a; } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to load __m64 data. template __m64 load_m64(const T *p) { return *((const __m64 *) p); } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_load_ps". template __m128 load_m128(const T *p) { return _mm_loadu_ps((const float *) p); } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_load_ps". template __m128i load_m128i(const T *p) { __m128 a = _mm_loadu_ps((const float *) p); __m128i ia = _mm_castps_si128(a); return ia; } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_load_pd". template __m128d load_m128d(const T *p) { return _mm_loadu_pd((const double *) p); } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_store_ps". result_t do_mm_store_ps(float *p, float x, float y, float z, float w) { __m128 a = _mm_set_ps(x, y, z, w); _mm_store_ps(p, a); ASSERT_RETURN(p[0] == w); ASSERT_RETURN(p[1] == z); ASSERT_RETURN(p[2] == y); ASSERT_RETURN(p[3] == x); return TEST_SUCCESS; } // This function is not called from "runSingleTest", but for other intrinsic // tests that might need to call "_mm_store_ps". result_t do_mm_store_ps(int32_t *p, int32_t x, int32_t y, int32_t z, int32_t w) { __m128i a = _mm_set_epi32(x, y, z, w); _mm_store_ps((float *) p, _mm_castsi128_ps(a)); ASSERT_RETURN(p[0] == w); ASSERT_RETURN(p[1] == z); ASSERT_RETURN(p[2] == y); ASSERT_RETURN(p[3] == x); return TEST_SUCCESS; } float cmp_noNaN(float a, float b) { return (!isnan(a) && !isnan(b)) ? ALL_BIT_1_32 : 0.0f; } double cmp_noNaN(double a, double b) { return (!isnan(a) && !isnan(b)) ? ALL_BIT_1_64 : 0.0f; } float cmp_hasNaN(float a, float b) { return (isnan(a) || isnan(b)) ? ALL_BIT_1_32 : 0.0f; } double cmp_hasNaN(double a, double b) { return (isnan(a) || isnan(b)) ? ALL_BIT_1_64 : 0.0f; } int32_t comilt_ss(float a, float b) { if (isnan(a) || isnan(b)) return 0; return (a < b); } int32_t comigt_ss(float a, float b) { if (isnan(a) || isnan(b)) return 0; return (a > b); } int32_t comile_ss(float a, float b) { if (isnan(a) || isnan(b)) return 0; return (a <= b); } int32_t comige_ss(float a, float b) { if (isnan(a) || isnan(b)) return 0; return (a >= b); } int32_t comieq_ss(float a, float b) { if (isnan(a) || isnan(b)) return 0; return (a == b); } int32_t comineq_ss(float a, float b) { if (isnan(a) || isnan(b)) return 1; return (a != b); } static inline int16_t saturate_i16(int32_t a) { if (a > INT16_MAX) return INT16_MAX; if (a < INT16_MIN) return INT16_MIN; return (int16_t) a; } static inline uint16_t saturate_u16(uint32_t a) { if (a > UINT16_MAX) return UINT16_MAX; return (uint16_t) a; } uint32_t canonical_crc32_u8(uint32_t crc, uint8_t v) { crc ^= v; for (int bit = 0; bit < 8; bit++) { if (crc & 1) crc = (crc >> 1) ^ UINT32_C(0x82f63b78); else crc = (crc >> 1); } return crc; } uint32_t canonical_crc32_u16(uint32_t crc, uint16_t v) { crc = canonical_crc32_u8(crc, (uint8_t) (v & 0xff)); crc = canonical_crc32_u8(crc, (uint8_t) ((v >> 8) & 0xff)); return crc; } uint32_t canonical_crc32_u32(uint32_t crc, uint32_t v) { crc = canonical_crc32_u16(crc, (uint16_t) (v & 0xffff)); crc = canonical_crc32_u16(crc, (uint16_t) (v >> 16) & 0xffff); return crc; } uint64_t canonical_crc32_u64(uint64_t crc, uint64_t v) { crc = canonical_crc32_u32((uint32_t) (crc), (uint32_t) (v & 0xffffffff)); crc = canonical_crc32_u32((uint32_t) (crc), (uint32_t) ((v >> 32) & 0xffffffff)); return crc; } static const uint8_t crypto_aes_sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, }; static const uint8_t crypto_aes_rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, }; // XT is x_time function that muliplies 'x' by 2 in GF(2^8) #define XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) inline __m128i aesenc_128_reference(__m128i a, __m128i b) { uint8_t i, t, u, v[4][4]; for (i = 0; i < 16; ++i) { v[((i / 4) + 4 - (i % 4)) % 4][i % 4] = crypto_aes_sbox[((SIMDVec *) &a)->m128_u8[i]]; } for (i = 0; i < 4; ++i) { t = v[i][0]; u = v[i][0] ^ v[i][1] ^ v[i][2] ^ v[i][3]; v[i][0] ^= u ^ XT(v[i][0] ^ v[i][1]); v[i][1] ^= u ^ XT(v[i][1] ^ v[i][2]); v[i][2] ^= u ^ XT(v[i][2] ^ v[i][3]); v[i][3] ^= u ^ XT(v[i][3] ^ t); } for (i = 0; i < 16; ++i) { ((SIMDVec *) &a)->m128_u8[i] = v[i / 4][i % 4] ^ ((SIMDVec *) &b)->m128_u8[i]; } return a; } #define MULTIPLY(x, y) \ (((y & 1) * x) ^ ((y >> 1 & 1) * XT(x)) ^ ((y >> 2 & 1) * XT(XT(x))) ^ \ ((y >> 3 & 1) * XT(XT(XT(x)))) ^ ((y >> 4 & 1) * XT(XT(XT(XT(x)))))) inline __m128i aesdec_128_reference(__m128i a, __m128i b) { uint8_t i, e, f, g, h, v[4][4]; for (i = 0; i < 16; ++i) { v[((i / 4) + (i % 4)) % 4][i % 4] = crypto_aes_rsbox[((SIMDVec *) &a)->m128_u8[i]]; } for (i = 0; i < 4; ++i) { e = v[i][0]; f = v[i][1]; g = v[i][2]; h = v[i][3]; v[i][0] = (uint8_t) (MULTIPLY(e, 0x0e) ^ MULTIPLY(f, 0x0b) ^ MULTIPLY(g, 0x0d) ^ MULTIPLY(h, 0x09)); v[i][1] = (uint8_t) (MULTIPLY(e, 0x09) ^ MULTIPLY(f, 0x0e) ^ MULTIPLY(g, 0x0b) ^ MULTIPLY(h, 0x0d)); v[i][2] = (uint8_t) (MULTIPLY(e, 0x0d) ^ MULTIPLY(f, 0x09) ^ MULTIPLY(g, 0x0e) ^ MULTIPLY(h, 0x0b)); v[i][3] = (uint8_t) (MULTIPLY(e, 0x0b) ^ MULTIPLY(f, 0x0d) ^ MULTIPLY(g, 0x09) ^ MULTIPLY(h, 0x0e)); } for (i = 0; i < 16; ++i) { ((SIMDVec *) &a)->m128_u8[i] = v[i / 4][i % 4] ^ ((SIMDVec *) &b)->m128_u8[i]; } return a; } inline __m128i aesenclast_128_reference(__m128i s, __m128i rk) { uint8_t i, v[4][4]; for (i = 0; i < 16; ++i) v[((i / 4) + 4 - (i % 4)) % 4][i % 4] = crypto_aes_sbox[((SIMDVec *) &s)->m128_u8[i]]; for (i = 0; i < 16; ++i) ((SIMDVec *) &s)->m128_u8[i] = v[i / 4][i % 4] ^ ((SIMDVec *) &rk)->m128_u8[i]; return s; } // Rotates right (circular right shift) value by "amount" positions static inline uint32_t rotr(uint32_t value, uint32_t amount) { return (value >> amount) | (value << ((32 - amount) & 31)); } static inline uint64_t MUL(uint32_t a, uint32_t b) { return (uint64_t) a * (uint64_t) b; } // From BearSSL. Performs a 32-bit->64-bit carryless/polynomial // long multiply. // // This implementation was chosen because it is reasonably fast // without a lookup table or branching. // // This does it by splitting up the bits in a way that they // would not carry, then combine them together with xor (a // carryless add). // // https://www.bearssl.org/gitweb/?p=BearSSL;a=blob;f=src/hash/ghash_ctmul.c;h=3623202;hb=5f045c7#l164 static uint64_t clmul_32(uint32_t x, uint32_t y) { uint32_t x0, x1, x2, x3; uint32_t y0, y1, y2, y3; uint64_t z0, z1, z2, z3; x0 = x & (uint32_t) 0x11111111; x1 = x & (uint32_t) 0x22222222; x2 = x & (uint32_t) 0x44444444; x3 = x & (uint32_t) 0x88888888; y0 = y & (uint32_t) 0x11111111; y1 = y & (uint32_t) 0x22222222; y2 = y & (uint32_t) 0x44444444; y3 = y & (uint32_t) 0x88888888; z0 = MUL(x0, y0) ^ MUL(x1, y3) ^ MUL(x2, y2) ^ MUL(x3, y1); z1 = MUL(x0, y1) ^ MUL(x1, y0) ^ MUL(x2, y3) ^ MUL(x3, y2); z2 = MUL(x0, y2) ^ MUL(x1, y1) ^ MUL(x2, y0) ^ MUL(x3, y3); z3 = MUL(x0, y3) ^ MUL(x1, y2) ^ MUL(x2, y1) ^ MUL(x3, y0); z0 &= (uint64_t) 0x1111111111111111; z1 &= (uint64_t) 0x2222222222222222; z2 &= (uint64_t) 0x4444444444444444; z3 &= (uint64_t) 0x8888888888888888; return z0 | z1 | z2 | z3; } // Performs a 64x64->128-bit carryless/polynomial long // multiply, using the above routine to calculate the // subproducts needed for the full-size multiply. // // This uses the Karatsuba algorithm. // // Normally, the Karatsuba algorithm isn't beneficial // until very large numbers due to carry tracking and // multiplication being relatively cheap. // // However, we have no carries and multiplication is // definitely not cheap, so the Karatsuba algorithm is // a low cost and easy optimization. // // https://en.m.wikipedia.org/wiki/Karatsuba_algorithm // // Note that addition and subtraction are both // performed with xor, since all operations are // carryless. // // The comments represent the actual mathematical // operations being performed (instead of the bitwise // operations) and to reflect the linked Wikipedia article. static std::pair clmul_64(uint64_t x, uint64_t y) { // B = 2 // m = 32 // x = (x1 * B^m) + x0 uint32_t x0 = (uint32_t) (x & 0xffffffff); uint32_t x1 = (uint32_t) (x >> 32); // y = (y1 * B^m) + y0 uint32_t y0 = (uint32_t) (y & 0xffffffff); uint32_t y1 = (uint32_t) (y >> 32); // z0 = x0 * y0 uint64_t z0 = clmul_32(x0, y0); // z2 = x1 * y1 uint64_t z2 = clmul_32(x1, y1); // z1 = (x0 + x1) * (y0 + y1) - z0 - z2 uint64_t z1 = clmul_32(x0 ^ x1, y0 ^ y1) ^ z0 ^ z2; // xy = z0 + (z1 * B^m) + (z2 * B^2m) // note: z1 is split between the low and high halves uint64_t xy0 = z0 ^ (z1 << 32); uint64_t xy1 = z2 ^ (z1 >> 32); return std::make_pair(xy0, xy1); } /* MMX */ result_t test_mm_empty(const SSE2NEONTestImpl &impl, uint32_t iter) { return TEST_SUCCESS; } /* SSE */ result_t test_mm_add_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float dx = _a[0] + _b[0]; float dy = _a[1] + _b[1]; float dz = _a[2] + _b[2]; float dw = _a[3] + _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_add_ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_add_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer1; float f0 = _a[0] + _b[0]; float f1 = _a[1]; float f2 = _a[2]; float f3 = _a[3]; __m128 a = _mm_load_ps(_a); __m128 b = _mm_load_ps(_b); __m128 c = _mm_add_ss(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_and_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_and_ps(a, b); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ia[0] & ib[0]; r[1] = ia[1] & ib[1]; r[2] = ia[2] & ib[2]; r[3] = ia[3] & ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = VALIDATE_INT32_M128(_mm_castps_si128(c), r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } // r0 := ~a0 & b0 // r1 := ~a1 & b1 // r2 := ~a2 & b2 // r3 := ~a3 & b3 result_t test_mm_andnot_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_andnot_ps(a, b); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ~ia[0] & ib[0]; r[1] = ~ia[1] & ib[1]; r[2] = ~ia[2] & ib[2]; r[3] = ~ia[3] & ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = TEST_FAIL; res = VALIDATE_INT32_M128(_mm_castps_si128(c), r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } result_t test_mm_avg_pu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[4]; d[0] = (uint16_t) ((_a[0] + _b[0] + 1) >> 1); d[1] = (uint16_t) ((_a[1] + _b[1] + 1) >> 1); d[2] = (uint16_t) ((_a[2] + _b[2] + 1) >> 1); d[3] = (uint16_t) ((_a[3] + _b[3] + 1) >> 1); __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_avg_pu16(a, b); return VALIDATE_UINT16_M64(c, d); } result_t test_mm_avg_pu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint8_t d[8]; d[0] = (uint8_t) ((_a[0] + _b[0] + 1) >> 1); d[1] = (uint8_t) ((_a[1] + _b[1] + 1) >> 1); d[2] = (uint8_t) ((_a[2] + _b[2] + 1) >> 1); d[3] = (uint8_t) ((_a[3] + _b[3] + 1) >> 1); d[4] = (uint8_t) ((_a[4] + _b[4] + 1) >> 1); d[5] = (uint8_t) ((_a[5] + _b[5] + 1) >> 1); d[6] = (uint8_t) ((_a[6] + _b[6] + 1) >> 1); d[7] = (uint8_t) ((_a[7] + _b[7] + 1) >> 1); __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_avg_pu8(a, b); return VALIDATE_UINT8_M64(c, d); } result_t test_mm_cmpeq_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] == _b[0] ? -1 : 0; result[1] = _a[1] == _b[1] ? -1 : 0; result[2] = _a[2] == _b[2] ? -1 : 0; result[3] = _a[3] == _b[3] ? -1 : 0; __m128 ret = _mm_cmpeq_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmpeq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] == _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpeq_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpge_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] >= _b[0] ? -1 : 0; result[1] = _a[1] >= _b[1] ? -1 : 0; result[2] = _a[2] >= _b[2] ? -1 : 0; result[3] = _a[3] >= _b[3] ? -1 : 0; __m128 ret = _mm_cmpge_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmpge_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] >= _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpge_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpgt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] > _b[0] ? -1 : 0; result[1] = _a[1] > _b[1] ? -1 : 0; result[2] = _a[2] > _b[2] ? -1 : 0; result[3] = _a[3] > _b[3] ? -1 : 0; __m128 ret = _mm_cmpgt_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmpgt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] > _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpgt_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmple_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] <= _b[0] ? -1 : 0; result[1] = _a[1] <= _b[1] ? -1 : 0; result[2] = _a[2] <= _b[2] ? -1 : 0; result[3] = _a[3] <= _b[3] ? -1 : 0; __m128 ret = _mm_cmple_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmple_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] <= _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmple_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmplt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] < _b[0] ? -1 : 0; result[1] = _a[1] < _b[1] ? -1 : 0; result[2] = _a[2] < _b[2] ? -1 : 0; result[3] = _a[3] < _b[3] ? -1 : 0; __m128 ret = _mm_cmplt_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmplt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] < _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmplt_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpneq_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result[4]; result[0] = _a[0] != _b[0] ? -1 : 0; result[1] = _a[1] != _b[1] ? -1 : 0; result[2] = _a[2] != _b[2] ? -1 : 0; result[3] = _a[3] != _b[3] ? -1 : 0; __m128 ret = _mm_cmpneq_ps(a, b); __m128i iret = _mm_castps_si128(ret); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmpneq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _a[0] != _b[0] ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpneq_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnge_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] >= _b[0]) ? ALL_BIT_1_32 : 0; result[1] = !(_a[1] >= _b[1]) ? ALL_BIT_1_32 : 0; result[2] = !(_a[2] >= _b[2]) ? ALL_BIT_1_32 : 0; result[3] = !(_a[3] >= _b[3]) ? ALL_BIT_1_32 : 0; __m128 ret = _mm_cmpnge_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnge_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] >= _b[0]) ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpnge_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpngt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] > _b[0]) ? ALL_BIT_1_32 : 0; result[1] = !(_a[1] > _b[1]) ? ALL_BIT_1_32 : 0; result[2] = !(_a[2] > _b[2]) ? ALL_BIT_1_32 : 0; result[3] = !(_a[3] > _b[3]) ? ALL_BIT_1_32 : 0; __m128 ret = _mm_cmpngt_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpngt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] > _b[0]) ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpngt_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnle_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] <= _b[0]) ? ALL_BIT_1_32 : 0; result[1] = !(_a[1] <= _b[1]) ? ALL_BIT_1_32 : 0; result[2] = !(_a[2] <= _b[2]) ? ALL_BIT_1_32 : 0; result[3] = !(_a[3] <= _b[3]) ? ALL_BIT_1_32 : 0; __m128 ret = _mm_cmpnle_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnle_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] <= _b[0]) ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpnle_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnlt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] < _b[0]) ? ALL_BIT_1_32 : 0; result[1] = !(_a[1] < _b[1]) ? ALL_BIT_1_32 : 0; result[2] = !(_a[2] < _b[2]) ? ALL_BIT_1_32 : 0; result[3] = !(_a[3] < _b[3]) ? ALL_BIT_1_32 : 0; __m128 ret = _mm_cmpnlt_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpnlt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = !(_a[0] < _b[0]) ? ALL_BIT_1_32 : 0; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpnlt_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpord_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; for (uint32_t i = 0; i < 4; i++) { result[i] = cmp_noNaN(_a[i], _b[i]); } __m128 ret = _mm_cmpord_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpord_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = cmp_noNaN(_a[0], _b[0]); result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpord_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpunord_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; for (uint32_t i = 0; i < 4; i++) { result[i] = cmp_hasNaN(_a[i], _b[i]); } __m128 ret = _mm_cmpunord_ps(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_cmpunord_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = cmp_hasNaN(_a[0], _b[0]); result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_cmpunord_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_comieq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comieq_ss correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comieq_ss(_a[0], _b[0]); int32_t ret = _mm_comieq_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; #endif } result_t test_mm_comige_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comige_ss(_a[0], _b[0]); int32_t ret = _mm_comige_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_comigt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comigt_ss(_a[0], _b[0]); int32_t ret = _mm_comigt_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_comile_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comile_ss correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comile_ss(_a[0], _b[0]); int32_t ret = _mm_comile_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; #endif } result_t test_mm_comilt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comilt_ss correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comilt_ss(_a[0], _b[0]); int32_t ret = _mm_comilt_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; #endif } result_t test_mm_comineq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comineq_ss correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); int32_t result = comineq_ss(_a[0], _b[0]); int32_t ret = _mm_comineq_ss(a, b); return result == ret ? TEST_SUCCESS : TEST_FAIL; #endif } result_t test_mm_cvt_pi2ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const int32_t *_b = impl.mTestIntPointer2; float dx = (float) _b[0]; float dy = (float) _b[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m64 b = load_m64(_b); __m128 c = _mm_cvt_pi2ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvt_ps2pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d[2]; for (int idx = 0; idx < 2; idx++) { switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d[idx] = (int32_t) (bankersRounding(_a[idx])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d[idx] = (int32_t) (floorf(_a[idx])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d[idx] = (int32_t) (ceilf(_a[idx])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d[idx] = (int32_t) (_a[idx]); break; } } __m128 a = load_m128(_a); __m64 ret = _mm_cvt_ps2pi(a); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_cvt_si2ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const int32_t b = *impl.mTestIntPointer2; float dx = (float) b; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_cvt_si2ss(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvt_ss2si(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d0; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d0 = (int32_t) (bankersRounding(_a[0])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d0 = (int32_t) (floorf(_a[0])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d0 = (int32_t) (ceilf(_a[0])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d0 = (int32_t) (_a[0]); break; } __m128 a = load_m128(_a); int32_t ret = _mm_cvt_ss2si(a); return ret == d0 ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtpi16_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; float dx = (float) _a[0]; float dy = (float) _a[1]; float dz = (float) _a[2]; float dw = (float) _a[3]; __m64 a = load_m64(_a); __m128 c = _mm_cvtpi16_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtpi32_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; float dx = (float) _b[0]; float dy = (float) _b[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m64 b = load_m64(_b); __m128 c = _mm_cvtpi32_ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtpi32x2_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; float dx = (float) _a[0]; float dy = (float) _a[1]; float dz = (float) _b[0]; float dw = (float) _b[1]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m128 c = _mm_cvtpi32x2_ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtpi8_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; float dx = (float) _a[0]; float dy = (float) _a[1]; float dz = (float) _a[2]; float dw = (float) _a[3]; __m64 a = load_m64(_a); __m128 c = _mm_cvtpi8_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtps_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int16_t rnd[4]; for (int i = 0; i < 4; i++) { if ((float) INT16_MAX <= _a[i] && _a[i] <= (float) INT32_MAX) { rnd[i] = INT16_MAX; } else if (INT16_MIN < _a[i] && _a[i] < INT16_MAX) { switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); rnd[i] = (int16_t) bankersRounding(_a[i]); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); rnd[i] = (int16_t) floorf(_a[i]); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); rnd[i] = (int16_t) ceilf(_a[i]); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); rnd[i] = (int16_t) _a[i]; break; } } else { rnd[i] = INT16_MIN; } } __m128 a = load_m128(_a); __m64 ret = _mm_cvtps_pi16(a); return VALIDATE_INT16_M64(ret, rnd); } result_t test_mm_cvtps_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d[2] = {}; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d[0] = (int32_t) bankersRounding(_a[0]); d[1] = (int32_t) bankersRounding(_a[1]); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d[0] = (int32_t) floorf(_a[0]); d[1] = (int32_t) floorf(_a[1]); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d[0] = (int32_t) ceilf(_a[0]); d[1] = (int32_t) ceilf(_a[1]); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; break; } __m128 a = load_m128(_a); __m64 ret = _mm_cvtps_pi32(a); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_cvtps_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int8_t rnd[8] = {}; for (int i = 0; i < 4; i++) { if ((float) INT8_MAX <= _a[i] && _a[i] <= (float) INT32_MAX) { rnd[i] = INT8_MAX; } else if (INT8_MIN < _a[i] && _a[i] < INT8_MAX) { switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); rnd[i] = (int8_t) bankersRounding(_a[i]); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); rnd[i] = (int8_t) floorf(_a[i]); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); rnd[i] = (int8_t) ceilf(_a[i]); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); rnd[i] = (int8_t) _a[i]; break; } } else { rnd[i] = INT8_MIN; } } __m128 a = load_m128(_a); __m64 ret = _mm_cvtps_pi8(a); return VALIDATE_INT8_M64(ret, rnd); } result_t test_mm_cvtpu16_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; float dx = (float) _a[0]; float dy = (float) _a[1]; float dz = (float) _a[2]; float dw = (float) _a[3]; __m64 a = load_m64(_a); __m128 c = _mm_cvtpu16_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtpu8_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; float dx = (float) _a[0]; float dy = (float) _a[1]; float dz = (float) _a[2]; float dw = (float) _a[3]; __m64 a = load_m64(_a); __m128 c = _mm_cvtpu8_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtsi32_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const int32_t b = *impl.mTestIntPointer2; float dx = (float) b; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_cvtsi32_ss(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtsi64_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const int64_t b = *(int64_t *) impl.mTestIntPointer2; float dx = (float) b; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_cvtsi64_ss(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_cvtss_f32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float f = _a[0]; __m128 a = load_m128(_a); float c = _mm_cvtss_f32(a); return f == c ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtss_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d0 = 0; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d0 = (int32_t) (bankersRounding(_a[0])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d0 = (int32_t) (floorf(_a[0])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d0 = (int32_t) (ceilf(_a[0])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d0 = (int32_t) (_a[0]); break; } __m128 a = load_m128(_a); int32_t ret = _mm_cvtss_si32(a); return ret == d0 ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtss_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int64_t d0 = 0; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d0 = (int64_t) (bankersRounding(_a[0])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d0 = (int64_t) (floorf(_a[0])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d0 = (int64_t) (ceilf(_a[0])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d0 = (int64_t) (_a[0]); break; } __m128 a = load_m128(_a); int64_t ret = _mm_cvtss_si64(a); return ret == d0 ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtt_ps2pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d[2]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; __m128 a = load_m128(_a); __m64 ret = _mm_cvtt_ps2pi(a); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_cvtt_ss2si(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); int ret = _mm_cvtt_ss2si(a); return ret == (int32_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvttps_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; int32_t d[2]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; __m128 a = load_m128(_a); __m64 ret = _mm_cvttps_pi32(a); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_cvttss_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); int ret = _mm_cvttss_si32(a); return ret == (int32_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvttss_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); int64_t ret = _mm_cvttss_si64(a); return ret == (int64_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_div_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _a[0] / _b[0]; float f1 = _a[1] / _b[1]; float f2 = _a[2] / _b[2]; float f3 = _a[3] / _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_div_ps(a, b); #if defined(__arm__) && !defined(__aarch64__) && !defined(_M_ARM64) // The implementation of "_mm_div_ps()" on ARM 32bit doesn't use "DIV" // instruction directly, instead it uses "FRECPE" instruction to approximate // it. Therefore, the precision is not as small as other architecture return validateFloatError(c, f0, f1, f2, f3, 0.00001f); #else return validateFloat(c, f0, f1, f2, f3); #endif } result_t test_mm_div_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float d0 = _a[0] / _b[0]; float d1 = _a[1]; float d2 = _a[2]; float d3 = _a[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_div_ss(a, b); #if defined(__arm__) && !defined(__aarch64__) && !defined(_M_ARM64) // The implementation of "_mm_div_ps()" on ARM 32bit doesn't use "DIV" // instruction directly, instead it uses "FRECPE" instruction to approximate // it. Therefore, the precision is not as small as other architecture return validateFloatError(c, d0, d1, d2, d3, 0.00001f); #else return validateFloat(c, d0, d1, d2, d3); #endif } result_t test_mm_extract_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME GCC has bug on "_mm_extract_pi16" intrinsics. We will enable this // test when GCC fix this bug. // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98495 for more // information #if defined(__clang__) || defined(_MSC_VER) uint64_t *_a = (uint64_t *) impl.mTestIntPointer1; const int idx = iter & 0x3; __m64 a = load_m64(_a); int c; switch (idx) { case 0: c = _mm_extract_pi16(a, 0); break; case 1: c = _mm_extract_pi16(a, 1); break; case 2: c = _mm_extract_pi16(a, 2); break; case 3: c = _mm_extract_pi16(a, 3); break; } ASSERT_RETURN((uint64_t) c == ((*_a >> (idx * 16)) & 0xFFFF)); ASSERT_RETURN(0 == ((uint64_t) c & 0xFFFF0000)); return TEST_SUCCESS; #else return TEST_UNIMPL; #endif } result_t test_mm_malloc(const SSE2NEONTestImpl &impl, uint32_t iter); result_t test_mm_free(const SSE2NEONTestImpl &impl, uint32_t iter) { /* We verify _mm_malloc first, and there is no need to check _mm_free . */ return test_mm_malloc(impl, iter); } result_t test_mm_get_flush_zero_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { int res_flush_zero_on, res_flush_zero_off; _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); res_flush_zero_on = _MM_GET_FLUSH_ZERO_MODE() == _MM_FLUSH_ZERO_ON; _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); res_flush_zero_off = _MM_GET_FLUSH_ZERO_MODE() == _MM_FLUSH_ZERO_OFF; return (res_flush_zero_on && res_flush_zero_off) ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_get_rounding_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { int res_toward_zero, res_to_neg_inf, res_to_pos_inf, res_nearest; _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); res_toward_zero = _MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO ? 1 : 0; _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); res_to_neg_inf = _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN ? 1 : 0; _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); res_to_pos_inf = _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP ? 1 : 0; _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); res_nearest = _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST ? 1 : 0; if (res_toward_zero && res_to_neg_inf && res_to_pos_inf && res_nearest) { return TEST_SUCCESS; } else { return TEST_FAIL; } } result_t test_mm_getcsr(const SSE2NEONTestImpl &impl, uint32_t iter) { // store original csr value for post test restoring unsigned int originalCsr = _mm_getcsr(); unsigned int roundings[] = {_MM_ROUND_TOWARD_ZERO, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_NEAREST}; for (size_t i = 0; i < sizeof(roundings) / sizeof(roundings[0]); i++) { _mm_setcsr(_mm_getcsr() | roundings[i]); if ((_mm_getcsr() & roundings[i]) != roundings[i]) { return TEST_FAIL; } } // restore original csr value for remaining tests _mm_setcsr(originalCsr); return TEST_SUCCESS; } result_t test_mm_insert_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t insert = (int16_t) impl.mTestInts[iter]; __m64 a; __m64 b; #define TEST_IMPL(IDX) \ int16_t d##IDX[4]; \ for (int i = 0; i < 4; i++) { \ d##IDX[i] = _a[i]; \ } \ d##IDX[IDX] = insert; \ \ a = load_m64(_a); \ b = _mm_insert_pi16(a, insert, IDX); \ CHECK_RESULT(VALIDATE_INT16_M64(b, d##IDX)) IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_load_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *addr = impl.mTestFloatPointer1; __m128 ret = _mm_load_ps(addr); return validateFloat(ret, addr[0], addr[1], addr[2], addr[3]); } result_t test_mm_load_ps1(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *addr = impl.mTestFloatPointer1; __m128 ret = _mm_load_ps1(addr); return validateFloat(ret, addr[0], addr[0], addr[0], addr[0]); } result_t test_mm_load_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *addr = impl.mTestFloatPointer1; __m128 ret = _mm_load_ss(addr); return validateFloat(ret, addr[0], 0, 0, 0); } result_t test_mm_load1_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; __m128 a = _mm_load1_ps(p); return validateFloat(a, p[0], p[0], p[0], p[0]); } result_t test_mm_loadh_pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p1 = impl.mTestFloatPointer1; const float *p2 = impl.mTestFloatPointer2; const __m64 *b = (const __m64 *) p2; __m128 a = _mm_load_ps(p1); __m128 c = _mm_loadh_pi(a, b); return validateFloat(c, p1[0], p1[1], p2[0], p2[1]); } result_t test_mm_loadl_pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p1 = impl.mTestFloatPointer1; const float *p2 = impl.mTestFloatPointer2; __m128 a = _mm_load_ps(p1); const __m64 *b = (const __m64 *) p2; __m128 c = _mm_loadl_pi(a, b); return validateFloat(c, p2[0], p2[1], p1[2], p1[3]); } result_t test_mm_loadr_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *addr = impl.mTestFloatPointer1; __m128 ret = _mm_loadr_ps(addr); return validateFloat(ret, addr[3], addr[2], addr[1], addr[0]); } result_t test_mm_loadu_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *addr = impl.mTestFloatPointer1; __m128 ret = _mm_loadu_ps(addr); return validateFloat(ret, addr[0], addr[1], addr[2], addr[3]); } result_t test_mm_loadu_si16(const SSE2NEONTestImpl &impl, uint32_t iter) { // The GCC version before 11 does not implement intrinsic function // _mm_loadu_si16. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95483 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ <= 10) return TEST_UNIMPL; #else const unaligned_int16_t *addr = (const unaligned_int16_t *) (impl.mTestUnalignedInts + 1); __m128i ret = _mm_loadu_si16((const void *) addr); return validateInt16(ret, addr[0], 0, 0, 0, 0, 0, 0, 0); #endif } result_t test_mm_loadu_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { // Versions of GCC prior to 9 do not implement intrinsic function // _mm_loadu_si64. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78782 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ < 9) return TEST_UNIMPL; #else const unaligned_int64_t *addr = (const unaligned_int64_t *) (impl.mTestUnalignedInts + 1); __m128i ret = _mm_loadu_si64((const void *) addr); return validateInt64(ret, addr[0], 0); #endif } result_t test_mm_malloc(const SSE2NEONTestImpl &impl, uint32_t iter) { const size_t *a = (const size_t *) impl.mTestIntPointer1; const size_t *b = (const size_t *) impl.mTestIntPointer2; size_t size = *a % (1024 * 16) + 1; size_t align = 2 << (*b % 5); void *p = _mm_malloc(size, align); if (!p) return TEST_FAIL; result_t res = (((uintptr_t) p % align) == 0) ? TEST_SUCCESS : TEST_FAIL; _mm_free(p); return res; } result_t test_mm_maskmove_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_mask = (const uint8_t *) impl.mTestIntPointer2; char mem_addr[16]; const __m64 *a = (const __m64 *) _a; const __m64 *mask = (const __m64 *) _mask; _mm_maskmove_si64(*a, *mask, (char *) mem_addr); for (int i = 0; i < 8; i++) { if (_mask[i] >> 7) { ASSERT_RETURN(_a[i] == (uint8_t) mem_addr[i]); } } return TEST_SUCCESS; } result_t test_m_maskmovq(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_maskmove_si64(impl, iter); } result_t test_mm_max_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t c[4]; c[0] = _a[0] > _b[0] ? _a[0] : _b[0]; c[1] = _a[1] > _b[1] ? _a[1] : _b[1]; c[2] = _a[2] > _b[2] ? _a[2] : _b[2]; c[3] = _a[3] > _b[3] ? _a[3] : _b[3]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_max_pi16(a, b); return VALIDATE_INT16_M64(ret, c); } result_t test_mm_max_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float c[4]; c[0] = _a[0] > _b[0] ? _a[0] : _b[0]; c[1] = _a[1] > _b[1] ? _a[1] : _b[1]; c[2] = _a[2] > _b[2] ? _a[2] : _b[2]; c[3] = _a[3] > _b[3] ? _a[3] : _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 ret = _mm_max_ps(a, b); return validateFloat(ret, c[0], c[1], c[2], c[3]); } result_t test_mm_max_pu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint8_t c[8]; c[0] = _a[0] > _b[0] ? _a[0] : _b[0]; c[1] = _a[1] > _b[1] ? _a[1] : _b[1]; c[2] = _a[2] > _b[2] ? _a[2] : _b[2]; c[3] = _a[3] > _b[3] ? _a[3] : _b[3]; c[4] = _a[4] > _b[4] ? _a[4] : _b[4]; c[5] = _a[5] > _b[5] ? _a[5] : _b[5]; c[6] = _a[6] > _b[6] ? _a[6] : _b[6]; c[7] = _a[7] > _b[7] ? _a[7] : _b[7]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_max_pu8(a, b); return VALIDATE_UINT8_M64(ret, c); } result_t test_mm_max_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer1; float f0 = _a[0] > _b[0] ? _a[0] : _b[0]; float f1 = _a[1]; float f2 = _a[2]; float f3 = _a[3]; __m128 a = _mm_load_ps(_a); __m128 b = _mm_load_ps(_b); __m128 c = _mm_max_ss(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_min_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t c[4]; c[0] = _a[0] < _b[0] ? _a[0] : _b[0]; c[1] = _a[1] < _b[1] ? _a[1] : _b[1]; c[2] = _a[2] < _b[2] ? _a[2] : _b[2]; c[3] = _a[3] < _b[3] ? _a[3] : _b[3]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_min_pi16(a, b); return VALIDATE_INT16_M64(ret, c); } result_t test_mm_min_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float c[4]; c[0] = _a[0] < _b[0] ? _a[0] : _b[0]; c[1] = _a[1] < _b[1] ? _a[1] : _b[1]; c[2] = _a[2] < _b[2] ? _a[2] : _b[2]; c[3] = _a[3] < _b[3] ? _a[3] : _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 ret = _mm_min_ps(a, b); return validateFloat(ret, c[0], c[1], c[2], c[3]); } result_t test_mm_min_pu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint8_t c[8]; c[0] = _a[0] < _b[0] ? _a[0] : _b[0]; c[1] = _a[1] < _b[1] ? _a[1] : _b[1]; c[2] = _a[2] < _b[2] ? _a[2] : _b[2]; c[3] = _a[3] < _b[3] ? _a[3] : _b[3]; c[4] = _a[4] < _b[4] ? _a[4] : _b[4]; c[5] = _a[5] < _b[5] ? _a[5] : _b[5]; c[6] = _a[6] < _b[6] ? _a[6] : _b[6]; c[7] = _a[7] < _b[7] ? _a[7] : _b[7]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_min_pu8(a, b); return VALIDATE_UINT8_M64(ret, c); } result_t test_mm_min_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float c; c = _a[0] < _b[0] ? _a[0] : _b[0]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 ret = _mm_min_ss(a, b); return validateFloat(ret, c, _a[1], _a[2], _a[3]); } result_t test_mm_move_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); float result[4]; result[0] = _b[0]; result[1] = _a[1]; result[2] = _a[2]; result[3] = _a[3]; __m128 ret = _mm_move_ss(a, b); return validateFloat(ret, result[0], result[1], result[2], result[3]); } result_t test_mm_movehl_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _b[2]; float f1 = _b[3]; float f2 = _a[2]; float f3 = _a[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 ret = _mm_movehl_ps(a, b); return validateFloat(ret, f0, f1, f2, f3); } result_t test_mm_movelh_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _a[0]; float f1 = _a[1]; float f2 = _b[0]; float f3 = _b[1]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 ret = _mm_movelh_ps(a, b); return validateFloat(ret, f0, f1, f2, f3); } result_t test_mm_movemask_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; unsigned int _c = 0; for (int i = 0; i < 8; i++) { if (_a[i] & 0x80) { _c |= (1 << i); } } const __m64 *a = (const __m64 *) _a; int c = _mm_movemask_pi8(*a); ASSERT_RETURN((unsigned int) c == _c); return TEST_SUCCESS; } result_t test_mm_movemask_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; int ret = 0; const uint32_t *ip = (const uint32_t *) p; if (ip[0] & 0x80000000) { ret |= 1; } if (ip[1] & 0x80000000) { ret |= 2; } if (ip[2] & 0x80000000) { ret |= 4; } if (ip[3] & 0x80000000) { ret |= 8; } __m128 a = load_m128(p); int val = _mm_movemask_ps(a); return val == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_mul_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float dx = _a[0] * _b[0]; float dy = _a[1] * _b[1]; float dz = _a[2] * _b[2]; float dw = _a[3] * _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_mul_ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_mul_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float dx = _a[0] * _b[0]; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_mul_ss(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_mulhi_pu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[4]; for (uint32_t i = 0; i < 4; i++) { uint32_t m = (uint32_t) _a[i] * (uint32_t) _b[i]; d[i] = (uint16_t) (m >> 16); } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_mulhi_pu16(a, b); return VALIDATE_UINT16_M64(c, d); } result_t test_mm_or_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_or_ps(a, b); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ia[0] | ib[0]; r[1] = ia[1] | ib[1]; r[2] = ia[2] | ib[2]; r[3] = ia[3] | ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = VALIDATE_INT32_M128(_mm_castps_si128(c), r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } result_t test_m_pavgb(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_avg_pu8(impl, iter); } result_t test_m_pavgw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_avg_pu16(impl, iter); } result_t test_m_pextrw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_extract_pi16(impl, iter); } result_t test_m_pinsrw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_insert_pi16(impl, iter); } result_t test_m_pmaxsw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_max_pi16(impl, iter); } result_t test_m_pmaxub(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_max_pu8(impl, iter); } result_t test_m_pminsw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_min_pi16(impl, iter); } result_t test_m_pminub(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_min_pu8(impl, iter); } result_t test_m_pmovmskb(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_movemask_pi8(impl, iter); } result_t test_m_pmulhuw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_mulhi_pu16(impl, iter); } result_t test_mm_prefetch(const SSE2NEONTestImpl &impl, uint32_t iter) { typedef struct { __m128 a; float r[4]; } prefetch_test_t; prefetch_test_t test_vec[8] = { { _mm_set_ps(-0.1f, 0.2f, 0.3f, 0.4f), {0.4f, 0.3f, 0.2f, -0.1f}, }, { _mm_set_ps(0.5f, 0.6f, -0.7f, -0.8f), {-0.8f, -0.7f, 0.6f, 0.5f}, }, { _mm_set_ps(0.9f, 0.10f, -0.11f, 0.12f), {0.12f, -0.11f, 0.10f, 0.9f}, }, { _mm_set_ps(-1.1f, -2.1f, -3.1f, -4.1f), {-4.1f, -3.1f, -2.1f, -1.1f}, }, { _mm_set_ps(100.0f, -110.0f, 120.0f, -130.0f), {-130.0f, 120.0f, -110.0f, 100.0f}, }, { _mm_set_ps(200.5f, 210.5f, -220.5f, 230.5f), {995.74f, -93.04f, 144.03f, 902.50f}, }, { _mm_set_ps(10.11f, -11.12f, -12.13f, 13.14f), {13.14f, -12.13f, -11.12f, 10.11f}, }, { _mm_set_ps(10.1f, -20.2f, 30.3f, 40.4f), {40.4f, 30.3f, -20.2f, 10.1f}, }, }; for (size_t i = 0; i < (sizeof(test_vec) / (sizeof(test_vec[0]))); i++) { _mm_prefetch(((const char *) &test_vec[i].a), _MM_HINT_T0); _mm_prefetch(((const char *) &test_vec[i].a), _MM_HINT_T1); _mm_prefetch(((const char *) &test_vec[i].a), _MM_HINT_T2); _mm_prefetch(((const char *) &test_vec[i].a), _MM_HINT_NTA); } return TEST_SUCCESS; } result_t test_m_psadbw(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint16_t d = 0; for (int i = 0; i < 8; i++) { d += (uint16_t) abs(_a[i] - _b[i]); } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _m_psadbw(a, b); return validateUInt16(c, d, 0, 0, 0); } result_t test_m_pshufw(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_shuffle_pi16(impl, iter); } result_t test_mm_rcp_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float dx = 1.0f / _a[0]; float dy = 1.0f / _a[1]; float dz = 1.0f / _a[2]; float dw = 1.0f / _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_rcp_ps(a); return validateFloatError(c, dx, dy, dz, dw, 0.001f); } result_t test_mm_rcp_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float dx = 1.0f / _a[0]; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_rcp_ss(a); return validateFloatError(c, dx, dy, dz, dw, 0.001f); } result_t test_mm_rsqrt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = (const float *) impl.mTestFloatPointer1; float f0 = 1 / sqrtf(_a[0]); float f1 = 1 / sqrtf(_a[1]); float f2 = 1 / sqrtf(_a[2]); float f3 = 1 / sqrtf(_a[3]); __m128 a = load_m128(_a); __m128 c = _mm_rsqrt_ps(a); // Here, we ensure the error rate of "_mm_rsqrt_ps()" is under 0.1% compared // to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.001f); } result_t test_mm_rsqrt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = (const float *) impl.mTestFloatPointer1; float f0 = 1 / sqrtf(_a[0]); float f1 = _a[1]; float f2 = _a[2]; float f3 = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_rsqrt_ss(a); // Here, we ensure the error rate of "_mm_rsqrt_ps()" is under 0.1% compared // to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.001f); } result_t test_mm_sad_pu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint16_t d = 0; for (int i = 0; i < 8; i++) { d += (uint16_t) abs(_a[i] - _b[i]); } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_sad_pu8(a, b); return validateUInt16(c, d, 0, 0, 0); } result_t test_mm_set_flush_zero_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { // TODO: // After the behavior of denormal number and flush zero mode is fully // investigated, the testing would be added. return TEST_UNIMPL; } result_t test_mm_set_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float x = impl.mTestFloats[iter]; float y = impl.mTestFloats[iter + 1]; float z = impl.mTestFloats[iter + 2]; float w = impl.mTestFloats[iter + 3]; __m128 a = _mm_set_ps(x, y, z, w); return validateFloat(a, w, z, y, x); } result_t test_mm_set_ps1(const SSE2NEONTestImpl &impl, uint32_t iter) { float a = impl.mTestFloats[iter]; __m128 ret = _mm_set_ps1(a); return validateFloat(ret, a, a, a, a); } OPTNONE result_t test_mm_set_rounding_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; result_t res_toward_zero, res_to_neg_inf, res_to_pos_inf, res_nearest; __m128 a = load_m128(_a); __m128 b = _mm_setzero_ps(), c = _mm_setzero_ps(); _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); b = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); c = _mm_round_ps(a, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); res_toward_zero = validate128(c, b); _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); b = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); c = _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); res_to_neg_inf = validate128(c, b); _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); b = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); c = _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); res_to_pos_inf = validate128(c, b); _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); b = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); c = _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); res_nearest = validate128(c, b); if (res_toward_zero == TEST_SUCCESS && res_to_neg_inf == TEST_SUCCESS && res_to_pos_inf == TEST_SUCCESS && res_nearest == TEST_SUCCESS) { return TEST_SUCCESS; } else { return TEST_FAIL; } } result_t test_mm_set_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { float a = impl.mTestFloats[iter]; __m128 c = _mm_set_ss(a); return validateFloat(c, a, 0, 0, 0); } result_t test_mm_set1_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float w = impl.mTestFloats[iter]; __m128 a = _mm_set1_ps(w); return validateFloat(a, w, w, w, w); } result_t test_mm_setcsr(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_set_rounding_mode(impl, iter); } result_t test_mm_setr_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float x = impl.mTestFloats[iter]; float y = impl.mTestFloats[iter + 1]; float z = impl.mTestFloats[iter + 2]; float w = impl.mTestFloats[iter + 3]; __m128 ret = _mm_setr_ps(w, z, y, x); return validateFloat(ret, w, z, y, x); } result_t test_mm_setzero_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128 a = _mm_setzero_ps(); return validateFloat(a, 0, 0, 0, 0); } result_t test_mm_sfence(const SSE2NEONTestImpl &impl, uint32_t iter) { /* FIXME: Assume that memory barriers always function as intended. */ return TEST_SUCCESS; } result_t test_mm_shuffle_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m64 a; __m64 d; int16_t _d[4]; #define TEST_IMPL(IDX) \ a = load_m64(_a); \ d = _mm_shuffle_pi16(a, IDX); \ \ _d[0] = _a[IDX & 0x3]; \ _d[1] = _a[(IDX >> 2) & 0x3]; \ _d[2] = _a[(IDX >> 4) & 0x3]; \ _d[3] = _a[(IDX >> 6) & 0x3]; \ if (VALIDATE_INT16_M64(d, _d) != TEST_SUCCESS) { \ return TEST_FAIL; \ } IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; #endif } // Note, NEON does not have a general purpose shuffled command like SSE. // When invoking this method, there is special code for a number of the most // common shuffle permutations result_t test_mm_shuffle_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; result_t isValid = TEST_SUCCESS; __m128 a = load_m128(_a); __m128 b = load_m128(_b); // Test many permutations of the shuffle operation, including all // permutations which have an optimized/customized implementation __m128 ret; ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(0, 1, 2, 3)); if (!validateFloat(ret, _a[3], _a[2], _b[1], _b[0])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3, 2, 1, 0)); if (!validateFloat(ret, _a[0], _a[1], _b[2], _b[3])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(0, 0, 1, 1)); if (!validateFloat(ret, _a[1], _a[1], _b[0], _b[0])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3, 1, 0, 2)); if (!validateFloat(ret, _a[2], _a[0], _b[1], _b[3])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(1, 0, 3, 2)); if (!validateFloat(ret, _a[2], _a[3], _b[0], _b[1])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2, 3, 0, 1)); if (!validateFloat(ret, _a[1], _a[0], _b[3], _b[2])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(0, 0, 2, 2)); if (!validateFloat(ret, _a[2], _a[2], _b[0], _b[0])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2, 2, 0, 0)); if (!validateFloat(ret, _a[0], _a[0], _b[2], _b[2])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3, 2, 0, 2)); if (!validateFloat(ret, _a[2], _a[0], _b[2], _b[3])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(1, 1, 3, 3)); if (!validateFloat(ret, _a[3], _a[3], _b[1], _b[1])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2, 0, 1, 0)); if (!validateFloat(ret, _a[0], _a[1], _b[0], _b[2])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2, 0, 0, 1)); if (!validateFloat(ret, _a[1], _a[0], _b[0], _b[2])) { isValid = TEST_FAIL; } ret = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2, 0, 3, 2)); if (!validateFloat(ret, _a[2], _a[3], _b[0], _b[2])) { isValid = TEST_FAIL; } return isValid; } result_t test_mm_sqrt_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = (const float *) impl.mTestFloatPointer1; float f0 = sqrtf(_a[0]); float f1 = sqrtf(_a[1]); float f2 = sqrtf(_a[2]); float f3 = sqrtf(_a[3]); __m128 a = load_m128(_a); __m128 c = _mm_sqrt_ps(a); #if defined(__arm__) && !defined(__arm64__) && !defined(_M_ARM64) // Here, we ensure the error rate of "_mm_sqrt_ps()" ARMv7-A implementation // is under 10^-4% compared to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.0001f); #else // Here, we ensure the error rate of "_mm_sqrt_ps()" is under 10^-6% // compared to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.000001f); #endif } result_t test_mm_sqrt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = (const float *) impl.mTestFloatPointer1; float f0 = sqrtf(_a[0]); float f1 = _a[1]; float f2 = _a[2]; float f3 = _a[3]; __m128 a = load_m128(_a); __m128 c = _mm_sqrt_ss(a); #if defined(__arm__) && !defined(__arm64__) && !defined(_M_ARM64) // Here, we ensure the error rate of "_mm_sqrt_ps()" ARMv7-A implementation // is under 10^-4% compared to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.0001f); #else // Here, we ensure the error rate of "_mm_sqrt_ps()" is under 10^-6% // compared to the C implementation. return validateFloatError(c, f0, f1, f2, f3, 0.000001f); #endif } result_t test_mm_store_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { int32_t *p = impl.mTestIntPointer1; int32_t x = impl.mTestInts[iter]; int32_t y = impl.mTestInts[iter + 1]; int32_t z = impl.mTestInts[iter + 2]; int32_t w = impl.mTestInts[iter + 3]; __m128i a = _mm_set_epi32(x, y, z, w); _mm_store_ps((float *) p, _mm_castsi128_ps(a)); ASSERT_RETURN(p[0] == w); ASSERT_RETURN(p[1] == z); ASSERT_RETURN(p[2] == y); ASSERT_RETURN(p[3] == x); return TEST_SUCCESS; } result_t test_mm_store_ps1(const SSE2NEONTestImpl &impl, uint32_t iter) { float *p = impl.mTestFloatPointer1; float d[4]; __m128 a = load_m128(p); _mm_store_ps1(d, a); ASSERT_RETURN(d[0] == *p); ASSERT_RETURN(d[1] == *p); ASSERT_RETURN(d[2] == *p); ASSERT_RETURN(d[3] == *p); return TEST_SUCCESS; } result_t test_mm_store_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { float x = impl.mTestFloats[iter]; float p[4]; __m128 a = _mm_set_ss(x); _mm_store_ss(p, a); ASSERT_RETURN(p[0] == x); return TEST_SUCCESS; } result_t test_mm_store1_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float *p = impl.mTestFloatPointer1; float d[4]; __m128 a = load_m128(p); _mm_store1_ps(d, a); ASSERT_RETURN(d[0] == *p); ASSERT_RETURN(d[1] == *p); ASSERT_RETURN(d[2] == *p); ASSERT_RETURN(d[3] == *p); return TEST_SUCCESS; } result_t test_mm_storeh_pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; float d[4] = {1.0f, 2.0f, 3.0f, 4.0f}; __m128 a = _mm_load_ps(p); __m64 *b = (__m64 *) d; _mm_storeh_pi(b, a); ASSERT_RETURN(d[0] == p[2]); ASSERT_RETURN(d[1] == p[3]); ASSERT_RETURN(d[2] == 3.0f); ASSERT_RETURN(d[3] == 4.0f); return TEST_SUCCESS; } result_t test_mm_storel_pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; float d[4] = {1.0f, 2.0f, 3.0f, 4.0f}; __m128 a = _mm_load_ps(p); __m64 *b = (__m64 *) d; _mm_storel_pi(b, a); ASSERT_RETURN(d[0] == p[0]); ASSERT_RETURN(d[1] == p[1]); ASSERT_RETURN(d[2] == 3.0f); ASSERT_RETURN(d[3] == 4.0f); return TEST_SUCCESS; } result_t test_mm_storer_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float *p = impl.mTestFloatPointer1; float d[4]; __m128 a = load_m128(p); _mm_storer_ps(d, a); ASSERT_RETURN(d[0] == p[3]); ASSERT_RETURN(d[1] == p[2]); ASSERT_RETURN(d[2] == p[1]); ASSERT_RETURN(d[3] == p[0]); return TEST_SUCCESS; } result_t test_mm_storeu_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float *_a = impl.mTestFloatPointer1; float f[4]; __m128 a = _mm_load_ps(_a); _mm_storeu_ps(f, a); return validateFloat(a, f[0], f[1], f[2], f[3]); } result_t test_mm_storeu_si16(const SSE2NEONTestImpl &impl, uint32_t iter) { // The GCC version before 11 does not implement intrinsic function // _mm_storeu_si16. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95483 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ <= 10) return TEST_UNIMPL; #else const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i b = _mm_setzero_si128(); __m128i a = load_m128i(_a); _mm_storeu_si16(&b, a); int16_t *_b = (int16_t *) &b; int16_t *_c = (int16_t *) &a; return validateInt16(b, _c[0], _b[1], _b[2], _b[3], _b[4], _b[5], _b[6], _b[7]); #endif } result_t test_mm_storeu_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { // Versions of GCC prior to 9 do not implement intrinsic function // _mm_storeu_si64. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87558 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ < 9) return TEST_UNIMPL; #else const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i b = _mm_setzero_si128(); __m128i a = load_m128i(_a); _mm_storeu_si64(&b, a); int64_t *_b = (int64_t *) &b; int64_t *_c = (int64_t *) &a; return validateInt64(b, _c[0], _b[1]); #endif } result_t test_mm_stream_pi(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m64 a = load_m64(_a); __m64 p; _mm_stream_pi(&p, a); return validateInt64(p, _a[0]); } result_t test_mm_stream_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); alignas(16) float p[4]; _mm_stream_ps(p, a); ASSERT_RETURN(p[0] == _a[0]); ASSERT_RETURN(p[1] == _a[1]); ASSERT_RETURN(p[2] == _a[2]); ASSERT_RETURN(p[3] == _a[3]); return TEST_SUCCESS; } result_t test_mm_sub_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float dx = _a[0] - _b[0]; float dy = _a[1] - _b[1]; float dz = _a[2] - _b[2]; float dw = _a[3] - _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_sub_ps(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_sub_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float dx = _a[0] - _b[0]; float dy = _a[1]; float dz = _a[2]; float dw = _a[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_sub_ss(a, b); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_ucomieq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomieq_ss is equal to _mm_comieq_ss return test_mm_comieq_ss(impl, iter); } result_t test_mm_ucomige_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomige_ss is equal to _mm_comige_ss return test_mm_comige_ss(impl, iter); } result_t test_mm_ucomigt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomigt_ss is equal to _mm_comigt_ss return test_mm_comigt_ss(impl, iter); } result_t test_mm_ucomile_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomile_ss is equal to _mm_comile_ss return test_mm_comile_ss(impl, iter); } result_t test_mm_ucomilt_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomilt_ss is equal to _mm_comilt_ss return test_mm_comilt_ss(impl, iter); } result_t test_mm_ucomineq_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { // _mm_ucomineq_ss is equal to _mm_comineq_ss return test_mm_comineq_ss(impl, iter); } result_t test_mm_undefined_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128 a = _mm_undefined_ps(); a = _mm_xor_ps(a, a); return validateFloat(a, 0, 0, 0, 0); } result_t test_mm_unpackhi_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float *_a = impl.mTestFloatPointer1; float *_b = impl.mTestFloatPointer1; float f0 = _a[2]; float f1 = _b[2]; float f2 = _a[3]; float f3 = _b[3]; __m128 a = _mm_load_ps(_a); __m128 b = _mm_load_ps(_b); __m128 c = _mm_unpackhi_ps(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_unpacklo_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { float *_a = impl.mTestFloatPointer1; float *_b = impl.mTestFloatPointer1; float f0 = _a[0]; float f1 = _b[0]; float f2 = _a[1]; float f3 = _b[1]; __m128 a = _mm_load_ps(_a); __m128 b = _mm_load_ps(_b); __m128 c = _mm_unpacklo_ps(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_xor_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestFloatPointer1; const int32_t *_b = (const int32_t *) impl.mTestFloatPointer2; float d0 = sse2neon_tool_recast_f32(_a[0] ^ _b[0]); float d1 = sse2neon_tool_recast_f32(_a[1] ^ _b[1]); float d2 = sse2neon_tool_recast_f32(_a[2] ^ _b[2]); float d3 = sse2neon_tool_recast_f32(_a[3] ^ _b[3]); __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_xor_ps(a, b); return validateFloat(c, d0, d1, d2, d3); } /* SSE2 */ result_t test_mm_add_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] + _b[0]; d[1] = _a[1] + _b[1]; d[2] = _a[2] + _b[2]; d[3] = _a[3] + _b[3]; d[4] = _a[4] + _b[4]; d[5] = _a[5] + _b[5]; d[6] = _a[6] + _b[6]; d[7] = _a[7] + _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_add_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_add_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0] + _b[0]; d[1] = _a[1] + _b[1]; d[2] = _a[2] + _b[2]; d[3] = _a[3] + _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_add_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_add_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t d0 = _a[0] + _b[0]; int64_t d1 = _a[1] + _b[1]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_add_epi64(a, b); return validateInt64(c, d0, d1); } result_t test_mm_add_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[0] + _b[0]; d[1] = _a[1] + _b[1]; d[2] = _a[2] + _b[2]; d[3] = _a[3] + _b[3]; d[4] = _a[4] + _b[4]; d[5] = _a[5] + _b[5]; d[6] = _a[6] + _b[6]; d[7] = _a[7] + _b[7]; d[8] = _a[8] + _b[8]; d[9] = _a[9] + _b[9]; d[10] = _a[10] + _b[10]; d[11] = _a[11] + _b[11]; d[12] = _a[12] + _b[12]; d[13] = _a[13] + _b[13]; d[14] = _a[14] + _b[14]; d[15] = _a[15] + _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_add_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_add_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] + _b[0]; double d1 = _a[1] + _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_add_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_add_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] + _b[0]; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_add_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_add_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t d0 = _a[0] + _b[0]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_add_si64(a, b); return validateInt64(c, d0); } result_t test_mm_adds_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = saturate_i16((int32_t) _a[0] + (int32_t) _b[0]); d[1] = saturate_i16((int32_t) _a[1] + (int32_t) _b[1]); d[2] = saturate_i16((int32_t) _a[2] + (int32_t) _b[2]); d[3] = saturate_i16((int32_t) _a[3] + (int32_t) _b[3]); d[4] = saturate_i16((int32_t) _a[4] + (int32_t) _b[4]); d[5] = saturate_i16((int32_t) _a[5] + (int32_t) _b[5]); d[6] = saturate_i16((int32_t) _a[6] + (int32_t) _b[6]); d[7] = saturate_i16((int32_t) _a[7] + (int32_t) _b[7]); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_adds_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_adds_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int16_t d[16]; for (int i = 0; i < 16; i++) { d[i] = (int16_t) _a[i] + (int16_t) _b[i]; if (d[i] > 127) d[i] = 127; if (d[i] < -128) d[i] = -128; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_adds_epi8(a, b); return VALIDATE_INT8_M128(c, (int8_t) d); } result_t test_mm_adds_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = saturate_u16((uint32_t) _a[0] + (uint32_t) _b[0]); d[1] = saturate_u16((uint32_t) _a[1] + (uint32_t) _b[1]); d[2] = saturate_u16((uint32_t) _a[2] + (uint32_t) _b[2]); d[3] = saturate_u16((uint32_t) _a[3] + (uint32_t) _b[3]); d[4] = saturate_u16((uint32_t) _a[4] + (uint32_t) _b[4]); d[5] = saturate_u16((uint32_t) _a[5] + (uint32_t) _b[5]); d[6] = saturate_u16((uint32_t) _a[6] + (uint32_t) _b[6]); d[7] = saturate_u16((uint32_t) _a[7] + (uint32_t) _b[7]); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_adds_epu16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_adds_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; uint8_t d[16]; d[0] = (uint8_t) _a[0] + (uint8_t) _b[0]; if (d[0] < (uint8_t) _a[0]) d[0] = 255; d[1] = (uint8_t) _a[1] + (uint8_t) _b[1]; if (d[1] < (uint8_t) _a[1]) d[1] = 255; d[2] = (uint8_t) _a[2] + (uint8_t) _b[2]; if (d[2] < (uint8_t) _a[2]) d[2] = 255; d[3] = (uint8_t) _a[3] + (uint8_t) _b[3]; if (d[3] < (uint8_t) _a[3]) d[3] = 255; d[4] = (uint8_t) _a[4] + (uint8_t) _b[4]; if (d[4] < (uint8_t) _a[4]) d[4] = 255; d[5] = (uint8_t) _a[5] + (uint8_t) _b[5]; if (d[5] < (uint8_t) _a[5]) d[5] = 255; d[6] = (uint8_t) _a[6] + (uint8_t) _b[6]; if (d[6] < (uint8_t) _a[6]) d[6] = 255; d[7] = (uint8_t) _a[7] + (uint8_t) _b[7]; if (d[7] < (uint8_t) _a[7]) d[7] = 255; d[8] = (uint8_t) _a[8] + (uint8_t) _b[8]; if (d[8] < (uint8_t) _a[8]) d[8] = 255; d[9] = (uint8_t) _a[9] + (uint8_t) _b[9]; if (d[9] < (uint8_t) _a[9]) d[9] = 255; d[10] = (uint8_t) _a[10] + (uint8_t) _b[10]; if (d[10] < (uint8_t) _a[10]) d[10] = 255; d[11] = (uint8_t) _a[11] + (uint8_t) _b[11]; if (d[11] < (uint8_t) _a[11]) d[11] = 255; d[12] = (uint8_t) _a[12] + (uint8_t) _b[12]; if (d[12] < (uint8_t) _a[12]) d[12] = 255; d[13] = (uint8_t) _a[13] + (uint8_t) _b[13]; if (d[13] < (uint8_t) _a[13]) d[13] = 255; d[14] = (uint8_t) _a[14] + (uint8_t) _b[14]; if (d[14] < (uint8_t) _a[14]) d[14] = 255; d[15] = (uint8_t) _a[15] + (uint8_t) _b[15]; if (d[15] < (uint8_t) _a[15]) d[15] = 255; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_adds_epu8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_and_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestFloatPointer1; const int64_t *_b = (const int64_t *) impl.mTestFloatPointer2; double d0 = sse2neon_tool_recast_f64(_a[0] & _b[0]); double d1 = sse2neon_tool_recast_f64(_a[1] & _b[1]); __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_and_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_and_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128 fc = _mm_and_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b)); __m128i c = _mm_castps_si128(fc); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ia[0] & ib[0]; r[1] = ia[1] & ib[1]; r[2] = ia[2] & ib[2]; r[3] = ia[3] & ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = VALIDATE_INT32_M128(c, r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } result_t test_mm_andnot_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_andnot_pd(a, b); // Take AND operation a complement of 'a' and 'b'. Bitwise operations are // not allowed on float/double datatype, so 'a' and 'b' are calculated in // uint64_t datatype. const uint64_t *ia = (const uint64_t *) &a; const uint64_t *ib = (const uint64_t *) &b; uint64_t r0 = ~ia[0] & ib[0]; uint64_t r1 = ~ia[1] & ib[1]; return validateUInt64(_mm_castpd_si128(c), r0, r1); } result_t test_mm_andnot_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128 fc = _mm_andnot_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b)); __m128i c = _mm_castps_si128(fc); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ~ia[0] & ib[0]; r[1] = ~ia[1] & ib[1]; r[2] = ~ia[2] & ib[2]; r[3] = ~ia[3] & ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = TEST_SUCCESS; res = VALIDATE_INT32_M128(c, r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } result_t test_mm_avg_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = (uint16_t) ((_a[0] + _b[0] + 1) >> 1); d[1] = (uint16_t) ((_a[1] + _b[1] + 1) >> 1); d[2] = (uint16_t) ((_a[2] + _b[2] + 1) >> 1); d[3] = (uint16_t) ((_a[3] + _b[3] + 1) >> 1); d[4] = (uint16_t) ((_a[4] + _b[4] + 1) >> 1); d[5] = (uint16_t) ((_a[5] + _b[5] + 1) >> 1); d[6] = (uint16_t) ((_a[6] + _b[6] + 1) >> 1); d[7] = (uint16_t) ((_a[7] + _b[7] + 1) >> 1); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_avg_epu16(a, b); return VALIDATE_UINT16_M128(c, d); } result_t test_mm_avg_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint8_t d[16]; d[0] = (uint8_t) ((_a[0] + _b[0] + 1) >> 1); d[1] = (uint8_t) ((_a[1] + _b[1] + 1) >> 1); d[2] = (uint8_t) ((_a[2] + _b[2] + 1) >> 1); d[3] = (uint8_t) ((_a[3] + _b[3] + 1) >> 1); d[4] = (uint8_t) ((_a[4] + _b[4] + 1) >> 1); d[5] = (uint8_t) ((_a[5] + _b[5] + 1) >> 1); d[6] = (uint8_t) ((_a[6] + _b[6] + 1) >> 1); d[7] = (uint8_t) ((_a[7] + _b[7] + 1) >> 1); d[8] = (uint8_t) ((_a[8] + _b[8] + 1) >> 1); d[9] = (uint8_t) ((_a[9] + _b[9] + 1) >> 1); d[10] = (uint8_t) ((_a[10] + _b[10] + 1) >> 1); d[11] = (uint8_t) ((_a[11] + _b[11] + 1) >> 1); d[12] = (uint8_t) ((_a[12] + _b[12] + 1) >> 1); d[13] = (uint8_t) ((_a[13] + _b[13] + 1) >> 1); d[14] = (uint8_t) ((_a[14] + _b[14] + 1) >> 1); d[15] = (uint8_t) ((_a[15] + _b[15] + 1) >> 1); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_avg_epu8(a, b); return VALIDATE_UINT8_M128(c, d); } result_t test_mm_bslli_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_slli_si128(impl, iter); } result_t test_mm_bsrli_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_srli_si128(impl, iter); } result_t test_mm_castpd_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const __m128d a = load_m128d(_a); const __m128 _c = load_m128(_a); __m128 r = _mm_castpd_ps(a); return validate128(r, _c); } result_t test_mm_castpd_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const __m128d a = load_m128d(_a); const __m128i *_c = (const __m128i *) _a; __m128i r = _mm_castpd_si128(a); return validate128(r, *_c); } result_t test_mm_castps_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const __m128 a = load_m128(_a); const __m128d *_c = (const __m128d *) _a; __m128d r = _mm_castps_pd(a); return validate128(r, *_c); } result_t test_mm_castps_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const __m128i *_c = (const __m128i *) _a; const __m128 a = load_m128(_a); __m128i r = _mm_castps_si128(a); return validate128(r, *_c); } result_t test_mm_castsi128_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const __m128d *_c = (const __m128d *) _a; const __m128i a = load_m128i(_a); __m128d r = _mm_castsi128_pd(a); return validate128(r, *_c); } result_t test_mm_castsi128_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const __m128 *_c = (const __m128 *) _a; const __m128i a = load_m128i(_a); __m128 r = _mm_castsi128_ps(a); return validate128(r, *_c); } result_t test_mm_clflush(const SSE2NEONTestImpl &impl, uint32_t iter) { /* FIXME: Assume that we have portable mechanisms to flush cache. */ return TEST_SUCCESS; } result_t test_mm_cmpeq_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = (_a[0] == _b[0]) ? ~UINT16_C(0) : 0x0; d[1] = (_a[1] == _b[1]) ? ~UINT16_C(0) : 0x0; d[2] = (_a[2] == _b[2]) ? ~UINT16_C(0) : 0x0; d[3] = (_a[3] == _b[3]) ? ~UINT16_C(0) : 0x0; d[4] = (_a[4] == _b[4]) ? ~UINT16_C(0) : 0x0; d[5] = (_a[5] == _b[5]) ? ~UINT16_C(0) : 0x0; d[6] = (_a[6] == _b[6]) ? ~UINT16_C(0) : 0x0; d[7] = (_a[7] == _b[7]) ? ~UINT16_C(0) : 0x0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpeq_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_cmpeq_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; int32_t d[4]; d[0] = (_a[0] == _b[0]) ? ~UINT32_C(0) : 0x0; d[1] = (_a[1] == _b[1]) ? ~UINT32_C(0) : 0x0; d[2] = (_a[2] == _b[2]) ? ~UINT32_C(0) : 0x0; d[3] = (_a[3] == _b[3]) ? ~UINT32_C(0) : 0x0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpeq_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_cmpeq_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = (_a[0] == _b[0]) ? ~UINT8_C(0) : 0x00; d[1] = (_a[1] == _b[1]) ? ~UINT8_C(0) : 0x00; d[2] = (_a[2] == _b[2]) ? ~UINT8_C(0) : 0x00; d[3] = (_a[3] == _b[3]) ? ~UINT8_C(0) : 0x00; d[4] = (_a[4] == _b[4]) ? ~UINT8_C(0) : 0x00; d[5] = (_a[5] == _b[5]) ? ~UINT8_C(0) : 0x00; d[6] = (_a[6] == _b[6]) ? ~UINT8_C(0) : 0x00; d[7] = (_a[7] == _b[7]) ? ~UINT8_C(0) : 0x00; d[8] = (_a[8] == _b[8]) ? ~UINT8_C(0) : 0x00; d[9] = (_a[9] == _b[9]) ? ~UINT8_C(0) : 0x00; d[10] = (_a[10] == _b[10]) ? ~UINT8_C(0) : 0x00; d[11] = (_a[11] == _b[11]) ? ~UINT8_C(0) : 0x00; d[12] = (_a[12] == _b[12]) ? ~UINT8_C(0) : 0x00; d[13] = (_a[13] == _b[13]) ? ~UINT8_C(0) : 0x00; d[14] = (_a[14] == _b[14]) ? ~UINT8_C(0) : 0x00; d[15] = (_a[15] == _b[15]) ? ~UINT8_C(0) : 0x00; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpeq_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_cmpeq_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] == _b[0]) ? sse2neon_tool_recast_f64(UINT64_MAX) : 0; double d1 = (_a[1] == _b[1]) ? sse2neon_tool_recast_f64(UINT64_MAX) : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpeq_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpeq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] == _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpeq_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpge_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] >= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = (_a[1] >= _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpge_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpge_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = (_a[0] >= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpge_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpgt_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = _a[0] > _b[0] ? ~UINT16_C(0) : 0; d[1] = _a[1] > _b[1] ? ~UINT16_C(0) : 0; d[2] = _a[2] > _b[2] ? ~UINT16_C(0) : 0; d[3] = _a[3] > _b[3] ? ~UINT16_C(0) : 0; d[4] = _a[4] > _b[4] ? ~UINT16_C(0) : 0; d[5] = _a[5] > _b[5] ? ~UINT16_C(0) : 0; d[6] = _a[6] > _b[6] ? ~UINT16_C(0) : 0; d[7] = _a[7] > _b[7] ? ~UINT16_C(0) : 0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpgt_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_cmpgt_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); int32_t result[4]; result[0] = _a[0] > _b[0] ? -1 : 0; result[1] = _a[1] > _b[1] ? -1 : 0; result[2] = _a[2] > _b[2] ? -1 : 0; result[3] = _a[3] > _b[3] ? -1 : 0; __m128i iret = _mm_cmpgt_epi32(a, b); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmpgt_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = (_a[0] > _b[0]) ? ~UINT8_C(0) : 0x00; d[1] = (_a[1] > _b[1]) ? ~UINT8_C(0) : 0x00; d[2] = (_a[2] > _b[2]) ? ~UINT8_C(0) : 0x00; d[3] = (_a[3] > _b[3]) ? ~UINT8_C(0) : 0x00; d[4] = (_a[4] > _b[4]) ? ~UINT8_C(0) : 0x00; d[5] = (_a[5] > _b[5]) ? ~UINT8_C(0) : 0x00; d[6] = (_a[6] > _b[6]) ? ~UINT8_C(0) : 0x00; d[7] = (_a[7] > _b[7]) ? ~UINT8_C(0) : 0x00; d[8] = (_a[8] > _b[8]) ? ~UINT8_C(0) : 0x00; d[9] = (_a[9] > _b[9]) ? ~UINT8_C(0) : 0x00; d[10] = (_a[10] > _b[10]) ? ~UINT8_C(0) : 0x00; d[11] = (_a[11] > _b[11]) ? ~UINT8_C(0) : 0x00; d[12] = (_a[12] > _b[12]) ? ~UINT8_C(0) : 0x00; d[13] = (_a[13] > _b[13]) ? ~UINT8_C(0) : 0x00; d[14] = (_a[14] > _b[14]) ? ~UINT8_C(0) : 0x00; d[15] = (_a[15] > _b[15]) ? ~UINT8_C(0) : 0x00; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpgt_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_cmpgt_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] > _b[0]) ? ALL_BIT_1_64 : 0; double d1 = (_a[1] > _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpgt_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpgt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = (_a[0] > _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpgt_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmple_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] <= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = (_a[1] <= _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmple_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmple_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = (_a[0] <= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmple_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmplt_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = _a[0] < _b[0] ? ~UINT16_C(0) : 0; d[1] = _a[1] < _b[1] ? ~UINT16_C(0) : 0; d[2] = _a[2] < _b[2] ? ~UINT16_C(0) : 0; d[3] = _a[3] < _b[3] ? ~UINT16_C(0) : 0; d[4] = _a[4] < _b[4] ? ~UINT16_C(0) : 0; d[5] = _a[5] < _b[5] ? ~UINT16_C(0) : 0; d[6] = _a[6] < _b[6] ? ~UINT16_C(0) : 0; d[7] = _a[7] < _b[7] ? ~UINT16_C(0) : 0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmplt_epi16(a, b); return VALIDATE_UINT16_M128(c, d); } result_t test_mm_cmplt_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); int32_t result[4]; result[0] = _a[0] < _b[0] ? -1 : 0; result[1] = _a[1] < _b[1] ? -1 : 0; result[2] = _a[2] < _b[2] ? -1 : 0; result[3] = _a[3] < _b[3] ? -1 : 0; __m128i iret = _mm_cmplt_epi32(a, b); return VALIDATE_INT32_M128(iret, result); } result_t test_mm_cmplt_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = (_a[0] < _b[0]) ? ~UINT8_C(0) : 0x00; d[1] = (_a[1] < _b[1]) ? ~UINT8_C(0) : 0x00; d[2] = (_a[2] < _b[2]) ? ~UINT8_C(0) : 0x00; d[3] = (_a[3] < _b[3]) ? ~UINT8_C(0) : 0x00; d[4] = (_a[4] < _b[4]) ? ~UINT8_C(0) : 0x00; d[5] = (_a[5] < _b[5]) ? ~UINT8_C(0) : 0x00; d[6] = (_a[6] < _b[6]) ? ~UINT8_C(0) : 0x00; d[7] = (_a[7] < _b[7]) ? ~UINT8_C(0) : 0x00; d[8] = (_a[8] < _b[8]) ? ~UINT8_C(0) : 0x00; d[9] = (_a[9] < _b[9]) ? ~UINT8_C(0) : 0x00; d[10] = (_a[10] < _b[10]) ? ~UINT8_C(0) : 0x00; d[11] = (_a[11] < _b[11]) ? ~UINT8_C(0) : 0x00; d[12] = (_a[12] < _b[12]) ? ~UINT8_C(0) : 0x00; d[13] = (_a[13] < _b[13]) ? ~UINT8_C(0) : 0x00; d[14] = (_a[14] < _b[14]) ? ~UINT8_C(0) : 0x00; d[15] = (_a[15] < _b[15]) ? ~UINT8_C(0) : 0x00; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmplt_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_cmplt_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] < _b[0]) ? ALL_BIT_1_64 : UINT64_C(0); double d1 = (_a[1] < _b[1]) ? ALL_BIT_1_64 : UINT64_C(0); __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmplt_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmplt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = (_a[0] < _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmplt_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpneq_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = (_a[0] != _b[0]) ? ALL_BIT_1_64 : UINT64_C(0); double d1 = (_a[1] != _b[1]) ? ALL_BIT_1_64 : UINT64_C(0); __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpneq_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpneq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = (_a[0] != _b[0]) ? ALL_BIT_1_64 : UINT64_C(0); double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpneq_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnge_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = !(_a[0] >= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = !(_a[1] >= _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnge_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnge_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = !(_a[0] >= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnge_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpngt_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = !(_a[0] > _b[0]) ? ALL_BIT_1_64 : 0; double d1 = !(_a[1] > _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpngt_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpngt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = !(_a[0] > _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpngt_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnle_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = !(_a[0] <= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = !(_a[1] <= _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnle_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnle_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = !(_a[0] <= _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnle_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnlt_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = !(_a[0] < _b[0]) ? ALL_BIT_1_64 : 0; double d1 = !(_a[1] < _b[1]) ? ALL_BIT_1_64 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnlt_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpnlt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; double d0 = !(_a[0] < _b[0]) ? ALL_BIT_1_64 : 0; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_cmpnlt_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cmpord_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = _mm_load_pd(_a); __m128d b = _mm_load_pd(_b); double result[2]; for (uint32_t i = 0; i < 2; i++) { result[i] = cmp_noNaN(_a[i], _b[i]); } __m128d ret = _mm_cmpord_pd(a, b); return validateDouble(ret, result[0], result[1]); } result_t test_mm_cmpord_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = _mm_load_pd(_a); __m128d b = _mm_load_pd(_b); double c0 = cmp_noNaN(_a[0], _b[0]); double c1 = _a[1]; __m128d ret = _mm_cmpord_sd(a, b); return validateDouble(ret, c0, c1); } result_t test_mm_cmpunord_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = _mm_load_pd(_a); __m128d b = _mm_load_pd(_b); double result[2]; result[0] = cmp_hasNaN(_a[0], _b[0]); result[1] = cmp_hasNaN(_a[1], _b[1]); __m128d ret = _mm_cmpunord_pd(a, b); return validateDouble(ret, result[0], result[1]); } result_t test_mm_cmpunord_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *_a = (double *) impl.mTestFloatPointer1; double *_b = (double *) impl.mTestFloatPointer2; __m128d a = _mm_load_pd(_a); __m128d b = _mm_load_pd(_b); double result[2]; result[0] = cmp_hasNaN(_a[0], _b[0]); result[1] = _a[1]; __m128d ret = _mm_cmpunord_sd(a, b); return validateDouble(ret, result[0], result[1]); } result_t test_mm_comieq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comieq_sd correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] == _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comieq_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; #endif } result_t test_mm_comige_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] >= _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comige_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; } result_t test_mm_comigt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] > _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comigt_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; } result_t test_mm_comile_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comile_sd correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] <= _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comile_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; #endif } result_t test_mm_comilt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comilt_sd correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] < _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comilt_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; #endif } result_t test_mm_comineq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: // The GCC does not implement _mm_comineq_sd correctly. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98612 for more // information. #if defined(__GNUC__) && !defined(__clang__) return TEST_UNIMPL; #else const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; int32_t _c = (_a[0] != _b[0]) ? 1 : 0; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); int32_t c = _mm_comineq_sd(a, b); ASSERT_RETURN(c == _c); return TEST_SUCCESS; #endif } result_t test_mm_cvtepi32_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; __m128i a = load_m128i(_a); double trun[2] = {(double) _a[0], (double) _a[1]}; __m128d ret = _mm_cvtepi32_pd(a); return validateDouble(ret, trun[0], trun[1]); } result_t test_mm_cvtepi32_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; __m128i a = load_m128i(_a); float trun[4]; for (uint32_t i = 0; i < 4; i++) { trun[i] = (float) _a[i]; } __m128 ret = _mm_cvtepi32_ps(a); return validateFloat(ret, trun[0], trun[1], trun[2], trun[3]); } OPTNONE result_t test_mm_cvtpd_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; int32_t d[2] = {}; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d[0] = (int32_t) (bankersRounding(_a[0])); d[1] = (int32_t) (bankersRounding(_a[1])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d[0] = (int32_t) (floor(_a[0])); d[1] = (int32_t) (floor(_a[1])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d[0] = (int32_t) (ceil(_a[0])); d[1] = (int32_t) (ceil(_a[1])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d[0] = (int32_t) (_a[0]); d[1] = (int32_t) (_a[1]); break; } #if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) /* Floats that cannot fit into 32-bits should instead return * indefinite integer value (INT32_MIN). This behaviour is * currently only emulated when using the round-to-integral * instructions. */ for (int i = 0; i < 2; i++) { if (_a[i] > (float) INT32_MAX || _a[i] < (float) INT32_MIN) d[i] = INT32_MIN; } #endif __m128d a = load_m128d(_a); __m128i ret = _mm_cvtpd_epi32(a); return validateInt32(ret, d[0], d[1], 0, 0); } OPTNONE result_t test_mm_cvtpd_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; int32_t d[2] = {}; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d[0] = (int32_t) (bankersRounding(_a[0])); d[1] = (int32_t) (bankersRounding(_a[1])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d[0] = (int32_t) (floor(_a[0])); d[1] = (int32_t) (floor(_a[1])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d[0] = (int32_t) (ceil(_a[0])); d[1] = (int32_t) (ceil(_a[1])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d[0] = (int32_t) (_a[0]); d[1] = (int32_t) (_a[1]); break; } __m128d a = load_m128d(_a); __m64 ret = _mm_cvtpd_pi32(a); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_cvtpd_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; float f0 = (float) _a[0]; float f1 = (float) _a[1]; const __m128d a = load_m128d(_a); __m128 r = _mm_cvtpd_ps(a); return validateFloat(r, f0, f1, 0, 0); } result_t test_mm_cvtpi32_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; __m64 a = load_m64(_a); double trun[2] = {(double) _a[0], (double) _a[1]}; __m128d ret = _mm_cvtpi32_pd(a); return validateDouble(ret, trun[0], trun[1]); } result_t test_mm_cvtps_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); int32_t d[4]; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); for (uint32_t i = 0; i < 4; i++) { d[i] = (int32_t) (bankersRounding(_a[i])); } break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); for (uint32_t i = 0; i < 4; i++) { d[i] = (int32_t) (floorf(_a[i])); } break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); for (uint32_t i = 0; i < 4; i++) { d[i] = (int32_t) (ceilf(_a[i])); } break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); for (uint32_t i = 0; i < 4; i++) { d[i] = (int32_t) (_a[i]); } break; } __m128i ret = _mm_cvtps_epi32(a); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_cvtps_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; double d0 = (double) _a[0]; double d1 = (double) _a[1]; const __m128 a = load_m128(_a); __m128d r = _mm_cvtps_pd(a); return validateDouble(r, d0, d1); } result_t test_mm_cvtsd_f64(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double d = _a[0]; const __m128d *a = (const __m128d *) _a; double r = _mm_cvtsd_f64(*a); return r == d ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtsd_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; int32_t d; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d = (int32_t) (bankersRounding(_a[0])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d = (int32_t) (floor(_a[0])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d = (int32_t) (ceil(_a[0])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d = (int32_t) (_a[0]); break; } __m128d a = load_m128d(_a); int32_t ret = _mm_cvtsd_si32(a); return ret == d ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtsd_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; int64_t d = 0; switch (iter & 0x3) { case 0: _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); d = (int64_t) (bankersRounding(_a[0])); break; case 1: _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); d = (int64_t) (floor(_a[0])); break; case 2: _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); d = (int64_t) (ceil(_a[0])); break; case 3: _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); d = (int64_t) (_a[0]); break; } __m128d a = load_m128d(_a); int64_t ret = _mm_cvtsd_si64(a); return ret == d ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtsd_si64x(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_cvtsd_si64(impl, iter); } result_t test_mm_cvtsd_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; float f0 = (float) _b[0]; float f1 = (float) _a[1]; float f2 = (float) _a[2]; float f3 = (float) _a[3]; __m128 a = load_m128(_a); __m128d b = load_m128d(_b); __m128 c = _mm_cvtsd_ss(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_cvtsi128_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; int32_t d = _a[0]; __m128i a = load_m128i(_a); int c = _mm_cvtsi128_si32(a); return d == c ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtsi128_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t d = _a[0]; __m128i a = load_m128i(_a); int64_t c = _mm_cvtsi128_si64(a); return d == c ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvtsi128_si64x(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_cvtsi128_si64(impl, iter); } result_t test_mm_cvtsi32_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const int32_t b = (const int32_t) impl.mTestInts[iter]; __m128d a = load_m128d(_a); __m128d c = _mm_cvtsi32_sd(a, b); return validateDouble(c, b, _a[1]); } result_t test_mm_cvtsi32_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; int32_t d = _a[0]; __m128i c = _mm_cvtsi32_si128(*_a); return validateInt32(c, d, 0, 0, 0); } result_t test_mm_cvtsi64_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const int64_t b = (const int64_t) impl.mTestInts[iter]; __m128d a = load_m128d(_a); __m128d c = _mm_cvtsi64_sd(a, b); return validateDouble(c, (double) b, _a[1]); } result_t test_mm_cvtsi64_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t d = _a[0]; __m128i c = _mm_cvtsi64_si128(*_a); return validateInt64(c, d, 0); } result_t test_mm_cvtsi64x_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_cvtsi64_sd(impl, iter); } result_t test_mm_cvtsi64x_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_cvtsi64_si128(impl, iter); } result_t test_mm_cvtss_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; double d0 = double(_b[0]); double d1 = _a[1]; __m128d a = load_m128d(_a); __m128 b = load_m128(_b); __m128d c = _mm_cvtss_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_cvttpd_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; __m128d a = load_m128d(_a); int32_t d0 = (int32_t) (_a[0]); int32_t d1 = (int32_t) (_a[1]); __m128i ret = _mm_cvttpd_epi32(a); return validateInt32(ret, d0, d1, 0, 0); } OPTNONE result_t test_mm_cvttpd_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; __m128d a = load_m128d(_a); int32_t d0 = (int32_t) (_a[0]); int32_t d1 = (int32_t) (_a[1]); __m64 ret = _mm_cvttpd_pi32(a); return validateInt32(ret, d0, d1); } result_t test_mm_cvttps_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; __m128 a = load_m128(_a); int32_t trun[4]; for (uint32_t i = 0; i < 4; i++) { trun[i] = (int32_t) _a[i]; } __m128i ret = _mm_cvttps_epi32(a); return VALIDATE_INT32_M128(ret, trun); } result_t test_mm_cvttsd_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_sd(_a); int32_t ret = _mm_cvttsd_si32(a); return ret == (int32_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvttsd_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_sd(_a); int64_t ret = _mm_cvttsd_si64(a); return ret == (int64_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_cvttsd_si64x(const SSE2NEONTestImpl &impl, uint32_t iter) { #if defined(__clang__) // The intrinsic _mm_cvttsd_si64x() does not exist in Clang return TEST_UNIMPL; #else const double *_a = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_sd(_a); int64_t ret = _mm_cvttsd_si64x(a); return ret == (int64_t) _a[0] ? TEST_SUCCESS : TEST_FAIL; #endif } result_t test_mm_div_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = 0.0, d1 = 0.0; if (_b[0] != 0.0) d0 = _a[0] / _b[0]; if (_b[1] != 0.0) d1 = _a[1] / _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_div_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_div_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] / _b[0]; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_div_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_extract_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { uint16_t *_a = (uint16_t *) impl.mTestIntPointer1; const int idx = iter & 0x7; __m128i a = load_m128i(_a); int c = 0; switch (idx) { case 0: c = _mm_extract_epi16(a, 0); break; case 1: c = _mm_extract_epi16(a, 1); break; case 2: c = _mm_extract_epi16(a, 2); break; case 3: c = _mm_extract_epi16(a, 3); break; case 4: c = _mm_extract_epi16(a, 4); break; case 5: c = _mm_extract_epi16(a, 5); break; case 6: c = _mm_extract_epi16(a, 6); break; case 7: c = _mm_extract_epi16(a, 7); break; } ASSERT_RETURN(c == *(_a + idx)); return TEST_SUCCESS; } result_t test_mm_insert_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t insert = (int16_t) *impl.mTestIntPointer2; #define TEST_IMPL(IDX) \ int16_t d##IDX[8]; \ for (int i = 0; i < 8; i++) { \ d##IDX[i] = _a[i]; \ } \ d##IDX[IDX] = insert; \ \ __m128i a##IDX = load_m128i(_a); \ __m128i b##IDX = _mm_insert_epi16(a##IDX, insert, IDX); \ CHECK_RESULT(VALIDATE_INT16_M128(b##IDX, d##IDX)) IMM_8_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_lfence(const SSE2NEONTestImpl &impl, uint32_t iter) { /* FIXME: Assume that memory barriers always function as intended. */ return TEST_SUCCESS; } result_t test_mm_load_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_pd(p); return validateDouble(a, p[0], p[1]); } result_t test_mm_load_pd1(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_pd1(p); return validateDouble(a, p[0], p[0]); } result_t test_mm_load_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_load_sd(p); return validateDouble(a, p[0], 0); } result_t test_mm_load_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *addr = impl.mTestIntPointer1; __m128i ret = _mm_load_si128((const __m128i *) addr); return VALIDATE_INT32_M128(ret, addr); } result_t test_mm_load1_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *addr = (const double *) impl.mTestFloatPointer1; __m128d ret = _mm_load1_pd(addr); return validateDouble(ret, addr[0], addr[0]); } result_t test_mm_loadh_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *addr = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d ret = _mm_loadh_pd(a, addr); return validateDouble(ret, _a[0], addr[0]); } result_t test_mm_loadl_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *addr = (const int64_t *) impl.mTestIntPointer1; __m128i ret = _mm_loadl_epi64((const __m128i *) addr); return validateInt64(ret, addr[0], 0); } result_t test_mm_loadl_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *addr = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d ret = _mm_loadl_pd(a, addr); return validateDouble(ret, addr[0], _a[1]); } result_t test_mm_loadr_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *addr = (const double *) impl.mTestFloatPointer1; __m128d ret = _mm_loadr_pd(addr); return validateDouble(ret, addr[1], addr[0]); } result_t test_mm_loadu_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; __m128d a = _mm_loadu_pd(p); return validateDouble(a, p[0], p[1]); } result_t test_mm_loadu_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const unaligned_int32_t *_a = (const unaligned_int32_t *) (impl.mTestUnalignedInts + 1); __m128i c = _mm_loadu_si128((const __m128i *) _a); return VALIDATE_INT32_M128(c, _a); } result_t test_mm_loadu_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { // The GCC version before 11 does not implement intrinsic function // _mm_loadu_si32. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95483 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ <= 10) return TEST_UNIMPL; #else const unaligned_int32_t *addr = (const unaligned_int32_t *) (impl.mTestUnalignedInts + 1); __m128i ret = _mm_loadu_si32((const void *) addr); return validateInt32(ret, addr[0], 0, 0, 0); #endif } result_t test_mm_madd_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int32_t d0 = (int32_t) _a[0] * _b[0]; int32_t d1 = (int32_t) _a[1] * _b[1]; int32_t d2 = (int32_t) _a[2] * _b[2]; int32_t d3 = (int32_t) _a[3] * _b[3]; int32_t d4 = (int32_t) _a[4] * _b[4]; int32_t d5 = (int32_t) _a[5] * _b[5]; int32_t d6 = (int32_t) _a[6] * _b[6]; int32_t d7 = (int32_t) _a[7] * _b[7]; int32_t e[4]; e[0] = d0 + d1; e[1] = d2 + d3; e[2] = d4 + d5; e[3] = d6 + d7; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_madd_epi16(a, b); return VALIDATE_INT32_M128(c, e); } result_t test_mm_maskmoveu_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_mask = (const uint8_t *) impl.mTestIntPointer2; char mem_addr[16]; __m128i a = load_m128i(_a); __m128i mask = load_m128i(_mask); _mm_maskmoveu_si128(a, mask, mem_addr); for (int i = 0; i < 16; i++) { if (_mask[i] >> 7) { ASSERT_RETURN(_a[i] == (uint8_t) mem_addr[i]); } } return TEST_SUCCESS; } result_t test_mm_max_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] > _b[0] ? _a[0] : _b[0]; d[1] = _a[1] > _b[1] ? _a[1] : _b[1]; d[2] = _a[2] > _b[2] ? _a[2] : _b[2]; d[3] = _a[3] > _b[3] ? _a[3] : _b[3]; d[4] = _a[4] > _b[4] ? _a[4] : _b[4]; d[5] = _a[5] > _b[5] ? _a[5] : _b[5]; d[6] = _a[6] > _b[6] ? _a[6] : _b[6]; d[7] = _a[7] > _b[7] ? _a[7] : _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epi16(a, b); return VALIDATE_INT16_M128(c, d); #endif } result_t test_mm_max_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; uint8_t d[16]; d[0] = ((uint8_t) _a[0] > (uint8_t) _b[0]) ? ((uint8_t) _a[0]) : ((uint8_t) _b[0]); d[1] = ((uint8_t) _a[1] > (uint8_t) _b[1]) ? ((uint8_t) _a[1]) : ((uint8_t) _b[1]); d[2] = ((uint8_t) _a[2] > (uint8_t) _b[2]) ? ((uint8_t) _a[2]) : ((uint8_t) _b[2]); d[3] = ((uint8_t) _a[3] > (uint8_t) _b[3]) ? ((uint8_t) _a[3]) : ((uint8_t) _b[3]); d[4] = ((uint8_t) _a[4] > (uint8_t) _b[4]) ? ((uint8_t) _a[4]) : ((uint8_t) _b[4]); d[5] = ((uint8_t) _a[5] > (uint8_t) _b[5]) ? ((uint8_t) _a[5]) : ((uint8_t) _b[5]); d[6] = ((uint8_t) _a[6] > (uint8_t) _b[6]) ? ((uint8_t) _a[6]) : ((uint8_t) _b[6]); d[7] = ((uint8_t) _a[7] > (uint8_t) _b[7]) ? ((uint8_t) _a[7]) : ((uint8_t) _b[7]); d[8] = ((uint8_t) _a[8] > (uint8_t) _b[8]) ? ((uint8_t) _a[8]) : ((uint8_t) _b[8]); d[9] = ((uint8_t) _a[9] > (uint8_t) _b[9]) ? ((uint8_t) _a[9]) : ((uint8_t) _b[9]); d[10] = ((uint8_t) _a[10] > (uint8_t) _b[10]) ? ((uint8_t) _a[10]) : ((uint8_t) _b[10]); d[11] = ((uint8_t) _a[11] > (uint8_t) _b[11]) ? ((uint8_t) _a[11]) : ((uint8_t) _b[11]); d[12] = ((uint8_t) _a[12] > (uint8_t) _b[12]) ? ((uint8_t) _a[12]) : ((uint8_t) _b[12]); d[13] = ((uint8_t) _a[13] > (uint8_t) _b[13]) ? ((uint8_t) _a[13]) : ((uint8_t) _b[13]); d[14] = ((uint8_t) _a[14] > (uint8_t) _b[14]) ? ((uint8_t) _a[14]) : ((uint8_t) _b[14]); d[15] = ((uint8_t) _a[15] > (uint8_t) _b[15]) ? ((uint8_t) _a[15]) : ((uint8_t) _b[15]); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epu8(a, b); return VALIDATE_INT8_M128(c, d); #endif } result_t test_mm_max_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double f0 = _a[0] > _b[0] ? _a[0] : _b[0]; double f1 = _a[1] > _b[1] ? _a[1] : _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_max_pd(a, b); return validateDouble(c, f0, f1); } result_t test_mm_max_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] > _b[0] ? _a[0] : _b[0]; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_max_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_mfence(const SSE2NEONTestImpl &impl, uint32_t iter) { /* FIXME: Assume that memory barriers always function as intended. */ return TEST_SUCCESS; } result_t test_mm_min_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] < _b[0] ? _a[0] : _b[0]; d[1] = _a[1] < _b[1] ? _a[1] : _b[1]; d[2] = _a[2] < _b[2] ? _a[2] : _b[2]; d[3] = _a[3] < _b[3] ? _a[3] : _b[3]; d[4] = _a[4] < _b[4] ? _a[4] : _b[4]; d[5] = _a[5] < _b[5] ? _a[5] : _b[5]; d[6] = _a[6] < _b[6] ? _a[6] : _b[6]; d[7] = _a[7] < _b[7] ? _a[7] : _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_min_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; uint8_t d[16]; d[0] = ((uint8_t) _a[0] < (uint8_t) _b[0]) ? (uint8_t) _a[0] : (uint8_t) _b[0]; d[1] = ((uint8_t) _a[1] < (uint8_t) _b[1]) ? (uint8_t) _a[1] : (uint8_t) _b[1]; d[2] = ((uint8_t) _a[2] < (uint8_t) _b[2]) ? (uint8_t) _a[2] : (uint8_t) _b[2]; d[3] = ((uint8_t) _a[3] < (uint8_t) _b[3]) ? (uint8_t) _a[3] : (uint8_t) _b[3]; d[4] = ((uint8_t) _a[4] < (uint8_t) _b[4]) ? (uint8_t) _a[4] : (uint8_t) _b[4]; d[5] = ((uint8_t) _a[5] < (uint8_t) _b[5]) ? (uint8_t) _a[5] : (uint8_t) _b[5]; d[6] = ((uint8_t) _a[6] < (uint8_t) _b[6]) ? (uint8_t) _a[6] : (uint8_t) _b[6]; d[7] = ((uint8_t) _a[7] < (uint8_t) _b[7]) ? (uint8_t) _a[7] : (uint8_t) _b[7]; d[8] = ((uint8_t) _a[8] < (uint8_t) _b[8]) ? (uint8_t) _a[8] : (uint8_t) _b[8]; d[9] = ((uint8_t) _a[9] < (uint8_t) _b[9]) ? (uint8_t) _a[9] : (uint8_t) _b[9]; d[10] = ((uint8_t) _a[10] < (uint8_t) _b[10]) ? (uint8_t) _a[10] : (uint8_t) _b[10]; d[11] = ((uint8_t) _a[11] < (uint8_t) _b[11]) ? (uint8_t) _a[11] : (uint8_t) _b[11]; d[12] = ((uint8_t) _a[12] < (uint8_t) _b[12]) ? (uint8_t) _a[12] : (uint8_t) _b[12]; d[13] = ((uint8_t) _a[13] < (uint8_t) _b[13]) ? (uint8_t) _a[13] : (uint8_t) _b[13]; d[14] = ((uint8_t) _a[14] < (uint8_t) _b[14]) ? (uint8_t) _a[14] : (uint8_t) _b[14]; d[15] = ((uint8_t) _a[15] < (uint8_t) _b[15]) ? (uint8_t) _a[15] : (uint8_t) _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epu8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_min_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double f0 = _a[0] < _b[0] ? _a[0] : _b[0]; double f1 = _a[1] < _b[1] ? _a[1] : _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_min_pd(a, b); return validateDouble(c, f0, f1); } result_t test_mm_min_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] < _b[0] ? _a[0] : _b[0]; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_min_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_move_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t d0 = _a[0]; int64_t d1 = 0; __m128i a = load_m128i(_a); __m128i c = _mm_move_epi64(a); return validateInt64(c, d0, d1); } result_t test_mm_move_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); double result[2]; result[0] = _b[0]; result[1] = _a[1]; __m128d ret = _mm_move_sd(a, b); return validateDouble(ret, result[0], result[1]); } result_t test_mm_movemask_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; __m128i a = load_m128i(_a); const uint8_t *ip = (const uint8_t *) _a; int ret = 0; uint32_t mask = 1; for (uint32_t i = 0; i < 16; i++) { if (ip[i] & 0x80) { ret |= mask; } mask = mask << 1; } int test = _mm_movemask_epi8(a); ASSERT_RETURN(test == ret); return TEST_SUCCESS; } result_t test_mm_movemask_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; int _c = 0; _c |= (int) (((*(const uint64_t *) _a) >> 63) & 0x1); _c |= (((*(const uint64_t *) (_a + 1)) >> 62) & 0x2); __m128d a = load_m128d(_a); int c = _mm_movemask_pd(a); ASSERT_RETURN(c == _c); return TEST_SUCCESS; } result_t test_mm_movepi64_pi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t d0 = _a[0]; __m128i a = load_m128i(_a); __m64 c = _mm_movepi64_pi64(a); return validateInt64(c, d0); } result_t test_mm_movpi64_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t d0 = _a[0]; __m64 a = load_m64(_a); __m128i c = _mm_movpi64_epi64(a); return validateInt64(c, d0, 0); } result_t test_mm_mul_epu32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; const uint32_t *_b = (const uint32_t *) impl.mTestIntPointer2; uint64_t dx = (uint64_t) (_a[0]) * (uint64_t) (_b[0]); uint64_t dy = (uint64_t) (_a[2]) * (uint64_t) (_b[2]); __m128i a = _mm_loadu_si128((const __m128i *) _a); __m128i b = _mm_loadu_si128((const __m128i *) _b); __m128i r = _mm_mul_epu32(a, b); return validateUInt64(r, dx, dy); } result_t test_mm_mul_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] * _b[0]; double d1 = _a[1] * _b[1]; __m128d a = _mm_load_pd(_a); __m128d b = _mm_load_pd(_b); __m128d c = _mm_mul_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_mul_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double dx = _a[0] * _b[0]; double dy = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_mul_sd(a, b); return validateDouble(c, dx, dy); } result_t test_mm_mul_su32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; const uint32_t *_b = (const uint32_t *) impl.mTestIntPointer2; uint64_t u = (uint64_t) (_a[0]) * (uint64_t) (_b[0]); __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 r = _mm_mul_su32(a, b); return validateUInt64(r, u); } result_t test_mm_mulhi_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; for (uint32_t i = 0; i < 8; i++) { int32_t m = (int32_t) _a[i] * (int32_t) _b[i]; d[i] = (int16_t) (m >> 16); } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_mulhi_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_mulhi_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[8]; for (uint32_t i = 0; i < 8; i++) { uint32_t m = (uint32_t) _a[i] * (uint32_t) _b[i]; d[i] = (uint16_t) (m >> 16); } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_mulhi_epu16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_mullo_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] * _b[0]; d[1] = _a[1] * _b[1]; d[2] = _a[2] * _b[2]; d[3] = _a[3] * _b[3]; d[4] = _a[4] * _b[4]; d[5] = _a[5] * _b[5]; d[6] = _a[6] * _b[6]; d[7] = _a[7] * _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_mullo_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_or_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestFloatPointer1; const int64_t *_b = (const int64_t *) impl.mTestFloatPointer2; double d0 = sse2neon_tool_recast_f64(_a[0] | _b[0]); double d1 = sse2neon_tool_recast_f64(_a[1] | _b[1]); __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_or_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_or_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128 fc = _mm_or_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b)); __m128i c = _mm_castps_si128(fc); // now for the assertion... const uint32_t *ia = (const uint32_t *) &a; const uint32_t *ib = (const uint32_t *) &b; uint32_t r[4]; r[0] = ia[0] | ib[0]; r[1] = ia[1] | ib[1]; r[2] = ia[2] | ib[2]; r[3] = ia[3] | ib[3]; __m128i ret = do_mm_set_epi32(r[3], r[2], r[1], r[0]); result_t res = VALIDATE_INT32_M128(c, r); if (res) { res = VALIDATE_INT32_M128(ret, r); } return res; } result_t test_mm_packs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { int8_t max = INT8_MAX; int8_t min = INT8_MIN; const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int8_t d[16]; for (int i = 0; i < 8; i++) { if (_a[i] > max) d[i] = max; else if (_a[i] < min) d[i] = min; else d[i] = (int8_t) _a[i]; } for (int i = 0; i < 8; i++) { if (_b[i] > max) d[i + 8] = max; else if (_b[i] < min) d[i + 8] = min; else d[i + 8] = (int8_t) _b[i]; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_packs_epi16(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_packs_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { int16_t max = INT16_MAX; int16_t min = INT16_MIN; const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int16_t d[8]; for (int i = 0; i < 4; i++) { if (_a[i] > max) d[i] = max; else if (_a[i] < min) d[i] = min; else d[i] = (int16_t) _a[i]; } for (int i = 0; i < 4; i++) { if (_b[i] > max) d[i + 4] = max; else if (_b[i] < min) d[i + 4] = min; else d[i + 4] = (int16_t) _b[i]; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_packs_epi32(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_packus_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { uint8_t max = UINT8_MAX; uint8_t min = 0; const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; uint8_t d[16]; for (int i = 0; i < 8; i++) { if (_a[i] > (int16_t) max) d[i] = max; else if (_a[i] < (int16_t) min) d[i] = min; else d[i] = (uint8_t) _a[i]; } for (int i = 0; i < 8; i++) { if (_b[i] > (int16_t) max) d[i + 8] = max; else if (_b[i] < (int16_t) min) d[i + 8] = min; else d[i + 8] = (uint8_t) _b[i]; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_packus_epi16(a, b); return VALIDATE_UINT8_M128(c, d); } result_t test_mm_pause(const SSE2NEONTestImpl &impl, uint32_t iter) { _mm_pause(); return TEST_SUCCESS; } result_t test_mm_sad_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; uint16_t d0 = 0; uint16_t d1 = 0; for (int i = 0; i < 8; i++) { d0 += (uint16_t) abs(_a[i] - _b[i]); } for (int i = 8; i < 16; i++) { d1 += (uint16_t) abs(_a[i] - _b[i]); } const __m128i a = load_m128i(_a); const __m128i b = load_m128i(_b); __m128i c = _mm_sad_epu8(a, b); return validateUInt16(c, d0, 0, 0, 0, d1, 0, 0, 0); } result_t test_mm_set_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; int16_t d[8]; d[0] = _a[0]; d[1] = _a[1]; d[2] = _a[2]; d[3] = _a[3]; d[4] = _a[4]; d[5] = _a[5]; d[6] = _a[6]; d[7] = _a[7]; __m128i c = _mm_set_epi16(d[7], d[6], d[5], d[4], d[3], d[2], d[1], d[0]); return VALIDATE_INT16_M128(c, d); } result_t test_mm_set_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { int32_t d[4]; d[3] = impl.mTestInts[iter]; d[2] = impl.mTestInts[iter + 1]; d[1] = impl.mTestInts[iter + 2]; d[0] = impl.mTestInts[iter + 3]; __m128i a = _mm_set_epi32(d[3], d[2], d[1], d[0]); return VALIDATE_INT32_M128(a, d); } result_t test_mm_set_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i ret = _mm_set_epi64(load_m64(&_a[1]), load_m64(&_a[0])); return validateInt64(ret, _a[0], _a[1]); } result_t test_mm_set_epi64x(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i ret = _mm_set_epi64x(_a[1], _a[0]); return validateInt64(ret, _a[0], _a[1]); } result_t test_mm_set_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; int8_t d[16]; d[0] = _a[0]; d[1] = _a[1]; d[2] = _a[2]; d[3] = _a[3]; d[4] = _a[4]; d[5] = _a[5]; d[6] = _a[6]; d[7] = _a[7]; d[8] = _a[8]; d[9] = _a[9]; d[10] = _a[10]; d[11] = _a[11]; d[12] = _a[12]; d[13] = _a[13]; d[14] = _a[14]; d[15] = _a[15]; __m128i c = _mm_set_epi8(d[15], d[14], d[13], d[12], d[11], d[10], d[9], d[8], d[7], d[6], d[5], d[4], d[3], d[2], d[1], d[0]); return VALIDATE_INT8_M128(c, d); } result_t test_mm_set_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; double x = p[0]; double y = p[1]; __m128d a = _mm_set_pd(x, y); return validateDouble(a, y, x); } result_t test_mm_set_pd1(const SSE2NEONTestImpl &impl, uint32_t iter) { const double _a = impl.mTestFloats[iter]; __m128d a = _mm_set_pd1(_a); return validateDouble(a, _a, _a); } result_t test_mm_set_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double f0 = _a[0]; double f1 = 0.0; __m128d a = _mm_set_sd(_a[0]); return validateDouble(a, f0, f1); } result_t test_mm_set1_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; int16_t d0 = _a[0]; __m128i c = _mm_set1_epi16(d0); return validateInt16(c, d0, d0, d0, d0, d0, d0, d0, d0); } result_t test_mm_set1_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { int32_t x = impl.mTestInts[iter]; __m128i a = _mm_set1_epi32(x); return validateInt32(a, x, x, x, x); } result_t test_mm_set1_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i ret = _mm_set1_epi64(load_m64(&_a[0])); return validateInt64(ret, _a[0], _a[0]); } result_t test_mm_set1_epi64x(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i ret = _mm_set1_epi64x(_a[0]); return validateInt64(ret, _a[0], _a[0]); } result_t test_mm_set1_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; int8_t d0 = _a[0]; __m128i c = _mm_set1_epi8(d0); return validateInt8(c, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0); } result_t test_mm_set1_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double d0 = _a[0]; __m128d c = _mm_set1_pd(d0); return validateDouble(c, d0, d0); } result_t test_mm_setr_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i c = _mm_setr_epi16(_a[0], _a[1], _a[2], _a[3], _a[4], _a[5], _a[6], _a[7]); return VALIDATE_INT16_M128(c, _a); } result_t test_mm_setr_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i c = _mm_setr_epi32(_a[0], _a[1], _a[2], _a[3]); return VALIDATE_INT32_M128(c, _a); } result_t test_mm_setr_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i c = _mm_setr_epi64(load_m64(&_a[0]), load_m64(&_a[1])); return validateInt64(c, _a[0], _a[1]); } result_t test_mm_setr_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; __m128i c = _mm_setr_epi8(_a[0], _a[1], _a[2], _a[3], _a[4], _a[5], _a[6], _a[7], _a[8], _a[9], _a[10], _a[11], _a[12], _a[13], _a[14], _a[15]); return VALIDATE_INT8_M128(c, _a); } result_t test_mm_setr_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; double x = p[0]; double y = p[1]; __m128d a = _mm_setr_pd(x, y); return validateDouble(a, x, y); } result_t test_mm_setzero_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128d a = _mm_setzero_pd(); return validateDouble(a, 0, 0); } result_t test_mm_setzero_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128i a = _mm_setzero_si128(); return validateInt32(a, 0, 0, 0, 0); } result_t test_mm_shuffle_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int32_t *_a = impl.mTestIntPointer1; __m128i a, c; int32_t _d[4]; #define TEST_IMPL(IDX) \ _d[0] = _a[((IDX) & 0x3)]; \ _d[1] = _a[((IDX >> 2) & 0x3)]; \ _d[2] = _a[((IDX >> 4) & 0x3)]; \ _d[3] = _a[((IDX >> 6) & 0x3)]; \ \ a = load_m128i(_a); \ c = _mm_shuffle_epi32(a, IDX); \ CHECK_RESULT(VALIDATE_INT32_M128(c, _d)) IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; #endif } result_t test_mm_shuffle_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a, b, c; #define TEST_IMPL(IDX) \ a = load_m128d(_a); \ b = load_m128d(_b); \ c = _mm_shuffle_pd(a, b, IDX); \ \ double d0##IDX = _a[IDX & 0x1]; \ double d1##IDX = _b[(IDX & 0x2) >> 1]; \ CHECK_RESULT(validateDouble(c, d0##IDX, d1##IDX)) IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_shufflehi_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i a, c; int16_t _d[8]; #define TEST_IMPL(IDX) \ _d[0] = _a[0]; \ _d[1] = _a[1]; \ _d[2] = _a[2]; \ _d[3] = _a[3]; \ _d[4] = (int16_t) (((const int64_t *) _a)[1] >> ((IDX & 0x3) * 16)); \ _d[5] = \ (int16_t) (((const int64_t *) _a)[1] >> (((IDX >> 2) & 0x3) * 16)); \ _d[6] = \ (int16_t) (((const int64_t *) _a)[1] >> (((IDX >> 4) & 0x3) * 16)); \ _d[7] = \ (int16_t) (((const int64_t *) _a)[1] >> (((IDX >> 6) & 0x3) * 16)); \ \ a = load_m128i(_a); \ c = _mm_shufflehi_epi16(a, IDX); \ \ CHECK_RESULT(VALIDATE_INT16_M128(c, _d)) IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; #endif } result_t test_mm_shufflelo_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { #if (__GNUC__ == 8) || (__GNUC__ == 9 && __GNUC_MINOR__ == 2) #error Using older gcc versions can lead to an operand mismatch error. This issue affects all versions prior to gcc 10. #else const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i a, c; int16_t _d[8]; #define TEST_IMPL(IDX) \ _d[0] = (int16_t) (((const int64_t *) _a)[0] >> ((IDX & 0x3) * 16)); \ _d[1] = \ (int16_t) (((const int64_t *) _a)[0] >> (((IDX >> 2) & 0x3) * 16)); \ _d[2] = \ (int16_t) (((const int64_t *) _a)[0] >> (((IDX >> 4) & 0x3) * 16)); \ _d[3] = \ (int16_t) (((const int64_t *) _a)[0] >> (((IDX >> 6) & 0x3) * 16)); \ _d[4] = _a[4]; \ _d[5] = _a[5]; \ _d[6] = _a[6]; \ _d[7] = _a[7]; \ \ a = load_m128i(_a); \ c = _mm_shufflelo_epi16(a, IDX); \ \ CHECK_RESULT(VALIDATE_INT16_M128(c, _d)) IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; #endif } result_t test_mm_sll_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i a, b, c; uint8_t idx; #define TEST_IMPL(IDX) \ uint16_t d##IDX[8]; \ idx = IDX; \ d##IDX[0] = (idx > 15) ? 0 : (uint16_t) (_a[0] << idx); \ d##IDX[1] = (idx > 15) ? 0 : (uint16_t) (_a[1] << idx); \ d##IDX[2] = (idx > 15) ? 0 : (uint16_t) (_a[2] << idx); \ d##IDX[3] = (idx > 15) ? 0 : (uint16_t) (_a[3] << idx); \ d##IDX[4] = (idx > 15) ? 0 : (uint16_t) (_a[4] << idx); \ d##IDX[5] = (idx > 15) ? 0 : (uint16_t) (_a[5] << idx); \ d##IDX[6] = (idx > 15) ? 0 : (uint16_t) (_a[6] << idx); \ d##IDX[7] = (idx > 15) ? 0 : (uint16_t) (_a[7] << idx); \ \ a = load_m128i(_a); \ b = _mm_set1_epi64x(IDX); \ c = _mm_sll_epi16(a, b); \ CHECK_RESULT(VALIDATE_INT16_M128(c, d##IDX)) IMM_64_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_sll_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i a, b, c; uint8_t idx; #define TEST_IMPL(IDX) \ uint32_t d##IDX[4]; \ idx = IDX; \ d##IDX[0] = (idx > 31) ? 0 : _a[0] << idx; \ d##IDX[1] = (idx > 31) ? 0 : _a[1] << idx; \ d##IDX[2] = (idx > 31) ? 0 : _a[2] << idx; \ d##IDX[3] = (idx > 31) ? 0 : _a[3] << idx; \ \ a = load_m128i(_a); \ b = _mm_set1_epi64x(IDX); \ c = _mm_sll_epi32(a, b); \ CHECK_RESULT(VALIDATE_INT32_M128(c, d##IDX)) IMM_64_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_sll_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; __m128i a, b, c; #define TEST_IMPL(IDX) \ uint64_t d0##IDX = (IDX & ~63) ? 0 : _a[0] << IDX; \ uint64_t d1##IDX = (IDX & ~63) ? 0 : _a[1] << IDX; \ \ a = load_m128i(_a); \ b = _mm_set1_epi64x(IDX); \ c = _mm_sll_epi64(a, b); \ \ CHECK_RESULT(validateInt64(c, d0##IDX, d1##IDX)) IMM_64_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_slli_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i a, c; uint8_t idx; #define TEST_IMPL(IDX) \ int16_t d##IDX[8]; \ idx = IDX; \ d##IDX[0] = (idx > 15) ? 0 : _a[0] << idx; \ d##IDX[1] = (idx > 15) ? 0 : _a[1] << idx; \ d##IDX[2] = (idx > 15) ? 0 : _a[2] << idx; \ d##IDX[3] = (idx > 15) ? 0 : _a[3] << idx; \ d##IDX[4] = (idx > 15) ? 0 : _a[4] << idx; \ d##IDX[5] = (idx > 15) ? 0 : _a[5] << idx; \ d##IDX[6] = (idx > 15) ? 0 : _a[6] << idx; \ d##IDX[7] = (idx > 15) ? 0 : _a[7] << idx; \ \ a = load_m128i(_a); \ c = _mm_slli_epi16(a, IDX); \ CHECK_RESULT(VALIDATE_INT16_M128(c, d##IDX)) IMM_64_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_slli_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; #if defined(__clang__) // Clang compiler does not allow the second argument of _mm_slli_epi32() to // be greater than 31. const int count = (int) (iter % 33 - 1); // range: -1 ~ 31 #else const int count = (int) (iter % 34 - 1); // range: -1 ~ 32 #endif int32_t d[4]; d[0] = (count & ~31) ? 0 : _a[0] << count; d[1] = (count & ~31) ? 0 : _a[1] << count; d[2] = (count & ~31) ? 0 : _a[2] << count; d[3] = (count & ~31) ? 0 : _a[3] << count; __m128i a = load_m128i(_a); __m128i c = _mm_slli_epi32(a, count); return VALIDATE_INT32_M128(c, d); } result_t test_mm_slli_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; #if defined(__clang__) // Clang compiler does not allow the second argument of "_mm_slli_epi64()" // to be greater than 63. const int count = (int) (iter % 65 - 1); // range: -1 ~ 63 #else const int count = (int) (iter % 66 - 1); // range: -1 ~ 64 #endif int64_t d0 = (count & ~63) ? 0 : _a[0] << count; int64_t d1 = (count & ~63) ? 0 : _a[1] << count; __m128i a = load_m128i(_a); __m128i c = _mm_slli_epi64(a, count); return validateInt64(c, d0, d1); } result_t test_mm_slli_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; int8_t d[16]; int count = (iter % 5) << 2; for (int i = 0; i < 16; i++) { if (i < count) d[i] = 0; else d[i] = ((const int8_t *) _a)[i - count]; } __m128i a = load_m128i(_a); __m128i ret = _mm_setzero_si128(); switch (iter % 5) { case 0: ret = _mm_slli_si128(a, 0); break; case 1: ret = _mm_slli_si128(a, 4); break; case 2: ret = _mm_slli_si128(a, 8); break; case 3: ret = _mm_slli_si128(a, 12); break; case 4: ret = _mm_slli_si128(a, 16); break; } return VALIDATE_INT8_M128(ret, d); } result_t test_mm_sqrt_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double f0 = sqrt(_a[0]); double f1 = sqrt(_a[1]); __m128d a = load_m128d(_a); __m128d c = _mm_sqrt_pd(a); return validateFloatError(c, f0, f1, 1.0e-15); } result_t test_mm_sqrt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double f0 = sqrt(_b[0]); double f1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_sqrt_sd(a, b); return validateFloatError(c, f0, f1, 1.0e-15); } result_t test_mm_sra_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int64_t count = (int64_t) (iter % 18 - 1); // range: -1 ~ 16 int16_t d[8]; d[0] = (count & ~15) ? (_a[0] < 0 ? ~UINT16_C(0) : 0) : (_a[0] >> count); d[1] = (count & ~15) ? (_a[1] < 0 ? ~UINT16_C(0) : 0) : (_a[1] >> count); d[2] = (count & ~15) ? (_a[2] < 0 ? ~UINT16_C(0) : 0) : (_a[2] >> count); d[3] = (count & ~15) ? (_a[3] < 0 ? ~UINT16_C(0) : 0) : (_a[3] >> count); d[4] = (count & ~15) ? (_a[4] < 0 ? ~UINT16_C(0) : 0) : (_a[4] >> count); d[5] = (count & ~15) ? (_a[5] < 0 ? ~UINT16_C(0) : 0) : (_a[5] >> count); d[6] = (count & ~15) ? (_a[6] < 0 ? ~UINT16_C(0) : 0) : (_a[6] >> count); d[7] = (count & ~15) ? (_a[7] < 0 ? ~UINT16_C(0) : 0) : (_a[7] >> count); __m128i a = _mm_load_si128((const __m128i *) _a); __m128i b = _mm_set1_epi64x(count); __m128i c = _mm_sra_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_sra_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int64_t count = (int64_t) (iter % 34 - 1); // range: -1 ~ 32 int32_t d[4]; d[0] = (count & ~31) ? (_a[0] < 0 ? ~UINT32_C(0) : 0) : _a[0] >> count; d[1] = (count & ~31) ? (_a[1] < 0 ? ~UINT32_C(0) : 0) : _a[1] >> count; d[2] = (count & ~31) ? (_a[2] < 0 ? ~UINT32_C(0) : 0) : _a[2] >> count; d[3] = (count & ~31) ? (_a[3] < 0 ? ~UINT32_C(0) : 0) : _a[3] >> count; __m128i a = _mm_load_si128((const __m128i *) _a); __m128i b = _mm_set1_epi64x(count); __m128i c = _mm_sra_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_srai_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int32_t b = (int32_t) (iter % 18 - 1); // range: -1 ~ 16 int16_t d[8]; int count = (b & ~15) ? 15 : b; for (int i = 0; i < 8; i++) { d[i] = _a[i] >> count; } __m128i a = _mm_load_si128((const __m128i *) _a); __m128i c = _mm_srai_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_srai_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t b = (int32_t) (iter % 34 - 1); // range: -1 ~ 32 int32_t d[4]; int count = (b & ~31) ? 31 : b; for (int i = 0; i < 4; i++) { d[i] = _a[i] >> count; } __m128i a = _mm_load_si128((const __m128i *) _a); __m128i c = _mm_srai_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_srl_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int64_t count = (int64_t) (iter % 18 - 1); // range: -1 ~ 16 uint16_t d[8]; d[0] = (count & ~15) ? 0 : (uint16_t) (_a[0]) >> count; d[1] = (count & ~15) ? 0 : (uint16_t) (_a[1]) >> count; d[2] = (count & ~15) ? 0 : (uint16_t) (_a[2]) >> count; d[3] = (count & ~15) ? 0 : (uint16_t) (_a[3]) >> count; d[4] = (count & ~15) ? 0 : (uint16_t) (_a[4]) >> count; d[5] = (count & ~15) ? 0 : (uint16_t) (_a[5]) >> count; d[6] = (count & ~15) ? 0 : (uint16_t) (_a[6]) >> count; d[7] = (count & ~15) ? 0 : (uint16_t) (_a[7]) >> count; __m128i a = load_m128i(_a); __m128i b = _mm_set1_epi64x(count); __m128i c = _mm_srl_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_srl_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int64_t count = (int64_t) (iter % 34 - 1); // range: -1 ~ 32 uint32_t d[4]; d[0] = (count & ~31) ? 0 : (uint32_t) (_a[0]) >> count; d[1] = (count & ~31) ? 0 : (uint32_t) (_a[1]) >> count; d[2] = (count & ~31) ? 0 : (uint32_t) (_a[2]) >> count; d[3] = (count & ~31) ? 0 : (uint32_t) (_a[3]) >> count; __m128i a = load_m128i(_a); __m128i b = _mm_set1_epi64x(count); __m128i c = _mm_srl_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_srl_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t count = (int64_t) (iter % 66 - 1); // range: -1 ~ 64 uint64_t d0 = (count & ~63) ? 0 : (uint64_t) (_a[0]) >> count; uint64_t d1 = (count & ~63) ? 0 : (uint64_t) (_a[1]) >> count; __m128i a = load_m128i(_a); __m128i b = _mm_set1_epi64x(count); __m128i c = _mm_srl_epi64(a, b); return validateInt64(c, d0, d1); } result_t test_mm_srli_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const int count = (int) (iter % 18 - 1); // range: -1 ~ 16 int16_t d[8]; d[0] = count & (~15) ? 0 : (int16_t) (_a[0] >> count); d[1] = count & (~15) ? 0 : (int16_t) (_a[1] >> count); d[2] = count & (~15) ? 0 : (int16_t) (_a[2] >> count); d[3] = count & (~15) ? 0 : (int16_t) (_a[3] >> count); d[4] = count & (~15) ? 0 : (int16_t) (_a[4] >> count); d[5] = count & (~15) ? 0 : (int16_t) (_a[5] >> count); d[6] = count & (~15) ? 0 : (int16_t) (_a[6] >> count); d[7] = count & (~15) ? 0 : (int16_t) (_a[7] >> count); __m128i a = load_m128i(_a); __m128i c = _mm_srli_epi16(a, count); return VALIDATE_INT16_M128(c, d); } result_t test_mm_srli_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; const int count = (int) (iter % 34 - 1); // range: -1 ~ 32 int32_t d[4]; d[0] = count & (~31) ? 0 : (int32_t) (_a[0] >> count); d[1] = count & (~31) ? 0 : (int32_t) (_a[1] >> count); d[2] = count & (~31) ? 0 : (int32_t) (_a[2] >> count); d[3] = count & (~31) ? 0 : (int32_t) (_a[3] >> count); __m128i a = load_m128i(_a); __m128i c = _mm_srli_epi32(a, count); return VALIDATE_INT32_M128(c, d); } result_t test_mm_srli_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int count = (int) (iter % 66 - 1); // range: -1 ~ 64 int64_t d0 = count & (~63) ? 0 : (uint64_t) (_a[0]) >> count; int64_t d1 = count & (~63) ? 0 : (uint64_t) (_a[1]) >> count; __m128i a = load_m128i(_a); __m128i c = _mm_srli_epi64(a, count); return validateInt64(c, d0, d1); } result_t test_mm_srli_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int count = (iter % 5) << 2; int8_t d[16]; for (int i = 0; i < 16; i++) { if (i >= (16 - count)) d[i] = 0; else d[i] = _a[i + count]; } __m128i a = load_m128i(_a); __m128i ret = _mm_setzero_si128(); switch (iter % 5) { case 0: ret = _mm_srli_si128(a, 0); break; case 1: ret = _mm_srli_si128(a, 4); break; case 2: ret = _mm_srli_si128(a, 8); break; case 3: ret = _mm_srli_si128(a, 12); break; case 4: ret = _mm_srli_si128(a, 16); break; } return VALIDATE_INT8_M128(ret, d); } result_t test_mm_store_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double x = impl.mTestFloats[iter + 4]; double y = impl.mTestFloats[iter + 6]; __m128d a = _mm_set_pd(x, y); _mm_store_pd(p, a); ASSERT_RETURN(p[0] == y); ASSERT_RETURN(p[1] == x); return TEST_SUCCESS; } result_t test_mm_store_pd1(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double _a[2] = {(double) impl.mTestFloats[iter], (double) impl.mTestFloats[iter + 1]}; __m128d a = load_m128d(_a); _mm_store_pd1(p, a); ASSERT_RETURN(p[0] == impl.mTestFloats[iter]); ASSERT_RETURN(p[1] == impl.mTestFloats[iter]); return TEST_SUCCESS; } result_t test_mm_store_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double _a[2] = {(double) impl.mTestFloats[iter], (double) impl.mTestFloats[iter + 1]}; __m128d a = load_m128d(_a); _mm_store_sd(p, a); ASSERT_RETURN(p[0] == impl.mTestFloats[iter]); return TEST_SUCCESS; } result_t test_mm_store_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; alignas(16) int32_t p[4]; __m128i a = load_m128i(_a); _mm_store_si128((__m128i *) p, a); return VALIDATE_INT32_M128(a, p); } result_t test_mm_store1_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_store_pd1(impl, iter); } result_t test_mm_storeh_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double mem; __m128d a = load_m128d(p); _mm_storeh_pd(&mem, a); ASSERT_RETURN(mem == p[1]); return TEST_SUCCESS; } result_t test_mm_storel_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { int64_t *p = (int64_t *) impl.mTestIntPointer1; __m128i mem; __m128i a = load_m128i(p); _mm_storel_epi64(&mem, a); ASSERT_RETURN(((SIMDVec *) &mem)->m128_u64[0] == (uint64_t) p[0]); return TEST_SUCCESS; } result_t test_mm_storel_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double mem; __m128d a = load_m128d(p); _mm_storel_pd(&mem, a); ASSERT_RETURN(mem == p[0]); return TEST_SUCCESS; } result_t test_mm_storer_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double mem[2]; __m128d a = load_m128d(p); _mm_storer_pd(mem, a); __m128d res = load_m128d(mem); return validateDouble(res, p[1], p[0]); } result_t test_mm_storeu_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { double *p = (double *) impl.mTestFloatPointer1; double x = impl.mTestFloats[iter + 4]; double y = impl.mTestFloats[iter + 6]; __m128d a = _mm_set_pd(x, y); _mm_storeu_pd(p, a); ASSERT_RETURN(p[0] == y); ASSERT_RETURN(p[1] == x); return TEST_SUCCESS; } result_t test_mm_storeu_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i b; __m128i a = load_m128i(_a); _mm_storeu_si128(&b, a); int32_t *_b = (int32_t *) &b; return VALIDATE_INT32_M128(a, _b); } result_t test_mm_storeu_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { // The GCC version before 11 does not implement intrinsic function // _mm_storeu_si32. Check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95483 // for more information. #if (defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ <= 10) return TEST_UNIMPL; #else const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i b = _mm_setzero_si128(); __m128i a = load_m128i(_a); _mm_storeu_si32(&b, a); int32_t *_b = (int32_t *) &b; return validateInt32(b, _a[0], _b[1], _b[2], _b[3]); #endif } result_t test_mm_stream_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double p[2]; __m128d a = load_m128d(_a); _mm_stream_pd(p, a); return validateDouble(a, p[0], p[1]); } result_t test_mm_stream_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; alignas(16) int32_t p[4]; __m128i a = load_m128i(_a); _mm_stream_si128((__m128i *) p, a); return VALIDATE_INT32_M128(a, p); } result_t test_mm_stream_si32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t a = (const int32_t) impl.mTestInts[iter]; int32_t p; _mm_stream_si32(&p, a); ASSERT_RETURN(a == p) return TEST_SUCCESS; } result_t test_mm_stream_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t a = (const int64_t) impl.mTestInts[iter]; __int64 p[1]; _mm_stream_si64(p, a); ASSERT_RETURN(p[0] == a); return TEST_SUCCESS; } result_t test_mm_sub_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] - _b[0]; d[1] = _a[1] - _b[1]; d[2] = _a[2] - _b[2]; d[3] = _a[3] - _b[3]; d[4] = _a[4] - _b[4]; d[5] = _a[5] - _b[5]; d[6] = _a[6] - _b[6]; d[7] = _a[7] - _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sub_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_sub_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0] - _b[0]; d[1] = _a[1] - _b[1]; d[2] = _a[2] - _b[2]; d[3] = _a[3] - _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sub_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_sub_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (int64_t *) impl.mTestIntPointer1; const int64_t *_b = (int64_t *) impl.mTestIntPointer2; int64_t d0 = _a[0] - _b[0]; int64_t d1 = _a[1] - _b[1]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sub_epi64(a, b); return validateInt64(c, d0, d1); } result_t test_mm_sub_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[0] - _b[0]; d[1] = _a[1] - _b[1]; d[2] = _a[2] - _b[2]; d[3] = _a[3] - _b[3]; d[4] = _a[4] - _b[4]; d[5] = _a[5] - _b[5]; d[6] = _a[6] - _b[6]; d[7] = _a[7] - _b[7]; d[8] = _a[8] - _b[8]; d[9] = _a[9] - _b[9]; d[10] = _a[10] - _b[10]; d[11] = _a[11] - _b[11]; d[12] = _a[12] - _b[12]; d[13] = _a[13] - _b[13]; d[14] = _a[14] - _b[14]; d[15] = _a[15] - _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sub_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_sub_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] - _b[0]; double d1 = _a[1] - _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_sub_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_sub_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] - _b[0]; double d1 = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_sub_sd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_sub_si64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t d = _a[0] - _b[0]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_sub_si64(a, b); return validateInt64(c, d); } result_t test_mm_subs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; for (int i = 0; i < 8; i++) { d[i] = saturate_i16((int32_t) _a[i] - (int32_t) _b[i]); } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_subs_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_subs_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { int16_t max = 127; int16_t min = -128; const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; for (int i = 0; i < 16; i++) { int16_t res = (int16_t) _a[i] - (int16_t) _b[i]; if (res > max) d[i] = (int8_t) max; else if (res < min) d[i] = (int8_t) min; else d[i] = (int8_t) res; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_subs_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_subs_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = (uint16_t) _a[0] - (uint16_t) _b[0]; if (d[0] > (uint16_t) _a[0]) d[0] = 0; d[1] = (uint16_t) _a[1] - (uint16_t) _b[1]; if (d[1] > (uint16_t) _a[1]) d[1] = 0; d[2] = (uint16_t) _a[2] - (uint16_t) _b[2]; if (d[2] > (uint16_t) _a[2]) d[2] = 0; d[3] = (uint16_t) _a[3] - (uint16_t) _b[3]; if (d[3] > (uint16_t) _a[3]) d[3] = 0; d[4] = (uint16_t) _a[4] - (uint16_t) _b[4]; if (d[4] > (uint16_t) _a[4]) d[4] = 0; d[5] = (uint16_t) _a[5] - (uint16_t) _b[5]; if (d[5] > (uint16_t) _a[5]) d[5] = 0; d[6] = (uint16_t) _a[6] - (uint16_t) _b[6]; if (d[6] > (uint16_t) _a[6]) d[6] = 0; d[7] = (uint16_t) _a[7] - (uint16_t) _b[7]; if (d[7] > (uint16_t) _a[7]) d[7] = 0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_subs_epu16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_subs_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; uint8_t d[16]; d[0] = (uint8_t) _a[0] - (uint8_t) _b[0]; if (d[0] > (uint8_t) _a[0]) d[0] = 0; d[1] = (uint8_t) _a[1] - (uint8_t) _b[1]; if (d[1] > (uint8_t) _a[1]) d[1] = 0; d[2] = (uint8_t) _a[2] - (uint8_t) _b[2]; if (d[2] > (uint8_t) _a[2]) d[2] = 0; d[3] = (uint8_t) _a[3] - (uint8_t) _b[3]; if (d[3] > (uint8_t) _a[3]) d[3] = 0; d[4] = (uint8_t) _a[4] - (uint8_t) _b[4]; if (d[4] > (uint8_t) _a[4]) d[4] = 0; d[5] = (uint8_t) _a[5] - (uint8_t) _b[5]; if (d[5] > (uint8_t) _a[5]) d[5] = 0; d[6] = (uint8_t) _a[6] - (uint8_t) _b[6]; if (d[6] > (uint8_t) _a[6]) d[6] = 0; d[7] = (uint8_t) _a[7] - (uint8_t) _b[7]; if (d[7] > (uint8_t) _a[7]) d[7] = 0; d[8] = (uint8_t) _a[8] - (uint8_t) _b[8]; if (d[8] > (uint8_t) _a[8]) d[8] = 0; d[9] = (uint8_t) _a[9] - (uint8_t) _b[9]; if (d[9] > (uint8_t) _a[9]) d[9] = 0; d[10] = (uint8_t) _a[10] - (uint8_t) _b[10]; if (d[10] > (uint8_t) _a[10]) d[10] = 0; d[11] = (uint8_t) _a[11] - (uint8_t) _b[11]; if (d[11] > (uint8_t) _a[11]) d[11] = 0; d[12] = (uint8_t) _a[12] - (uint8_t) _b[12]; if (d[12] > (uint8_t) _a[12]) d[12] = 0; d[13] = (uint8_t) _a[13] - (uint8_t) _b[13]; if (d[13] > (uint8_t) _a[13]) d[13] = 0; d[14] = (uint8_t) _a[14] - (uint8_t) _b[14]; if (d[14] > (uint8_t) _a[14]) d[14] = 0; d[15] = (uint8_t) _a[15] - (uint8_t) _b[15]; if (d[15] > (uint8_t) _a[15]) d[15] = 0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_subs_epu8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_ucomieq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comieq_sd(impl, iter); } result_t test_mm_ucomige_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comige_sd(impl, iter); } result_t test_mm_ucomigt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comigt_sd(impl, iter); } result_t test_mm_ucomile_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comile_sd(impl, iter); } result_t test_mm_ucomilt_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comilt_sd(impl, iter); } result_t test_mm_ucomineq_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_comineq_sd(impl, iter); } result_t test_mm_undefined_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128d a = _mm_undefined_pd(); a = _mm_xor_pd(a, a); return validateDouble(a, 0, 0); } result_t test_mm_undefined_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { __m128i a = _mm_undefined_si128(); a = _mm_xor_si128(a, a); return validateInt64(a, 0, 0); } result_t test_mm_unpackhi_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[4]; d[1] = _b[4]; d[2] = _a[5]; d[3] = _b[5]; d[4] = _a[6]; d[5] = _b[6]; d[6] = _a[7]; d[7] = _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpackhi_epi16(a, b); return VALIDATE_INT16_M128(ret, d); } result_t test_mm_unpackhi_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[2]; d[1] = _b[2]; d[2] = _a[3]; d[3] = _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpackhi_epi32(a, b); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_unpackhi_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t i0 = _a[1]; int64_t i1 = _b[1]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpackhi_epi64(a, b); return validateInt64(ret, i0, i1); } result_t test_mm_unpackhi_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[8]; d[1] = _b[8]; d[2] = _a[9]; d[3] = _b[9]; d[4] = _a[10]; d[5] = _b[10]; d[6] = _a[11]; d[7] = _b[11]; d[8] = _a[12]; d[9] = _b[12]; d[10] = _a[13]; d[11] = _b[13]; d[12] = _a[14]; d[13] = _b[14]; d[14] = _a[15]; d[15] = _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpackhi_epi8(a, b); return VALIDATE_INT8_M128(ret, d); } result_t test_mm_unpackhi_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d ret = _mm_unpackhi_pd(a, b); return validateDouble(ret, _a[1], _b[1]); } result_t test_mm_unpacklo_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0]; d[1] = _b[0]; d[2] = _a[1]; d[3] = _b[1]; d[4] = _a[2]; d[5] = _b[2]; d[6] = _a[3]; d[7] = _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpacklo_epi16(a, b); return VALIDATE_INT16_M128(ret, d); } result_t test_mm_unpacklo_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0]; d[1] = _b[0]; d[2] = _a[1]; d[3] = _b[1]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpacklo_epi32(a, b); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_unpacklo_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t i0 = _a[0]; int64_t i1 = _b[0]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpacklo_epi64(a, b); return validateInt64(ret, i0, i1); } result_t test_mm_unpacklo_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[0]; d[1] = _b[0]; d[2] = _a[1]; d[3] = _b[1]; d[4] = _a[2]; d[5] = _b[2]; d[6] = _a[3]; d[7] = _b[3]; d[8] = _a[4]; d[9] = _b[4]; d[10] = _a[5]; d[11] = _b[5]; d[12] = _a[6]; d[13] = _b[6]; d[14] = _a[7]; d[15] = _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_unpacklo_epi8(a, b); return VALIDATE_INT8_M128(ret, d); } result_t test_mm_unpacklo_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d ret = _mm_unpacklo_pd(a, b); return validateDouble(ret, _a[0], _b[0]); } result_t test_mm_xor_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestFloatPointer1; const int64_t *_b = (const int64_t *) impl.mTestFloatPointer2; double d0 = sse2neon_tool_recast_f64(_a[0] ^ _b[0]); double d1 = sse2neon_tool_recast_f64(_a[1] ^ _b[1]); __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_xor_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_xor_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t d0 = _a[0] ^ _b[0]; int64_t d1 = _a[1] ^ _b[1]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_xor_si128(a, b); return validateInt64(c, d0, d1); } /* SSE3 */ result_t test_mm_addsub_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double d0 = _a[0] - _b[0]; double d1 = _a[1] + _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_addsub_pd(a, b); return validateDouble(c, d0, d1); } result_t test_mm_addsub_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: The rounding mode would affect the testing result on ARM platform. _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _a[0] - _b[0]; float f1 = _a[1] + _b[1]; float f2 = _a[2] - _b[2]; float f3 = _a[3] + _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_addsub_ps(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_hadd_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double f0 = _a[0] + _a[1]; double f1 = _b[0] + _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_hadd_pd(a, b); return validateDouble(c, f0, f1); } result_t test_mm_hadd_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: The rounding mode would affect the testing result on ARM platform. _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _a[0] + _a[1]; float f1 = _a[2] + _a[3]; float f2 = _b[0] + _b[1]; float f3 = _b[2] + _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_hadd_ps(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_hsub_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double f0 = _a[0] - _a[1]; double f1 = _b[0] - _b[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d c = _mm_hsub_pd(a, b); return validateDouble(c, f0, f1); } result_t test_mm_hsub_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { // FIXME: The rounding mode would affect the testing result on ARM platform. _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f0 = _a[0] - _a[1]; float f1 = _a[2] - _a[3]; float f2 = _b[0] - _b[1]; float f3 = _b[2] - _b[3]; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_hsub_ps(a, b); return validateFloat(c, f0, f1, f2, f3); } result_t test_mm_lddqu_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_loadu_si128(impl, iter); } result_t test_mm_loaddup_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *addr = (const double *) impl.mTestFloatPointer1; __m128d ret = _mm_loaddup_pd(addr); return validateDouble(ret, addr[0], addr[0]); } result_t test_mm_movedup_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *p = (const double *) impl.mTestFloatPointer1; __m128d a = load_m128d(p); __m128d b = _mm_movedup_pd(a); return validateDouble(b, p[0], p[0]); } result_t test_mm_movehdup_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; __m128 a = load_m128(p); return validateFloat(_mm_movehdup_ps(a), p[1], p[1], p[3], p[3]); } result_t test_mm_moveldup_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *p = impl.mTestFloatPointer1; __m128 a = load_m128(p); return validateFloat(_mm_moveldup_ps(a), p[0], p[0], p[2], p[2]); } /* SSSE3 */ result_t test_mm_abs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); __m128i c = _mm_abs_epi16(a); uint16_t d[8]; d[0] = (_a[0] < 0) ? -_a[0] : _a[0]; d[1] = (_a[1] < 0) ? -_a[1] : _a[1]; d[2] = (_a[2] < 0) ? -_a[2] : _a[2]; d[3] = (_a[3] < 0) ? -_a[3] : _a[3]; d[4] = (_a[4] < 0) ? -_a[4] : _a[4]; d[5] = (_a[5] < 0) ? -_a[5] : _a[5]; d[6] = (_a[6] < 0) ? -_a[6] : _a[6]; d[7] = (_a[7] < 0) ? -_a[7] : _a[7]; return VALIDATE_UINT16_M128(c, d); } result_t test_mm_abs_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); __m128i c = _mm_abs_epi32(a); uint32_t d[4]; d[0] = (_a[0] < 0) ? -_a[0] : _a[0]; d[1] = (_a[1] < 0) ? -_a[1] : _a[1]; d[2] = (_a[2] < 0) ? -_a[2] : _a[2]; d[3] = (_a[3] < 0) ? -_a[3] : _a[3]; return VALIDATE_UINT32_M128(c, d); } result_t test_mm_abs_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); __m128i c = _mm_abs_epi8(a); uint8_t d[16]; for (int i = 0; i < 16; i++) { d[i] = (_a[i] < 0) ? -_a[i] : _a[i]; } return VALIDATE_UINT8_M128(c, d); } result_t test_mm_abs_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; __m64 a = load_m64(_a); __m64 c = _mm_abs_pi16(a); uint16_t d[4]; d[0] = (_a[0] < 0) ? -_a[0] : _a[0]; d[1] = (_a[1] < 0) ? -_a[1] : _a[1]; d[2] = (_a[2] < 0) ? -_a[2] : _a[2]; d[3] = (_a[3] < 0) ? -_a[3] : _a[3]; return VALIDATE_UINT16_M64(c, d); } result_t test_mm_abs_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m64 a = load_m64(_a); __m64 c = _mm_abs_pi32(a); uint32_t d[2]; d[0] = (_a[0] < 0) ? -_a[0] : _a[0]; d[1] = (_a[1] < 0) ? -_a[1] : _a[1]; return VALIDATE_UINT32_M64(c, d); } result_t test_mm_abs_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; __m64 a = load_m64(_a); __m64 c = _mm_abs_pi8(a); uint8_t d[8]; d[0] = (_a[0] < 0) ? -_a[0] : _a[0]; d[1] = (_a[1] < 0) ? -_a[1] : _a[1]; d[2] = (_a[2] < 0) ? -_a[2] : _a[2]; d[3] = (_a[3] < 0) ? -_a[3] : _a[3]; d[4] = (_a[4] < 0) ? -_a[4] : _a[4]; d[5] = (_a[5] < 0) ? -_a[5] : _a[5]; d[6] = (_a[6] < 0) ? -_a[6] : _a[6]; d[7] = (_a[7] < 0) ? -_a[7] : _a[7]; return VALIDATE_UINT8_M64(c, d); } result_t test_mm_alignr_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { #if defined(__clang__) return TEST_UNIMPL; #else const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; unsigned int shift = (iter % 5) << 3; uint8_t d[32]; if (shift >= 32) { memset((void *) d, 0, sizeof(d)); } else { memcpy((void *) d, (const void *) _b, 16); memcpy((void *) (d + 16), (const void *) _a, 16); // shifting for (size_t x = 0; x < sizeof(d); x++) { if (x + shift >= sizeof(d)) d[x] = 0; else d[x] = d[x + shift]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_setzero_si128(); switch (iter % 5) { case 0: ret = _mm_alignr_epi8(a, b, 0); break; case 1: ret = _mm_alignr_epi8(a, b, 8); break; case 2: ret = _mm_alignr_epi8(a, b, 16); break; case 3: ret = _mm_alignr_epi8(a, b, 24); break; case 4: ret = _mm_alignr_epi8(a, b, 32); break; } return VALIDATE_UINT8_M128(ret, d); #endif } result_t test_mm_alignr_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { #if defined(__clang__) return TEST_UNIMPL; #else const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; unsigned int shift = (iter % 3) << 3; uint8_t d[16]; if (shift >= 16) { memset((void *) d, 0, sizeof(d)); } else { memcpy((void *) d, (const void *) _b, 8); memcpy((void *) (d + 8), (const void *) _a, 8); // shifting for (size_t x = 0; x < sizeof(d); x++) { if (x + shift >= sizeof(d)) d[x] = 0; else d[x] = d[x + shift]; } } __m64 a = load_m64(_a); __m64 b = load_m64(_b); uint8_t zeros[] = {0, 0, 0, 0, 0, 0, 0, 0}; __m64 ret = load_m64(zeros); switch (iter % 3) { case 0: ret = _mm_alignr_pi8(a, b, 0); break; case 1: ret = _mm_alignr_pi8(a, b, 8); break; case 2: ret = _mm_alignr_pi8(a, b, 16); break; } return VALIDATE_UINT8_M64(ret, d); #endif } result_t test_mm_hadd_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; d[0] = _a[0] + _a[1]; d[1] = _a[2] + _a[3]; d[2] = _a[4] + _a[5]; d[3] = _a[6] + _a[7]; d[4] = _b[0] + _b[1]; d[5] = _b[2] + _b[3]; d[6] = _b[4] + _b[5]; d[7] = _b[6] + _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_hadd_epi16(a, b); return VALIDATE_INT16_M128(ret, d); } result_t test_mm_hadd_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0] + _a[1]; d[1] = _a[2] + _a[3]; d[2] = _b[0] + _b[1]; d[3] = _b[2] + _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_hadd_epi32(a, b); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_hadd_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[4]; d[0] = _a[0] + _a[1]; d[1] = _a[2] + _a[3]; d[2] = _b[0] + _b[1]; d[3] = _b[2] + _b[3]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_hadd_pi16(a, b); return VALIDATE_INT16_M64(ret, d); } result_t test_mm_hadd_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[2]; d[0] = _a[0] + _a[1]; d[1] = _b[0] + _b[1]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_hadd_pi32(a, b); return VALIDATE_INT32_M64(ret, d); } result_t test_mm_hadds_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer1; int16_t d16[8]; int32_t d32[8]; d32[0] = (int32_t) _a[0] + (int32_t) _a[1]; d32[1] = (int32_t) _a[2] + (int32_t) _a[3]; d32[2] = (int32_t) _a[4] + (int32_t) _a[5]; d32[3] = (int32_t) _a[6] + (int32_t) _a[7]; d32[4] = (int32_t) _b[0] + (int32_t) _b[1]; d32[5] = (int32_t) _b[2] + (int32_t) _b[3]; d32[6] = (int32_t) _b[4] + (int32_t) _b[5]; d32[7] = (int32_t) _b[6] + (int32_t) _b[7]; for (int i = 0; i < 8; i++) { if (d32[i] > (int32_t) INT16_MAX) d16[i] = INT16_MAX; else if (d32[i] < (int32_t) INT16_MIN) d16[i] = INT16_MIN; else d16[i] = (int16_t) d32[i]; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_hadds_epi16(a, b); return VALIDATE_INT16_M128(c, d16); } result_t test_mm_hadds_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer1; int16_t d16[8]; int32_t d32[8]; d32[0] = (int32_t) _a[0] + (int32_t) _a[1]; d32[1] = (int32_t) _a[2] + (int32_t) _a[3]; d32[2] = (int32_t) _b[0] + (int32_t) _b[1]; d32[3] = (int32_t) _b[2] + (int32_t) _b[3]; for (int i = 0; i < 8; i++) { if (d32[i] > (int32_t) INT16_MAX) d16[i] = INT16_MAX; else if (d32[i] < (int32_t) INT16_MIN) d16[i] = INT16_MIN; else d16[i] = (int16_t) d32[i]; } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_hadds_pi16(a, b); return VALIDATE_INT16_M64(c, d16); } result_t test_mm_hsub_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer1; int16_t d[8]; d[0] = _a[0] - _a[1]; d[1] = _a[2] - _a[3]; d[2] = _a[4] - _a[5]; d[3] = _a[6] - _a[7]; d[4] = _b[0] - _b[1]; d[5] = _b[2] - _b[3]; d[6] = _b[4] - _b[5]; d[7] = _b[6] - _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_hsub_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_hsub_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer1; int32_t d[4]; d[0] = _a[0] - _a[1]; d[1] = _a[2] - _a[3]; d[2] = _b[0] - _b[1]; d[3] = _b[2] - _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_hsub_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_hsub_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[4]; d[0] = _a[0] - _a[1]; d[1] = _a[2] - _a[3]; d[2] = _b[0] - _b[1]; d[3] = _b[2] - _b[3]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_hsub_pi16(a, b); return VALIDATE_INT16_M64(c, d); } result_t test_mm_hsub_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; int32_t d[2]; d[0] = _a[0] - _a[1]; d[1] = _b[0] - _b[1]; __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_hsub_pi32(a, b); return VALIDATE_INT32_M64(c, d); } result_t test_mm_hsubs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer1; int16_t d16[8]; d16[0] = saturate_i16((int32_t) _a[0] - (int32_t) _a[1]); d16[1] = saturate_i16((int32_t) _a[2] - (int32_t) _a[3]); d16[2] = saturate_i16((int32_t) _a[4] - (int32_t) _a[5]); d16[3] = saturate_i16((int32_t) _a[6] - (int32_t) _a[7]); d16[4] = saturate_i16((int32_t) _b[0] - (int32_t) _b[1]); d16[5] = saturate_i16((int32_t) _b[2] - (int32_t) _b[3]); d16[6] = saturate_i16((int32_t) _b[4] - (int32_t) _b[5]); d16[7] = saturate_i16((int32_t) _b[6] - (int32_t) _b[7]); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_hsubs_epi16(a, b); return VALIDATE_INT16_M128(c, d16); } result_t test_mm_hsubs_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer1; int16_t _d[4]; _d[0] = saturate_i16((int32_t) _a[0] - (int32_t) _a[1]); _d[1] = saturate_i16((int32_t) _a[2] - (int32_t) _a[3]); _d[2] = saturate_i16((int32_t) _b[0] - (int32_t) _b[1]); _d[3] = saturate_i16((int32_t) _b[2] - (int32_t) _b[3]); __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_hsubs_pi16(a, b); return VALIDATE_INT16_M64(c, _d); } result_t test_mm_maddubs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int32_t d0 = (int32_t) (_a[0] * _b[0]); int32_t d1 = (int32_t) (_a[1] * _b[1]); int32_t d2 = (int32_t) (_a[2] * _b[2]); int32_t d3 = (int32_t) (_a[3] * _b[3]); int32_t d4 = (int32_t) (_a[4] * _b[4]); int32_t d5 = (int32_t) (_a[5] * _b[5]); int32_t d6 = (int32_t) (_a[6] * _b[6]); int32_t d7 = (int32_t) (_a[7] * _b[7]); int32_t d8 = (int32_t) (_a[8] * _b[8]); int32_t d9 = (int32_t) (_a[9] * _b[9]); int32_t d10 = (int32_t) (_a[10] * _b[10]); int32_t d11 = (int32_t) (_a[11] * _b[11]); int32_t d12 = (int32_t) (_a[12] * _b[12]); int32_t d13 = (int32_t) (_a[13] * _b[13]); int32_t d14 = (int32_t) (_a[14] * _b[14]); int32_t d15 = (int32_t) (_a[15] * _b[15]); int16_t e[8]; e[0] = saturate_i16(d0 + d1); e[1] = saturate_i16(d2 + d3); e[2] = saturate_i16(d4 + d5); e[3] = saturate_i16(d6 + d7); e[4] = saturate_i16(d8 + d9); e[5] = saturate_i16(d10 + d11); e[6] = saturate_i16(d12 + d13); e[7] = saturate_i16(d14 + d15); __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_maddubs_epi16(a, b); return VALIDATE_INT16_M128(c, e); } result_t test_mm_maddubs_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int16_t d0 = (int16_t) (_a[0] * _b[0]); int16_t d1 = (int16_t) (_a[1] * _b[1]); int16_t d2 = (int16_t) (_a[2] * _b[2]); int16_t d3 = (int16_t) (_a[3] * _b[3]); int16_t d4 = (int16_t) (_a[4] * _b[4]); int16_t d5 = (int16_t) (_a[5] * _b[5]); int16_t d6 = (int16_t) (_a[6] * _b[6]); int16_t d7 = (int16_t) (_a[7] * _b[7]); int16_t e[4]; e[0] = saturate_i16(d0 + d1); e[1] = saturate_i16(d2 + d3); e[2] = saturate_i16(d4 + d5); e[3] = saturate_i16(d6 + d7); __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_maddubs_pi16(a, b); return VALIDATE_INT16_M64(c, e); } result_t test_mm_mulhrs_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); int16_t _c[8]; for (int i = 0; i < 8; i++) { _c[i] = (int16_t) ((((((int32_t) _a[i] * (int32_t) _b[i]) >> 14) + 1) & 0x1FFFE) >> 1); } __m128i c = _mm_mulhrs_epi16(a, b); return VALIDATE_INT16_M128(c, _c); } result_t test_mm_mulhrs_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; __m64 a = load_m64(_a); __m64 b = load_m64(_b); int16_t _c[4]; for (int i = 0; i < 4; i++) { _c[i] = (int16_t) ((((((int32_t) _a[i] * (int32_t) _b[i]) >> 14) + 1) & 0x1FFFE) >> 1); } __m64 c = _mm_mulhrs_pi16(a, b); return VALIDATE_INT16_M64(c, _c); } result_t test_mm_shuffle_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t dst[16]; for (int i = 0; i < 16; i++) { if (_b[i] & 0x80) { dst[i] = 0; } else { dst[i] = _a[_b[i] & 0x0F]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i ret = _mm_shuffle_epi8(a, b); return VALIDATE_INT8_M128(ret, dst); } result_t test_mm_shuffle_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t dst[8]; for (int i = 0; i < 8; i++) { if (_b[i] & 0x80) { dst[i] = 0; } else { dst[i] = _a[_b[i] & 0x07]; } } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 ret = _mm_shuffle_pi8(a, b); return VALIDATE_INT8_M64(ret, dst); } result_t test_mm_sign_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[8]; for (int i = 0; i < 8; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sign_epi16(a, b); return VALIDATE_INT16_M128(c, d); } result_t test_mm_sign_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; for (int i = 0; i < 4; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sign_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_sign_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; for (int i = 0; i < 16; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_sign_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_sign_pi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t d[4]; for (int i = 0; i < 4; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_sign_pi16(a, b); return VALIDATE_INT16_M64(c, d); } result_t test_mm_sign_pi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[2]; for (int i = 0; i < 2; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_sign_pi32(a, b); return VALIDATE_INT32_M64(c, d); } result_t test_mm_sign_pi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[8]; for (int i = 0; i < 8; i++) { if (_b[i] < 0) { d[i] = -_a[i]; } else if (_b[i] == 0) { d[i] = 0; } else { d[i] = _a[i]; } } __m64 a = load_m64(_a); __m64 b = load_m64(_b); __m64 c = _mm_sign_pi8(a, b); return VALIDATE_INT8_M64(c, d); } /* SSE4.1 */ result_t test_mm_blend_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; const int16_t *_b = (const int16_t *) impl.mTestIntPointer2; int16_t _c[8]; __m128i a, b, c; #define TEST_IMPL(IDX) \ for (int j = 0; j < 8; j++) { \ if ((IDX >> j) & 0x1) { \ _c[j] = _b[j]; \ } else { \ _c[j] = _a[j]; \ } \ } \ a = load_m128i(_a); \ b = load_m128i(_b); \ c = _mm_blend_epi16(a, b, IDX); \ CHECK_RESULT(VALIDATE_INT16_M128(c, _c)); IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_blend_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; __m128d a, b, c; #define TEST_IMPL(IDX) \ double _c##IDX[2]; \ for (int j = 0; j < 2; j++) { \ if ((IDX >> j) & 0x1) { \ _c##IDX[j] = _b[j]; \ } else { \ _c##IDX[j] = _a[j]; \ } \ } \ \ a = load_m128d(_a); \ b = load_m128d(_b); \ c = _mm_blend_pd(a, b, IDX); \ CHECK_RESULT(validateDouble(c, _c##IDX[0], _c##IDX[1])) IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_blend_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c; // gcc and clang can't compile call to _mm_blend_ps with 3rd argument as // integer type due 4 bit size limitation. #define TEST_IMPL(IDX) \ float _c##IDX[4]; \ for (int i = 0; i < 4; i++) { \ if (IDX & (1 << i)) { \ _c##IDX[i] = _b[i]; \ } else { \ _c##IDX[i] = _a[i]; \ } \ } \ \ c = _mm_blend_ps(a, b, IDX); \ CHECK_RESULT( \ validateFloat(c, _c##IDX[0], _c##IDX[1], _c##IDX[2], _c##IDX[3])) IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_blendv_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; const int8_t _mask[16] = {(const int8_t) impl.mTestInts[iter], (const int8_t) impl.mTestInts[iter + 1], (const int8_t) impl.mTestInts[iter + 2], (const int8_t) impl.mTestInts[iter + 3], (const int8_t) impl.mTestInts[iter + 4], (const int8_t) impl.mTestInts[iter + 5], (const int8_t) impl.mTestInts[iter + 6], (const int8_t) impl.mTestInts[iter + 7]}; int8_t _c[16]; for (int i = 0; i < 16; i++) { if (_mask[i] >> 7) { _c[i] = _b[i]; } else { _c[i] = _a[i]; } } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i mask = load_m128i(_mask); __m128i c = _mm_blendv_epi8(a, b, mask); return VALIDATE_INT8_M128(c, _c); } result_t test_mm_blendv_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; const double _mask[] = {(double) impl.mTestFloats[iter], (double) impl.mTestFloats[iter + 1]}; double _c[2]; for (int i = 0; i < 2; i++) { // signed shift right would return a result which is either all 1's from // negative numbers or all 0's from positive numbers int64_t m = sse2neon_tool_recast_i64(_mask[i]); if (m >> 63) { _c[i] = _b[i]; } else { _c[i] = _a[i]; } } __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d mask = load_m128d(_mask); __m128d c = _mm_blendv_pd(a, b, mask); return validateDouble(c, _c[0], _c[1]); } result_t test_mm_blendv_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; const float _mask[] = {impl.mTestFloats[iter], impl.mTestFloats[iter + 1], impl.mTestFloats[iter + 2], impl.mTestFloats[iter + 3]}; float _c[4]; for (int i = 0; i < 4; i++) { // signed shift right would return a result which is either all 1's from // negative numbers or all 0's from positive numbers if ((*(const int32_t *) (_mask + i)) >> 31) { _c[i] = _b[i]; } else { _c[i] = _a[i]; } } __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 mask = load_m128(_mask); __m128 c = _mm_blendv_ps(a, b, mask); return validateFloat(c, _c[0], _c[1], _c[2], _c[3]); } result_t test_mm_ceil_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double dx = ceil(_a[0]); double dy = ceil(_a[1]); __m128d a = load_m128d(_a); __m128d ret = _mm_ceil_pd(a); return validateDouble(ret, dx, dy); } result_t test_mm_ceil_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float dx = ceilf(_a[0]); float dy = ceilf(_a[1]); float dz = ceilf(_a[2]); float dw = ceilf(_a[3]); __m128 a = _mm_load_ps(_a); __m128 c = _mm_ceil_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_ceil_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double dx = ceil(_b[0]); double dy = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d ret = _mm_ceil_sd(a, b); return validateDouble(ret, dx, dy); } result_t test_mm_ceil_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer1; float f0 = ceilf(_b[0]); __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_ceil_ss(a, b); return validateFloat(c, f0, _a[1], _a[2], _a[3]); } result_t test_mm_cmpeq_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t d0 = (_a[0] == _b[0]) ? 0xffffffffffffffff : 0x0; int64_t d1 = (_a[1] == _b[1]) ? 0xffffffffffffffff : 0x0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_cmpeq_epi64(a, b); return validateInt64(c, d0, d1); } result_t test_mm_cvtepi16_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; int32_t d[4]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; d[2] = (int32_t) _a[2]; d[3] = (int32_t) _a[3]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi16_epi32(a); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_cvtepi16_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi16_epi64(a); return validateInt64(ret, i0, i1); } result_t test_mm_cvtepi32_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi32_epi64(a); return validateInt64(ret, i0, i1); } result_t test_mm_cvtepi8_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; int16_t d[8]; d[0] = (int16_t) _a[0]; d[1] = (int16_t) _a[1]; d[2] = (int16_t) _a[2]; d[3] = (int16_t) _a[3]; d[4] = (int16_t) _a[4]; d[5] = (int16_t) _a[5]; d[6] = (int16_t) _a[6]; d[7] = (int16_t) _a[7]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi8_epi16(a); return VALIDATE_INT16_M128(ret, d); } result_t test_mm_cvtepi8_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; int32_t d[4]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; d[2] = (int32_t) _a[2]; d[3] = (int32_t) _a[3]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi8_epi32(a); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_cvtepi8_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepi8_epi64(a); return validateInt64(ret, i0, i1); } result_t test_mm_cvtepu16_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; int32_t d[4]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; d[2] = (int32_t) _a[2]; d[3] = (int32_t) _a[3]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu16_epi32(a); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_cvtepu16_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu16_epi64(a); return validateInt64(ret, i0, i1); } result_t test_mm_cvtepu32_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu32_epi64(a); return validateInt64(ret, i0, i1); } result_t test_mm_cvtepu8_epi16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; int16_t d[8]; d[0] = (int16_t) _a[0]; d[1] = (int16_t) _a[1]; d[2] = (int16_t) _a[2]; d[3] = (int16_t) _a[3]; d[4] = (int16_t) _a[4]; d[5] = (int16_t) _a[5]; d[6] = (int16_t) _a[6]; d[7] = (int16_t) _a[7]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu8_epi16(a); return VALIDATE_INT16_M128(ret, d); } result_t test_mm_cvtepu8_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; int32_t d[4]; d[0] = (int32_t) _a[0]; d[1] = (int32_t) _a[1]; d[2] = (int32_t) _a[2]; d[3] = (int32_t) _a[3]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu8_epi32(a); return VALIDATE_INT32_M128(ret, d); } result_t test_mm_cvtepu8_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; int64_t i0 = (int64_t) _a[0]; int64_t i1 = (int64_t) _a[1]; __m128i a = load_m128i(_a); __m128i ret = _mm_cvtepu8_epi64(a); return validateInt64(ret, i0, i1); } #define MM_DP_PD_TEST_CASE_WITH(imm8) \ do { \ const double _a[] = {impl.mTestFloatPointer1[0], \ impl.mTestFloatPointer1[1]}; \ const double _b[] = {impl.mTestFloatPointer2[0], \ impl.mTestFloatPointer2[1]}; \ const int imm = imm8; \ double d[2] = {0}; \ double sum = 0; \ for (size_t i = 0; i < 2; i++) \ sum += ((imm) & (1 << (i + 4))) ? _a[i] * _b[i] : 0; \ for (size_t i = 0; i < 2; i++) \ d[i] = (imm & (1 << i)) ? sum : 0; \ __m128d a = load_m128d(_a); \ __m128d b = load_m128d(_b); \ __m128d ret = _mm_dp_pd(a, b, imm); \ if (validateDouble(ret, d[0], d[1]) != TEST_SUCCESS) \ return TEST_FAIL; \ } while (0) #define GENERATE_MM_DP_PD_TEST_CASES \ MM_DP_PD_TEST_CASE_WITH(0xF0); \ MM_DP_PD_TEST_CASE_WITH(0xF1); \ MM_DP_PD_TEST_CASE_WITH(0xF2); \ MM_DP_PD_TEST_CASE_WITH(0xFF); \ MM_DP_PD_TEST_CASE_WITH(0x10); \ MM_DP_PD_TEST_CASE_WITH(0x11); \ MM_DP_PD_TEST_CASE_WITH(0x12); \ MM_DP_PD_TEST_CASE_WITH(0x13); \ MM_DP_PD_TEST_CASE_WITH(0x00); \ MM_DP_PD_TEST_CASE_WITH(0x01); \ MM_DP_PD_TEST_CASE_WITH(0x02); \ MM_DP_PD_TEST_CASE_WITH(0x03); \ MM_DP_PD_TEST_CASE_WITH(0x20); \ MM_DP_PD_TEST_CASE_WITH(0x21); \ MM_DP_PD_TEST_CASE_WITH(0x22); \ MM_DP_PD_TEST_CASE_WITH(0x23); OPTNONE result_t test_mm_dp_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_DP_PD_TEST_CASES return TEST_SUCCESS; } #define MM_DP_PS_TEST_CASE_WITH(IMM) \ do { \ const float *_a = impl.mTestFloatPointer1; \ const float *_b = impl.mTestFloatPointer2; \ const int imm = IMM; \ __m128 a = load_m128(_a); \ __m128 b = load_m128(_b); \ __m128 out = _mm_dp_ps(a, b, imm); \ float r[4]; /* the reference */ \ float sum = 0; \ for (size_t i = 0; i < 4; i++) \ sum += ((imm) & (1 << (i + 4))) ? _a[i] * _b[i] : 0; \ for (size_t i = 0; i < 4; i++) \ r[i] = (imm & (1 << i)) ? sum : 0; \ /* the epsilon has to be large enough, otherwise test suite fails. */ \ if (validateFloatEpsilon(out, r[0], r[1], r[2], r[3], 2050.0f) != \ TEST_SUCCESS) \ return TEST_FAIL; \ } while (0) #define GENERATE_MM_DP_PS_TEST_CASES \ MM_DP_PS_TEST_CASE_WITH(0xFF); \ MM_DP_PS_TEST_CASE_WITH(0x7F); \ MM_DP_PS_TEST_CASE_WITH(0x9F); \ MM_DP_PS_TEST_CASE_WITH(0x2F); \ MM_DP_PS_TEST_CASE_WITH(0x0F); \ MM_DP_PS_TEST_CASE_WITH(0x23); \ MM_DP_PS_TEST_CASE_WITH(0xB5); OPTNONE result_t test_mm_dp_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_DP_PS_TEST_CASES return TEST_SUCCESS; } result_t test_mm_extract_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { int32_t *_a = (int32_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); int c; #define TEST_IMPL(IDX) \ c = _mm_extract_epi32(a, IDX); \ ASSERT_RETURN(c == *(_a + IDX)); IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_extract_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { int64_t *_a = (int64_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); __int64 c; #define TEST_IMPL(IDX) \ c = _mm_extract_epi64(a, IDX); \ ASSERT_RETURN(c == *(_a + IDX)); IMM_2_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_extract_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { uint8_t *_a = (uint8_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); int c; #define TEST_IMPL(IDX) \ c = _mm_extract_epi8(a, IDX); \ ASSERT_RETURN(c == *(_a + IDX)); IMM_8_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_extract_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = (const float *) impl.mTestFloatPointer1; __m128 a = _mm_load_ps(_a); int32_t c; #define TEST_IMPL(IDX) \ c = _mm_extract_ps(a, IDX); \ ASSERT_RETURN(c == *(const int32_t *) (_a + IDX)); IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_floor_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; double dx = floor(_a[0]); double dy = floor(_a[1]); __m128d a = load_m128d(_a); __m128d ret = _mm_floor_pd(a); return validateDouble(ret, dx, dy); } result_t test_mm_floor_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float dx = floorf(_a[0]); float dy = floorf(_a[1]); float dz = floorf(_a[2]); float dw = floorf(_a[3]); __m128 a = load_m128(_a); __m128 c = _mm_floor_ps(a); return validateFloat(c, dx, dy, dz, dw); } result_t test_mm_floor_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (const double *) impl.mTestFloatPointer1; const double *_b = (const double *) impl.mTestFloatPointer2; double dx = floor(_b[0]); double dy = _a[1]; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); __m128d ret = _mm_floor_sd(a, b); return validateDouble(ret, dx, dy); } result_t test_mm_floor_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer1; float f0 = floorf(_b[0]); __m128 a = load_m128(_a); __m128 b = load_m128(_b); __m128 c = _mm_floor_ss(a, b); return validateFloat(c, f0, _a[1], _a[2], _a[3]); } result_t test_mm_insert_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t insert = (int32_t) *impl.mTestIntPointer2; __m128i a, b; #define TEST_IMPL(IDX) \ int32_t d##IDX[4]; \ for (int i = 0; i < 4; i++) { \ d##IDX[i] = _a[i]; \ } \ d##IDX[IDX] = insert; \ \ a = load_m128i(_a); \ b = _mm_insert_epi32(a, (int) insert, IDX); \ CHECK_RESULT(VALIDATE_INT32_M128(b, d##IDX)); IMM_4_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_insert_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; int64_t insert = (int64_t) *impl.mTestIntPointer2; __m128i a, b; int64_t d[2]; #define TEST_IMPL(IDX) \ d[0] = _a[0]; \ d[1] = _a[1]; \ d[IDX] = insert; \ a = load_m128i(_a); \ b = _mm_insert_epi64(a, insert, IDX); \ CHECK_RESULT(validateInt64(b, d[0], d[1])); IMM_2_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_insert_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t insert = (int8_t) *impl.mTestIntPointer2; __m128i a, b; int8_t d[16]; #define TEST_IMPL(IDX) \ for (int i = 0; i < 16; i++) { \ d[i] = _a[i]; \ } \ d[IDX] = insert; \ a = load_m128i(_a); \ b = _mm_insert_epi8(a, insert, IDX); \ CHECK_RESULT(VALIDATE_INT8_M128(b, d)); IMM_16_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_insert_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; __m128 a, b, c; #define TEST_IMPL(IDX) \ float d##IDX[4] = {_a[0], _a[1], _a[2], _a[3]}; \ d##IDX[(IDX >> 4) & 0x3] = _b[(IDX >> 6) & 0x3]; \ \ for (int j = 0; j < 4; j++) { \ if (IDX & (1 << j)) { \ d##IDX[j] = 0; \ } \ } \ \ a = _mm_load_ps(_a); \ b = _mm_load_ps(_b); \ c = _mm_insert_ps(a, b, IDX); \ CHECK_RESULT(validateFloat(c, d##IDX[0], d##IDX[1], d##IDX[2], d##IDX[3])); IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_max_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0] > _b[0] ? _a[0] : _b[0]; d[1] = _a[1] > _b[1] ? _a[1] : _b[1]; d[2] = _a[2] > _b[2] ? _a[2] : _b[2]; d[3] = _a[3] > _b[3] ? _a[3] : _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_max_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[0] > _b[0] ? _a[0] : _b[0]; d[1] = _a[1] > _b[1] ? _a[1] : _b[1]; d[2] = _a[2] > _b[2] ? _a[2] : _b[2]; d[3] = _a[3] > _b[3] ? _a[3] : _b[3]; d[4] = _a[4] > _b[4] ? _a[4] : _b[4]; d[5] = _a[5] > _b[5] ? _a[5] : _b[5]; d[6] = _a[6] > _b[6] ? _a[6] : _b[6]; d[7] = _a[7] > _b[7] ? _a[7] : _b[7]; d[8] = _a[8] > _b[8] ? _a[8] : _b[8]; d[9] = _a[9] > _b[9] ? _a[9] : _b[9]; d[10] = _a[10] > _b[10] ? _a[10] : _b[10]; d[11] = _a[11] > _b[11] ? _a[11] : _b[11]; d[12] = _a[12] > _b[12] ? _a[12] : _b[12]; d[13] = _a[13] > _b[13] ? _a[13] : _b[13]; d[14] = _a[14] > _b[14] ? _a[14] : _b[14]; d[15] = _a[15] > _b[15] ? _a[15] : _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_max_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = _a[0] > _b[0] ? _a[0] : _b[0]; d[1] = _a[1] > _b[1] ? _a[1] : _b[1]; d[2] = _a[2] > _b[2] ? _a[2] : _b[2]; d[3] = _a[3] > _b[3] ? _a[3] : _b[3]; d[4] = _a[4] > _b[4] ? _a[4] : _b[4]; d[5] = _a[5] > _b[5] ? _a[5] : _b[5]; d[6] = _a[6] > _b[6] ? _a[6] : _b[6]; d[7] = _a[7] > _b[7] ? _a[7] : _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epu16(a, b); return VALIDATE_UINT16_M128(c, d); } result_t test_mm_max_epu32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; const uint32_t *_b = (const uint32_t *) impl.mTestIntPointer2; uint32_t d[4]; d[0] = _a[0] > _b[0] ? _a[0] : _b[0]; d[1] = _a[1] > _b[1] ? _a[1] : _b[1]; d[2] = _a[2] > _b[2] ? _a[2] : _b[2]; d[3] = _a[3] > _b[3] ? _a[3] : _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_max_epu32(a, b); return VALIDATE_UINT32_M128(c, d); } result_t test_mm_min_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int32_t d[4]; d[0] = _a[0] < _b[0] ? _a[0] : _b[0]; d[1] = _a[1] < _b[1] ? _a[1] : _b[1]; d[2] = _a[2] < _b[2] ? _a[2] : _b[2]; d[3] = _a[3] < _b[3] ? _a[3] : _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_min_epi8(const SSE2NEONTestImpl &impl, uint32_t iter) { const int8_t *_a = (const int8_t *) impl.mTestIntPointer1; const int8_t *_b = (const int8_t *) impl.mTestIntPointer2; int8_t d[16]; d[0] = _a[0] < _b[0] ? _a[0] : _b[0]; d[1] = _a[1] < _b[1] ? _a[1] : _b[1]; d[2] = _a[2] < _b[2] ? _a[2] : _b[2]; d[3] = _a[3] < _b[3] ? _a[3] : _b[3]; d[4] = _a[4] < _b[4] ? _a[4] : _b[4]; d[5] = _a[5] < _b[5] ? _a[5] : _b[5]; d[6] = _a[6] < _b[6] ? _a[6] : _b[6]; d[7] = _a[7] < _b[7] ? _a[7] : _b[7]; d[8] = _a[8] < _b[8] ? _a[8] : _b[8]; d[9] = _a[9] < _b[9] ? _a[9] : _b[9]; d[10] = _a[10] < _b[10] ? _a[10] : _b[10]; d[11] = _a[11] < _b[11] ? _a[11] : _b[11]; d[12] = _a[12] < _b[12] ? _a[12] : _b[12]; d[13] = _a[13] < _b[13] ? _a[13] : _b[13]; d[14] = _a[14] < _b[14] ? _a[14] : _b[14]; d[15] = _a[15] < _b[15] ? _a[15] : _b[15]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epi8(a, b); return VALIDATE_INT8_M128(c, d); } result_t test_mm_min_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint16_t *_a = (const uint16_t *) impl.mTestIntPointer1; const uint16_t *_b = (const uint16_t *) impl.mTestIntPointer2; uint16_t d[8]; d[0] = _a[0] < _b[0] ? _a[0] : _b[0]; d[1] = _a[1] < _b[1] ? _a[1] : _b[1]; d[2] = _a[2] < _b[2] ? _a[2] : _b[2]; d[3] = _a[3] < _b[3] ? _a[3] : _b[3]; d[4] = _a[4] < _b[4] ? _a[4] : _b[4]; d[5] = _a[5] < _b[5] ? _a[5] : _b[5]; d[6] = _a[6] < _b[6] ? _a[6] : _b[6]; d[7] = _a[7] < _b[7] ? _a[7] : _b[7]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epu16(a, b); return VALIDATE_UINT16_M128(c, d); } result_t test_mm_min_epu32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *_a = (const uint32_t *) impl.mTestIntPointer1; const uint32_t *_b = (const uint32_t *) impl.mTestIntPointer2; uint32_t d[4]; d[0] = _a[0] < _b[0] ? _a[0] : _b[0]; d[1] = _a[1] < _b[1] ? _a[1] : _b[1]; d[2] = _a[2] < _b[2] ? _a[2] : _b[2]; d[3] = _a[3] < _b[3] ? _a[3] : _b[3]; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_min_epu32(a, b); return VALIDATE_UINT32_M128(c, d); } result_t test_mm_minpos_epu16(const SSE2NEONTestImpl &impl, uint32_t iter) { const int16_t *_a = (const int16_t *) impl.mTestIntPointer1; uint16_t index = 0, min = (uint16_t) _a[0]; for (int i = 0; i < 8; i++) { if ((uint16_t) _a[i] < min) { index = (uint16_t) i; min = (uint16_t) _a[i]; } } uint16_t d[8] = {min, index, 0, 0, 0, 0, 0, 0}; __m128i a = load_m128i(_a); __m128i ret = _mm_minpos_epu16(a); return VALIDATE_UINT16_M128(ret, d); } result_t test_mm_mpsadbw_epu8(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *_a = (const uint8_t *) impl.mTestIntPointer1; const uint8_t *_b = (const uint8_t *) impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c; #define TEST_IMPL(IDX) \ uint8_t a_offset##IDX = ((IDX >> 2) & 0x1) * 4; \ uint8_t b_offset##IDX = (IDX & 0x3) * 4; \ \ uint16_t d##IDX[8] = {}; \ for (int i = 0; i < 8; i++) { \ for (int j = 0; j < 4; j++) { \ d##IDX[i] += (uint16_t) abs(_a[(a_offset##IDX + i) + j] - \ _b[b_offset##IDX + j]); \ } \ } \ c = _mm_mpsadbw_epu8(a, b, IDX); \ CHECK_RESULT(VALIDATE_UINT16_M128(c, d##IDX)); IMM_8_ITER #undef TEST_IMPL return TEST_SUCCESS; } result_t test_mm_mul_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; int64_t dx = (int64_t) (_a[0]) * (int64_t) (_b[0]); int64_t dy = (int64_t) (_a[2]) * (int64_t) (_b[2]); __m128i a = _mm_loadu_si128((const __m128i *) _a); __m128i b = _mm_loadu_si128((const __m128i *) _b); __m128i r = _mm_mul_epi32(a, b); return validateInt64(r, dx, dy); } result_t test_mm_mullo_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; int32_t d[4]; for (int i = 0; i < 4; i++) { d[i] = (int32_t) ((int64_t) _a[i] * (int64_t) _b[i]); } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_mullo_epi32(a, b); return VALIDATE_INT32_M128(c, d); } result_t test_mm_packus_epi32(const SSE2NEONTestImpl &impl, uint32_t iter) { uint16_t max = UINT16_MAX; uint16_t min = 0; const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_b = (const int32_t *) impl.mTestIntPointer2; uint16_t d[8]; for (int i = 0; i < 4; i++) { if (_a[i] > (int32_t) max) d[i] = max; else if (_a[i] < (int32_t) min) d[i] = min; else d[i] = (uint16_t) _a[i]; } for (int i = 0; i < 4; i++) { if (_b[i] > (int32_t) max) d[i + 4] = max; else if (_b[i] < (int32_t) min) d[i + 4] = min; else d[i + 4] = (uint16_t) _b[i]; } __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i c = _mm_packus_epi32(a, b); return VALIDATE_UINT16_M128(c, d); } OPTNONE result_t test_mm_round_pd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (double *) impl.mTestFloatPointer1; double d[2] = {}; __m128d ret; __m128d a = load_m128d(_a); switch (iter & 0x7) { case 0: d[0] = bankersRounding(_a[0]); d[1] = bankersRounding(_a[1]); ret = _mm_round_pd(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); break; case 1: d[0] = floor(_a[0]); d[1] = floor(_a[1]); ret = _mm_round_pd(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); break; case 2: d[0] = ceil(_a[0]); d[1] = ceil(_a[1]); ret = _mm_round_pd(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); break; case 3: d[0] = _a[0] > 0 ? floor(_a[0]) : ceil(_a[0]); d[1] = _a[1] > 0 ? floor(_a[1]) : ceil(_a[1]); ret = _mm_round_pd(a, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); break; case 4: d[0] = bankersRounding(_a[0]); d[1] = bankersRounding(_a[1]); _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); ret = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); break; case 5: d[0] = floor(_a[0]); d[1] = floor(_a[1]); _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); ret = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); break; case 6: d[0] = ceil(_a[0]); d[1] = ceil(_a[1]); _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); ret = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); break; case 7: d[0] = _a[0] > 0 ? floor(_a[0]) : ceil(_a[0]); d[1] = _a[1] > 0 ? floor(_a[1]) : ceil(_a[1]); _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); ret = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); break; } return validateDouble(ret, d[0], d[1]); } OPTNONE result_t test_mm_round_ps(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; float f[4] = {}; __m128 ret; __m128 a = load_m128(_a); switch (iter & 0x7) { case 0: f[0] = bankersRounding(_a[0]); f[1] = bankersRounding(_a[1]); f[2] = bankersRounding(_a[2]); f[3] = bankersRounding(_a[3]); ret = _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); break; case 1: f[0] = floorf(_a[0]); f[1] = floorf(_a[1]); f[2] = floorf(_a[2]); f[3] = floorf(_a[3]); ret = _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); break; case 2: f[0] = ceilf(_a[0]); f[1] = ceilf(_a[1]); f[2] = ceilf(_a[2]); f[3] = ceilf(_a[3]); ret = _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); break; case 3: f[0] = _a[0] > 0 ? floorf(_a[0]) : ceilf(_a[0]); f[1] = _a[1] > 0 ? floorf(_a[1]) : ceilf(_a[1]); f[2] = _a[2] > 0 ? floorf(_a[2]) : ceilf(_a[2]); f[3] = _a[3] > 0 ? floorf(_a[3]) : ceilf(_a[3]); ret = _mm_round_ps(a, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); break; case 4: f[0] = bankersRounding(_a[0]); f[1] = bankersRounding(_a[1]); f[2] = bankersRounding(_a[2]); f[3] = bankersRounding(_a[3]); _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); ret = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); break; case 5: f[0] = floorf(_a[0]); f[1] = floorf(_a[1]); f[2] = floorf(_a[2]); f[3] = floorf(_a[3]); _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); ret = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); break; case 6: f[0] = ceilf(_a[0]); f[1] = ceilf(_a[1]); f[2] = ceilf(_a[2]); f[3] = ceilf(_a[3]); _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); ret = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); break; case 7: f[0] = _a[0] > 0 ? floorf(_a[0]) : ceilf(_a[0]); f[1] = _a[1] > 0 ? floorf(_a[1]) : ceilf(_a[1]); f[2] = _a[2] > 0 ? floorf(_a[2]) : ceilf(_a[2]); f[3] = _a[3] > 0 ? floorf(_a[3]) : ceilf(_a[3]); _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); ret = _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); break; } return validateFloat(ret, f[0], f[1], f[2], f[3]); } result_t test_mm_round_sd(const SSE2NEONTestImpl &impl, uint32_t iter) { const double *_a = (double *) impl.mTestFloatPointer1; const double *_b = (double *) impl.mTestFloatPointer2; double d[2] = {}; __m128d ret; __m128d a = load_m128d(_a); __m128d b = load_m128d(_b); d[1] = _a[1]; switch (iter & 0x7) { case 0: d[0] = bankersRounding(_b[0]); ret = _mm_round_sd(a, b, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); break; case 1: d[0] = floor(_b[0]); ret = _mm_round_sd(a, b, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); break; case 2: d[0] = ceil(_b[0]); ret = _mm_round_sd(a, b, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); break; case 3: d[0] = _b[0] > 0 ? floor(_b[0]) : ceil(_b[0]); ret = _mm_round_sd(a, b, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); break; case 4: d[0] = bankersRounding(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); ret = _mm_round_sd(a, b, _MM_FROUND_CUR_DIRECTION); break; case 5: d[0] = floor(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); ret = _mm_round_sd(a, b, _MM_FROUND_CUR_DIRECTION); break; case 6: d[0] = ceil(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); ret = _mm_round_sd(a, b, _MM_FROUND_CUR_DIRECTION); break; case 7: d[0] = _b[0] > 0 ? floor(_b[0]) : ceil(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); ret = _mm_round_sd(a, b, _MM_FROUND_CUR_DIRECTION); break; } return validateDouble(ret, d[0], d[1]); } result_t test_mm_round_ss(const SSE2NEONTestImpl &impl, uint32_t iter) { const float *_a = impl.mTestFloatPointer1; const float *_b = impl.mTestFloatPointer2; float f[4]; __m128 ret; __m128 a = load_m128(_a); __m128 b = load_m128(_b); switch (iter & 0x7) { case 0: f[0] = bankersRounding(_b[0]); ret = _mm_round_ss(a, b, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); break; case 1: f[0] = floorf(_b[0]); ret = _mm_round_ss(a, b, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); break; case 2: f[0] = ceilf(_b[0]); ret = _mm_round_ss(a, b, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); break; case 3: f[0] = _b[0] > 0 ? floorf(_b[0]) : ceilf(_b[0]); ret = _mm_round_ss(a, b, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); break; case 4: f[0] = bankersRounding(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); ret = _mm_round_ss(a, b, _MM_FROUND_CUR_DIRECTION); break; case 5: f[0] = floorf(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN); ret = _mm_round_ss(a, b, _MM_FROUND_CUR_DIRECTION); break; case 6: f[0] = ceilf(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_UP); ret = _mm_round_ss(a, b, _MM_FROUND_CUR_DIRECTION); break; case 7: f[0] = _b[0] > 0 ? floorf(_b[0]) : ceilf(_b[0]); _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO); ret = _mm_round_ss(a, b, _MM_FROUND_CUR_DIRECTION); break; } f[1] = _a[1]; f[2] = _a[2]; f[3] = _a[3]; return validateFloat(ret, f[0], f[1], f[2], f[3]); } result_t test_mm_stream_load_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { int32_t *addr = impl.mTestIntPointer1; __m128i ret = _mm_stream_load_si128((__m128i *) addr); return VALIDATE_INT32_M128(ret, addr); } result_t test_mm_test_all_ones(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; __m128i a = load_m128i(_a); int32_t d0 = ~_a[0] & (~(uint32_t) 0); int32_t d1 = ~_a[1] & (~(uint32_t) 0); int32_t d2 = ~_a[2] & (~(uint32_t) 0); int32_t d3 = ~_a[3] & (~(uint32_t) 0); int32_t result = ((d0 | d1 | d2 | d3) == 0) ? 1 : 0; int32_t ret = _mm_test_all_ones(a); return result == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_test_all_zeros(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_mask = (const int32_t *) impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i mask = load_m128i(_mask); int32_t d0 = _a[0] & _mask[0]; int32_t d1 = _a[1] & _mask[1]; int32_t d2 = _a[2] & _mask[2]; int32_t d3 = _a[3] & _mask[3]; int32_t result = ((d0 | d1 | d2 | d3) == 0) ? 1 : 0; int32_t ret = _mm_test_all_zeros(a, mask); return result == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_test_mix_ones_zeros(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = (const int32_t *) impl.mTestIntPointer1; const int32_t *_mask = (const int32_t *) impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i mask = load_m128i(_mask); int32_t ZF = 1; int32_t CF = 1; for (int i = 0; i < 4; i++) { ZF &= ((_a[i] & _mask[i]) == 0); CF &= ((~_a[i] & _mask[i]) == 0); } int32_t result = (ZF == 0 && CF == 0); int32_t ret = _mm_test_mix_ones_zeros(a, mask); return result == ret ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_testc_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = _mm_load_si128((const __m128i *) _a); __m128i b = _mm_load_si128((const __m128i *) _b); int testc = 1; for (int i = 0; i < 2; i++) { if ((~(((SIMDVec *) &a)->m128_u64[i]) & ((SIMDVec *) &b)->m128_u64[i])) { testc = 0; break; } } return _mm_testc_si128(a, b) == testc ? TEST_SUCCESS : TEST_FAIL; } result_t test_mm_testnzc_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { return test_mm_test_mix_ones_zeros(impl, iter); } result_t test_mm_testz_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *_a = impl.mTestIntPointer1; const int32_t *_b = impl.mTestIntPointer2; __m128i a = _mm_load_si128((const __m128i *) _a); __m128i b = _mm_load_si128((const __m128i *) _b); int testz = 1; for (int i = 0; i < 2; i++) { if ((((SIMDVec *) &a)->m128_u64[i] & ((SIMDVec *) &b)->m128_u64[i])) { testz = 0; break; } } return _mm_testz_si128(a, b) == testz ? TEST_SUCCESS : TEST_FAIL; } /* SSE4.2 */ #define IS_CMPESTRI 1 #define DEF_ENUM_MM_CMPESTRX_VARIANT(c, ...) c, #define EVAL_MM_CMPESTRX_TEST_CASE(c, type, data_type, im, IM) \ do { \ data_type *a = test_mm_##im##_##type##_data[c].a, \ *b = test_mm_##im##_##type##_data[c].b; \ int la = test_mm_##im##_##type##_data[c].la, \ lb = test_mm_##im##_##type##_data[c].lb; \ const int imm8 = IMM_##c; \ IIF(IM) \ (int expect = test_mm_##im##_##type##_data[c].expect, \ data_type *expect = test_mm_##im##_##type##_data[c].expect); \ __m128i ma, mb; \ memcpy(&ma, a, sizeof(ma)); \ memcpy(&mb, b, sizeof(mb)); \ IIF(IM) \ (int res = _mm_##im(ma, la, mb, lb, imm8), \ __m128i res = _mm_##im(ma, la, mb, lb, imm8)); \ if (IIF(IM)(res != expect, memcmp(expect, &res, sizeof(__m128i)))) \ return TEST_FAIL; \ } while (0); #define ENUM_MM_CMPESTRX_TEST_CASES(type, type_lower, data_type, func, FUNC, \ IM) \ enum { MM_##FUNC##_##type##_TEST_CASES(DEF_ENUM_MM_CMPESTRX_VARIANT) }; \ MM_##FUNC##_##type##_TEST_CASES(EVAL_MM_CMPESTRX_TEST_CASE, type_lower, \ data_type, func, IM) #define IMM_UBYTE_EACH_LEAST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT) #define IMM_UBYTE_EACH_LEAST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_EACH_LEAST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_EACH_MOST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT) #define IMM_UBYTE_EACH_MOST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_EACH_MOST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_ANY_LEAST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT) #define IMM_UBYTE_ANY_LEAST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_ANY_LEAST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_ANY_MOST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT) #define IMM_UBYTE_ANY_MOST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_ANY_MOST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_RANGES_LEAST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT) #define IMM_UBYTE_RANGES_MOST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT) #define IMM_UBYTE_RANGES_LEAST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_RANGES_MOST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_RANGES_LEAST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_RANGES_MOST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UBYTE_ORDERED_LEAST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT) #define IMM_UBYTE_ORDERED_LEAST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_ORDERED_MOST \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT) #define IMM_UBYTE_ORDERED_MOST_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_ORDERED_MOST_MASKED_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_EACH_LEAST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT) #define IMM_SBYTE_EACH_LEAST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_EACH_LEAST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_EACH_MOST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT) #define IMM_SBYTE_EACH_MOST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_EACH_MOST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_ANY_LEAST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT) #define IMM_SBYTE_ANY_LEAST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_ANY_MOST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT) #define IMM_SBYTE_ANY_MOST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_RANGES_LEAST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT) #define IMM_SBYTE_RANGES_LEAST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_RANGES_LEAST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_RANGES_MOST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT) #define IMM_SBYTE_RANGES_MOST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_RANGES_MOST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_ORDERED_LEAST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT) #define IMM_SBYTE_ORDERED_LEAST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_ORDERED_LEAST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_ORDERED_MOST_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SBYTE_ORDERED_MOST \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT) #define IMM_SBYTE_ORDERED_MOST_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_RANGES_LEAST \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT) #define IMM_UWORD_RANGES_LEAST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_RANGES_LEAST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_RANGES_MOST \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT) #define IMM_UWORD_RANGES_MOST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_RANGES_MOST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_EACH_LEAST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT) #define IMM_UWORD_EACH_MOST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT) #define IMM_UWORD_EACH_LEAST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_EACH_LEAST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_EACH_MOST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_ANY_LEAST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT) #define IMM_UWORD_ANY_MOST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT) #define IMM_UWORD_ANY_MOST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_ANY_LEAST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_ANY_LEAST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_ORDERED_LEAST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT) #define IMM_UWORD_ORDERED_LEAST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_ORDERED_LEAST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_UWORD_ORDERED_MOST \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT) #define IMM_UWORD_ORDERED_MOST_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UWORD_ORDERED_MOST_MASKED_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_RANGES_LEAST \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT) #define IMM_SWORD_RANGES_MOST \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT) #define IMM_SWORD_RANGES_LEAST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_RANGES_LEAST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_RANGES_MOST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_EACH_LEAST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT) #define IMM_SWORD_EACH_MOST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT) #define IMM_SWORD_EACH_LEAST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_EACH_LEAST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_EACH_MOST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_EACH_MOST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_ANY_LEAST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT) #define IMM_SWORD_ANY_LEAST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT) #define IMM_SWORD_ANY_LEAST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_ANY_MOST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT) #define IMM_SWORD_ANY_MOST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_ANY_MOST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_ANY_MOST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_ORDERED_LEAST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT) #define IMM_SWORD_ORDERED_LEAST_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_ORDERED_LEAST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_LEAST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SWORD_ORDERED_MOST \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT) #define IMM_SWORD_ORDERED_MOST_MASKED_NEGATIVE \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_MOST_SIGNIFICANT | \ _SIDD_MASKED_NEGATIVE_POLARITY) typedef struct { uint8_t a[16], b[16]; int la, lb; const int imm8; int expect; } test_mm_cmpestri_ubyte_data_t; typedef struct { int8_t a[16], b[16]; int la, lb; const int imm8; int expect; } test_mm_cmpestri_sbyte_data_t; typedef struct { uint16_t a[8], b[8]; int la, lb; const int imm8; int expect; } test_mm_cmpestri_uword_data_t; typedef struct { int16_t a[8], b[8]; int la, lb; const int imm8; int expect; } test_mm_cmpestri_sword_data_t; #define TEST_MM_CMPESTRA_UBYTE_DATA_LEN 3 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestra_ubyte_data[TEST_MM_CMPESTRA_UBYTE_DATA_LEN] = { {{20, 10, 33, 56, 78}, {20, 10, 34, 98, 127, 20, 10, 32, 20, 10, 32, 11, 3, 20, 10, 31}, 3, 17, IMM_UBYTE_ORDERED_MOST, 1}, {{20, 127, 0, 45, 77, 1, 34, 43, 109}, {2, 127, 0, 54, 6, 43, 12, 110, 100}, 9, 20, IMM_UBYTE_EACH_LEAST_NEGATIVE, 0}, {{22, 33, 90, 1}, {22, 33, 90, 1, 1, 5, 4, 7, 98, 34, 1, 12, 13, 14, 15, 16}, 4, 11, IMM_UBYTE_ANY_LEAST_MASKED_NEGATIVE, 0}, }; #define TEST_MM_CMPESTRA_SBYTE_DATA_LEN 3 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestra_sbyte_data[TEST_MM_CMPESTRA_SBYTE_DATA_LEN] = { {{45, -94, 38, -11, 84, -123, -43, -49, 25, -55, -121, -6, 57, 108, -55, 69}, {-26, -61, -21, -96, 48, -112, 95, -56, 29, -55, -121, -6, 57, 108, -55, 69}, 23, 28, IMM_SBYTE_RANGES_LEAST, 0}, {{-12, 8}, {-12, 7, -12, 8, -13, 45, -12, 8}, 2, 8, IMM_SBYTE_ORDERED_MOST_NEGATIVE, 0}, {{-100, -127, 56, 78, 21, -1, 9, 127, 45}, {100, 126, 30, 65, 87, 54, 80, 81, -98, -101, 90, 1, 5, 60, -77, -65}, 10, 20, IMM_SBYTE_ANY_LEAST, 1}, }; #define TEST_MM_CMPESTRA_UWORD_DATA_LEN 3 static test_mm_cmpestri_uword_data_t test_mm_cmpestra_uword_data[TEST_MM_CMPESTRA_UWORD_DATA_LEN] = { {{10000, 20000, 30000, 40000, 50000}, {40001, 50002, 10000, 20000, 30000, 40000, 50000}, 5, 10, IMM_UWORD_ORDERED_LEAST, 0}, {{1001, 9487, 9487, 8000}, {1001, 1002, 1003, 8709, 100, 1, 1000, 999}, 4, 6, IMM_UWORD_RANGES_LEAST_MASKED_NEGATIVE, 0}, {{12, 21, 0, 45, 88, 10001, 10002, 65535}, {22, 13, 3, 54, 888, 10003, 10000, 65530}, 13, 13, IMM_UWORD_EACH_MOST, 1}, }; #define TEST_MM_CMPESTRA_SWORD_DATA_LEN 3 static test_mm_cmpestri_sword_data_t test_mm_cmpestra_sword_data[TEST_MM_CMPESTRA_SWORD_DATA_LEN] = { {{-100, -80, -5, -1, 10, 1000}, {-100, -99, -80, -2, 11, 789, 889, 999}, 6, 12, IMM_SWORD_RANGES_LEAST_NEGATIVE, 1}, {{-30000, -90, -32766, 1200, 5}, {-30001, 21, 10000, 1201, 888}, 5, 5, IMM_SWORD_EACH_MOST, 0}, {{2001, -1928}, {2000, 1928, 3000, 2289, 4000, 111, 2002, -1928}, 2, 9, IMM_SWORD_ANY_LEAST_MASKED_NEGATIVE, 0}, }; #define MM_CMPESTRA_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ORDERED_MOST, __VA_ARGS__) \ _(UBYTE_EACH_LEAST_NEGATIVE, __VA_ARGS__) \ _(UBYTE_ANY_LEAST_MASKED_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRA_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_MOST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) #define MM_CMPESTRA_UWORD_TEST_CASES(_, ...) \ _(UWORD_ORDERED_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UWORD_EACH_MOST, __VA_ARGS__) #define MM_CMPESTRA_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST_NEGATIVE, __VA_ARGS__) \ _(SWORD_EACH_MOST, __VA_ARGS__) \ _(SWORD_ANY_LEAST_MASKED_NEGATIVE, __VA_ARGS__) #define GENERATE_MM_CMPESTRA_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestra, CMPESTRA, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestra, CMPESTRA, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestra, CMPESTRA, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestra, CMPESTRA, \ IS_CMPESTRI) result_t test_mm_cmpestra(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRA_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPESTRC_UBYTE_DATA_LEN 4 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestrc_ubyte_data[TEST_MM_CMPESTRC_UBYTE_DATA_LEN] = { {{66, 3, 3, 65}, {66, 3, 3, 65, 67, 2, 2, 67, 56, 11, 1, 23, 66, 3, 3, 65}, 4, 16, IMM_UBYTE_ORDERED_MOST_MASKED_NEGATIVE, 1}, {{1, 11, 2, 22, 3, 33, 4, 44, 5, 55, 6, 66, 7, 77, 8, 88}, {2, 22, 3, 23, 5, 66, 255, 43, 6, 66, 7, 77, 9, 99, 10, 100}, 16, 16, IMM_UBYTE_EACH_MOST, 0}, {{36, 72, 108}, {12, 24, 48, 96, 77, 84}, 3, 6, IMM_UBYTE_ANY_LEAST, 0}, {{12, 24, 36, 48}, {11, 49, 50, 56, 77, 15, 10}, 4, 7, IMM_UBYTE_RANGES_LEAST_NEGATIVE, 1}, }; #define TEST_MM_CMPESTRC_SBYTE_DATA_LEN 4 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestrc_sbyte_data[TEST_MM_CMPESTRC_SBYTE_DATA_LEN] = { {{-22, -30, 40, 45}, {-31, -32, 46, 77}, 4, 4, IMM_SBYTE_RANGES_MOST, 0}, {{-12, -7, 33, 100, 12}, {-12, -7, 33, 100, 11, -11, -7, 33, 100, 12}, 5, 10, IMM_SBYTE_ORDERED_MOST_MASKED_NEGATIVE, 1}, {{1, 2, 3, 4, 5, -1, -2, -3, -4, -5}, {1, 2, 3, 4, 5, -1, -2, -3, -5}, 10, 9, IMM_SBYTE_ANY_MOST_MASKED_NEGATIVE, 0}, {{101, -128, -88, -76, 89, 109, 44, -12, -45, -100, 22, 1, 91}, {102, -120, 88, -76, 98, 107, 33, 12, 45, -100, 22, 10, 19}, 13, 13, IMM_SBYTE_EACH_MOST, 1}, }; #define TEST_MM_CMPESTRC_UWORD_DATA_LEN 4 static test_mm_cmpestri_uword_data_t test_mm_cmpestrc_uword_data[TEST_MM_CMPESTRC_UWORD_DATA_LEN] = { {{1000, 2000, 4000, 8000, 16000}, {40001, 1000, 2000, 40000, 8000, 16000}, 5, 6, IMM_UWORD_ORDERED_LEAST_NEGATIVE, 1}, {{1111, 1212}, {1110, 1213, 1110, 1214, 1100, 1220, 1000, 1233}, 2, 8, IMM_UWORD_RANGES_MOST, 0}, {{10000, 9000, 8000, 7000, 6000, 5000, 4000, 3000}, {9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000}, 13, 13, IMM_UWORD_EACH_LEAST_MASKED_NEGATIVE, 1}, {{12}, {11, 13, 14, 15, 10}, 1, 5, IMM_UWORD_ANY_MOST, 0}, }; #define TEST_MM_CMPESTRC_SWORD_DATA_LEN 4 static test_mm_cmpestri_sword_data_t test_mm_cmpestrc_sword_data[TEST_MM_CMPESTRC_SWORD_DATA_LEN] = { {{-100, -90, -80, -66, 1}, {-101, -102, -1000, 2, 67, 10000}, 5, 6, IMM_SWORD_RANGES_LEAST, 0}, {{12, 13, -700, 888, 44, -987, 19}, {12, 13, -700, 888, 44, -987, 19}, 7, 7, IMM_SWORD_EACH_MOST_NEGATIVE, 0}, {{2001, -1992, 1995, 10007, 2000}, {2000, 1928, 3000, 9822, 5000, 1111, 2002, -1928}, 5, 9, IMM_SWORD_ANY_LEAST_NEGATIVE, 1}, {{13, -26, 39}, {12, -25, 33, 13, -26, 39}, 3, 6, IMM_SWORD_ORDERED_MOST, 1}, }; #define MM_CMPESTRC_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ORDERED_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UBYTE_EACH_MOST, __VA_ARGS__) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRC_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_RANGES_MOST, __VA_ARGS__) \ _(SBYTE_ORDERED_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ANY_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_EACH_MOST, __VA_ARGS__) #define MM_CMPESTRC_UWORD_TEST_CASES(_, ...) \ _(UWORD_ORDERED_LEAST_NEGATIVE, __VA_ARGS__) \ _(UWORD_RANGES_MOST, __VA_ARGS__) \ _(UWORD_EACH_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UWORD_ANY_MOST, __VA_ARGS__) #define MM_CMPESTRC_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_MOST_NEGATIVE, __VA_ARGS__) \ _(SWORD_ANY_LEAST_NEGATIVE, __VA_ARGS__) \ _(SWORD_ORDERED_MOST, __VA_ARGS__) #define GENERATE_MM_CMPESTRC_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestrc, CMPESTRC, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestrc, CMPESTRC, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestrc, CMPESTRC, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestrc, CMPESTRC, \ IS_CMPESTRI) result_t test_mm_cmpestrc(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRC_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPESTRI_UBYTE_DATA_LEN 4 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestri_ubyte_data[TEST_MM_CMPESTRI_UBYTE_DATA_LEN] = { {{23, 89, 255, 0, 90, 45, 67, 12, 1, 56, 200, 141, 3, 4, 2, 76}, {32, 89, 255, 128, 9, 54, 78, 12, 1, 56, 100, 41, 42, 68, 32, 5}, 16, 16, IMM_UBYTE_ANY_LEAST_NEGATIVE, 0}, {{0, 83, 112, 12, 221, 54, 76, 83, 112, 10}, {0, 83, 112, 83, 122, 45, 67, 83, 112, 9}, 10, 10, IMM_UBYTE_EACH_LEAST, 0}, {{34, 78, 12}, {56, 100, 11, 67, 35, 79, 67, 255, 0, 43, 121, 234, 225, 91, 31, 23}, 3, 16, IMM_UBYTE_RANGES_LEAST, 0}, {{13, 10, 9, 32, 105, 103, 110, 111, 114, 101, 32, 116, 104, 105, 115, 32}, {83, 112, 108, 105, 116, 32, 13, 10, 9, 32, 108, 105, 110, 101, 32, 32}, 3, 15, IMM_UBYTE_ORDERED_LEAST, 6}, }; #define TEST_MM_CMPESTRI_SBYTE_DATA_LEN 4 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestri_sbyte_data[TEST_MM_CMPESTRI_SBYTE_DATA_LEN] = { {{-12, -1, 90, -128, 43, 6, 87, 127}, {-1, -1, 9, -127, 126, 6, 78, 23}, 8, 8, IMM_SBYTE_EACH_LEAST, 1}, {{34, 67, -90, 33, 123, -100, 43, 56}, {43, 76, -90, 44, 20, -100, 54, 56}, 8, 8, IMM_SBYTE_ANY_LEAST, 0}, {{-43, 67, 89}, {-44, -54, -30, -128, 127, 34, 10, -62}, 3, 7, IMM_SBYTE_RANGES_LEAST, 2}, {{90, 34, -32, 0, 5}, {19, 34, -32, 90, 34, -32, 45, 0, 5, 90, 34, -32, 0, 5, 19, 87}, 3, 16, IMM_SBYTE_ORDERED_LEAST, 3}, }; #define TEST_MM_CMPESTRI_UWORD_DATA_LEN 4 static test_mm_cmpestri_uword_data_t test_mm_cmpestri_uword_data[TEST_MM_CMPESTRI_UWORD_DATA_LEN] = { {{45, 65535, 0, 87, 1000, 10, 45, 26}, {65534, 0, 0, 78, 1000, 10, 32, 26}, 8, 8, IMM_UWORD_EACH_LEAST, 2}, {{45, 23, 10, 54, 88, 10000, 20000, 100}, {544, 10000, 20000, 1, 0, 2897, 2330, 2892}, 8, 8, IMM_UWORD_ANY_LEAST, 1}, {{10000, 15000}, {12, 45, 67, 899, 10001, 32, 15001, 15000}, 2, 8, IMM_UWORD_RANGES_LEAST, 4}, {{0, 1, 54, 89, 100}, {101, 102, 65535, 0, 1, 54, 89, 100}, 5, 8, IMM_UWORD_ORDERED_LEAST, 3}, }; #define TEST_MM_CMPESTRI_SWORD_DATA_LEN 4 static test_mm_cmpestri_sword_data_t test_mm_cmpestri_sword_data[TEST_MM_CMPESTRI_SWORD_DATA_LEN] = { {{13, 6, 5, 4, 3, 2, 1, 3}, {-7, 16, 5, 4, -1, 6, 1, 3}, 10, 10, IMM_SWORD_RANGES_MOST, 7}, {{13, 6, 5, 4, 3, 2, 1, 3}, {-7, 16, 5, 4, -1, 6, 1, 3}, 8, 8, IMM_SWORD_EACH_LEAST, 2}, {{-32768, 90, 455, 67, -1000, -10000, 21, 12}, {-7, 61, 455, 67, -32768, 32767, 11, 888}, 8, 8, IMM_SWORD_ANY_LEAST, 2}, {{-12, -56}, {-7, 16, 555, 554, -12, 61, -16, 3}, 2, 8, IMM_SWORD_ORDERED_LEAST, 8}, }; #define MM_CMPESTRI_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST_NEGATIVE, __VA_ARGS__) \ _(UBYTE_EACH_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPESTRI_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPESTRI_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPESTRI_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_MOST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_LEAST, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPESTRI_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestri, CMPESTRI, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestri, CMPESTRI, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestri, CMPESTRI, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestri, CMPESTRI, \ IS_CMPESTRI) result_t test_mm_cmpestri(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRI_TEST_CASES return TEST_SUCCESS; } #define IS_CMPESTRM 0 typedef struct { uint8_t a[16], b[16]; int la, lb; const int imm8; uint8_t expect[16]; } test_mm_cmpestrm_ubyte_data_t; typedef struct { int8_t a[16], b[16]; int la, lb; const int imm8; int8_t expect[16]; } test_mm_cmpestrm_sbyte_data_t; typedef struct { uint16_t a[8], b[8]; int la, lb; const int imm8; uint16_t expect[8]; } test_mm_cmpestrm_uword_data_t; typedef struct { int16_t a[8], b[8]; int la, lb; const int imm8; int16_t expect[8]; } test_mm_cmpestrm_sword_data_t; #define IMM_UBYTE_EACH_UNIT \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_UNIT_MASK) #define IMM_UBYTE_EACH_UNIT_NEGATIVE \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_UNIT_MASK | \ _SIDD_NEGATIVE_POLARITY) #define IMM_UBYTE_ANY_UNIT \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_UNIT_MASK) #define IMM_UBYTE_ANY_BIT \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK) #define IMM_UBYTE_RANGES_UNIT \ (_SIDD_UBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_UNIT_MASK) #define IMM_UBYTE_ORDERED_UNIT \ (_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_UNIT_MASK) #define IMM_SBYTE_EACH_UNIT \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_UNIT_MASK) #define IMM_SBYTE_EACH_BIT_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_BIT_MASK | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_ANY_UNIT \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_UNIT_MASK) #define IMM_SBYTE_ANY_UNIT_MASKED_NEGATIVE \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_UNIT_MASK | \ _SIDD_MASKED_NEGATIVE_POLARITY) #define IMM_SBYTE_RANGES_UNIT \ (_SIDD_SBYTE_OPS | _SIDD_CMP_RANGES | _SIDD_UNIT_MASK) #define IMM_SBYTE_ORDERED_UNIT \ (_SIDD_SBYTE_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_UNIT_MASK) #define IMM_UWORD_RANGES_UNIT \ (_SIDD_UWORD_OPS | _SIDD_CMP_RANGES | _SIDD_UNIT_MASK) #define IMM_UWORD_EACH_UNIT \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_UNIT_MASK) #define IMM_UWORD_ANY_UNIT \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_UNIT_MASK) #define IMM_UWORD_ANY_BIT \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK) #define IMM_UWORD_ORDERED_UNIT \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_UNIT_MASK) #define IMM_UWORD_ORDERED_UNIT_NEGATIVE \ (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_UNIT_MASK | \ _SIDD_NEGATIVE_POLARITY) #define IMM_SWORD_RANGES_UNIT \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_UNIT_MASK) #define IMM_SWORD_RANGES_BIT \ (_SIDD_SWORD_OPS | _SIDD_CMP_RANGES | _SIDD_BIT_MASK) #define IMM_SWORD_EACH_UNIT \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_UNIT_MASK) #define IMM_SWORD_ANY_UNIT \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_UNIT_MASK) #define IMM_SWORD_ORDERED_UNIT \ (_SIDD_SWORD_OPS | _SIDD_CMP_EQUAL_ORDERED | _SIDD_UNIT_MASK) #define TEST_MM_CMPESTRM_UBYTE_DATA_LEN 4 static test_mm_cmpestrm_ubyte_data_t test_mm_cmpestrm_ubyte_data[TEST_MM_CMPESTRM_UBYTE_DATA_LEN] = { {{85, 115, 101, 70, 108, 97, 116, 65, 115, 115, 101, 109, 98, 108, 101, 114}, {85, 115, 105, 110, 103, 65, 110, 65, 115, 115, 101, 109, 98, 108, 101, 114}, 16, 16, IMM_UBYTE_EACH_UNIT_NEGATIVE, {0, 0, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{97, 101, 105, 111, 117, 121}, {89, 111, 117, 32, 68, 114, 105, 118, 101, 32, 77, 101, 32, 77, 97, 100}, 6, 16, IMM_UBYTE_ANY_UNIT, {0, 255, 255, 0, 0, 0, 255, 0, 255, 0, 0, 255, 0, 0, 255, 0}}, {{97, 122, 65, 90}, {73, 39, 109, 32, 104, 101, 114, 101, 32, 98, 101, 99, 97, 117, 115, 101}, 4, 16, IMM_UBYTE_RANGES_UNIT, {255, 0, 255, 0, 255, 255, 255, 255, 0, 255, 255, 255, 255, 255, 255, 255}}, {{87, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {87, 104, 101, 110, 87, 101, 87, 105, 108, 108, 66, 101, 87, 101, 100, 33}, 2, 16, IMM_UBYTE_ORDERED_UNIT, {0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0}}, }; #define TEST_MM_CMPESTRM_SBYTE_DATA_LEN 4 static test_mm_cmpestrm_sbyte_data_t test_mm_cmpestrm_sbyte_data[TEST_MM_CMPESTRM_SBYTE_DATA_LEN] = { {{-127, -127, 34, 88, 0, 1, -1, 78, 90, 9, 23, 34, 3, -128, 127, 0}, {0, -127, 34, 88, 12, 43, -128, 78, 8, 9, 43, 32, 7, 126, 115, 0}, 16, 16, IMM_SBYTE_EACH_UNIT, {0, -1, -1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1}}, {{0, 32, 7, 115, -128, 44, 33}, {0, -127, 34, 88, 12, 43, -128, 78, 8, 9, 43, 32, 7, 126, 115, 0}, 7, 10, IMM_SBYTE_ANY_UNIT_MASKED_NEGATIVE, {0, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0}}, {{-128, -80, -90, 10, 33}, {-126, -93, -80, -77, -56, -23, -10, -1, 0, 3, 10, 12, 13, 33, 34, 56}, 5, 16, IMM_SBYTE_RANGES_UNIT, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0}}, {{104, 9, -12}, {0, 0, 87, 104, 9, -12, 89, -117, 9, 10, -11, 87, -114, 104, 9, -61}, 3, 16, IMM_SBYTE_ORDERED_UNIT, {0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, }; #define TEST_MM_CMPESTRM_UWORD_DATA_LEN 4 static test_mm_cmpestrm_uword_data_t test_mm_cmpestrm_uword_data[TEST_MM_CMPESTRM_UWORD_DATA_LEN] = { {{1, 5, 13, 19, 22}, {12, 60000, 5, 1, 100, 1000, 34, 20}, 5, 8, IMM_UWORD_RANGES_UNIT, {0, 0, 65535, 65535, 0, 0, 0, 0}}, {{65535, 12, 7, 9876, 3456, 12345, 10, 98}, {65535, 0, 10, 9876, 3456, 0, 13, 32}, 8, 8, IMM_UWORD_EACH_UNIT, {65535, 0, 0, 65535, 65535, 0, 0, 0}}, {{100, 0}, {12345, 6766, 234, 0, 1, 34, 89, 100}, 2, 8, IMM_UWORD_ANY_BIT, {136, 0, 0, 0, 0, 0, 0, 0}}, {{123, 67, 890}, {123, 67, 890, 8900, 4, 0, 123, 67}, 3, 8, IMM_UWORD_ORDERED_UNIT, {65535, 0, 0, 0, 0, 0, 65535, 0}}, }; #define TEST_MM_CMPESTRM_SWORD_DATA_LEN 4 static test_mm_cmpestrm_sword_data_t test_mm_cmpestrm_sword_data[TEST_MM_CMPESTRM_SWORD_DATA_LEN] = { {{13, 6, 5, 4, 3, 2, 1, 3}, {-7, 16, 5, 4, -1, 6, 1, 3}, 10, 10, IMM_SWORD_RANGES_UNIT, {0, 0, 0, 0, 0, 0, -1, -1}}, {{85, 115, 101, 70, 108, 97, 116, 65}, {85, 115, 105, 110, 103, 65, 110, 65}, 8, 8, IMM_SWORD_EACH_UNIT, {-1, -1, 0, 0, 0, 0, 0, -1}}, {{-32768, 10000, 10, -13}, {-32767, 32767, -32768, 90, 0, -13, 23, 45}, 4, 8, IMM_SWORD_ANY_UNIT, {0, 0, -1, 0, 0, -1, 0, 0}}, {{10, 20, -10, 60}, {0, 0, 0, 10, 20, -10, 60, 10}, 4, 8, IMM_SWORD_ORDERED_UNIT, {0, 0, 0, -1, 0, 0, 0, -1}}, }; #define MM_CMPESTRM_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_EACH_UNIT_NEGATIVE, __VA_ARGS__) \ _(UBYTE_ANY_UNIT, __VA_ARGS__) \ _(UBYTE_RANGES_UNIT, __VA_ARGS__) \ _(UBYTE_ORDERED_UNIT, __VA_ARGS__) #define MM_CMPESTRM_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_UNIT, __VA_ARGS__) \ _(SBYTE_ANY_UNIT_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_RANGES_UNIT, __VA_ARGS__) \ _(SBYTE_ORDERED_UNIT, __VA_ARGS__) #define MM_CMPESTRM_UWORD_TEST_CASES(_, ...) \ _(UWORD_RANGES_UNIT, __VA_ARGS__) \ _(UWORD_EACH_UNIT, __VA_ARGS__) \ _(UWORD_ANY_BIT, __VA_ARGS__) \ _(UWORD_ORDERED_UNIT, __VA_ARGS__) #define MM_CMPESTRM_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_UNIT, __VA_ARGS__) \ _(SWORD_EACH_UNIT, __VA_ARGS__) \ _(SWORD_ANY_UNIT, __VA_ARGS__) \ _(SWORD_ORDERED_UNIT, __VA_ARGS__) #define GENERATE_MM_CMPESTRM_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestrm, CMPESTRM, \ IS_CMPESTRM) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestrm, CMPESTRM, \ IS_CMPESTRM) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestrm, CMPESTRM, \ IS_CMPESTRM) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestrm, CMPESTRM, \ IS_CMPESTRM) result_t test_mm_cmpestrm(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRM_TEST_CASES return TEST_SUCCESS; } #undef IS_CMPESTRM #define TEST_MM_CMPESTRO_UBYTE_DATA_LEN 4 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestro_ubyte_data[TEST_MM_CMPESTRO_UBYTE_DATA_LEN] = { {{56, 78, 255, 1, 9}, {56, 78, 43, 255, 1, 6, 9}, 5, 7, IMM_UBYTE_ANY_MOST_NEGATIVE, 0}, {{33, 44, 100, 24, 3, 89, 127, 254, 33, 45, 250}, {33, 44, 100, 22, 3, 98, 125, 254, 33, 4, 243}, 11, 11, IMM_UBYTE_EACH_LEAST_MASKED_NEGATIVE, 0}, {{34, 27, 18, 9}, {}, 4, 16, IMM_UBYTE_RANGES_LEAST_MASKED_NEGATIVE, 1}, {{3, 18, 216}, {3, 18, 222, 3, 17, 216, 3, 18, 216}, 3, 9, IMM_UBYTE_ORDERED_LEAST_NEGATIVE, 1}, }; #define TEST_MM_CMPESTRO_SBYTE_DATA_LEN 4 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestro_sbyte_data[TEST_MM_CMPESTRO_SBYTE_DATA_LEN] = { {{23, -23, 24, -24, 25, -25, 26, -26, 27, -27, 28, -28, -29, 29, 30, 31}, {24, -23, 25, -24, 25, -25, 26, -26, 27, -27, 28, -28, -29, 29, 30, 31}, 16, 16, IMM_SBYTE_EACH_MOST_NEGATIVE, 1}, {{34, 33, 67, 72, -90, 127, 33, -128, 123, -90, -100, 34, 43, 15, 56, 3}, {3, 14, 15, 65, 90, -127, 100, 100}, 16, 8, IMM_SBYTE_ANY_MOST, 1}, {{-13, 0, 34}, {-12, -11, 1, 12, 56, 57, 3, 2, -17}, 6, 9, IMM_SBYTE_RANGES_MOST_MASKED_NEGATIVE, 0}, {{1, 2, 3, 4, 5, 6, 7, 8}, {-1, -2, -3, -4, -5, -6, -7, -8, 1, 2, 3, 4, 5, 6, 7, 8}, 8, 16, IMM_SBYTE_ORDERED_MOST, 0}, }; #define TEST_MM_CMPESTRO_UWORD_DATA_LEN 4 static test_mm_cmpestri_uword_data_t test_mm_cmpestro_uword_data[TEST_MM_CMPESTRO_UWORD_DATA_LEN] = { {{0, 0, 0, 4, 4, 4, 8, 8}, {0, 0, 0, 3, 3, 16653, 3333, 222}, 8, 8, IMM_UWORD_EACH_MOST_MASKED_NEGATIVE, 0}, {{12, 666, 9456, 10000, 32, 444, 57, 0}, {11, 777, 9999, 32767, 23}, 8, 5, IMM_UWORD_ANY_LEAST_MASKED_NEGATIVE, 1}, {{23, 32, 45, 67}, {10022, 23, 32, 44, 66, 67, 12, 22}, 4, 8, IMM_UWORD_RANGES_LEAST_NEGATIVE, 1}, {{222, 45, 8989}, {221, 222, 45, 8989, 222, 45, 8989}, 3, 7, IMM_UWORD_ORDERED_MOST, 0}, }; #define TEST_MM_CMPESTRO_SWORD_DATA_LEN 4 static test_mm_cmpestri_sword_data_t test_mm_cmpestro_sword_data[TEST_MM_CMPESTRO_SWORD_DATA_LEN] = { {{-9999, -9487, -5000, -4433, -3000, -2999, -2000, -1087}, {-32767, -30000, -4998}, 100, 3, IMM_SWORD_RANGES_MOST_MASKED_NEGATIVE, 1}, {{-30, 89, 7777}, {-30, 89, 7777}, 3, 3, IMM_SWORD_EACH_MOST_MASKED_NEGATIVE, 0}, {{8, 9, -100, 1000, -5000, -32000, 32000, 7}, {29999, 32001, 5, 555}, 8, 4, IMM_SWORD_ANY_MOST_MASKED_NEGATIVE, 1}, {{-1, 56, -888, 9000, -23, 12, -1, -1}, {-1, 56, -888, 9000, -23, 12, -1, -1}, 8, 8, IMM_SWORD_ORDERED_MOST_MASKED_NEGATIVE, 0}, }; #define MM_CMPESTRO_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_MOST_NEGATIVE, __VA_ARGS__) \ _(UBYTE_EACH_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRO_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_MOST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ANY_MOST, __VA_ARGS__) \ _(SBYTE_RANGES_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ORDERED_MOST, __VA_ARGS__) #define MM_CMPESTRO_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UWORD_ANY_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UWORD_RANGES_LEAST_NEGATIVE, __VA_ARGS__) \ _(UWORD_ORDERED_MOST, __VA_ARGS__) #define MM_CMPESTRO_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_EACH_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_ANY_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_ORDERED_MOST_MASKED_NEGATIVE, __VA_ARGS__) #define GENERATE_MM_CMPESTRO_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestro, CMPESTRO, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestro, CMPESTRO, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestro, CMPESTRO, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestro, CMPESTRO, \ IS_CMPESTRI) result_t test_mm_cmpestro(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRO_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPESTRS_UBYTE_DATA_LEN 2 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestrs_ubyte_data[TEST_MM_CMPESTRS_UBYTE_DATA_LEN] = { {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, {0}, 16, 0, IMM_UBYTE_ANY_MOST, 0}, {{1, 2, 3}, {1, 2, 3}, 3, 8, IMM_UBYTE_RANGES_MOST, 1}, }; #define TEST_MM_CMPESTRS_SBYTE_DATA_LEN 2 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestrs_sbyte_data[TEST_MM_CMPESTRS_SBYTE_DATA_LEN] = { {{-1, -2, -3, -4, -100, 100, 1, 2, 3, 4}, {-90, -80, 111, 67, 88}, 10, 5, IMM_SBYTE_EACH_LEAST_MASKED_NEGATIVE, 1}, {{99, 100, 101, -99, -100, -101, 56, 7}, {-128, -126, 100, 127}, 23, 4, IMM_SBYTE_ORDERED_LEAST_MASKED_NEGATIVE, 0}, }; #define TEST_MM_CMPESTRS_UWORD_DATA_LEN 2 static test_mm_cmpestri_uword_data_t test_mm_cmpestrs_uword_data[TEST_MM_CMPESTRS_UWORD_DATA_LEN] = { {{1}, {90, 65535, 63355, 12, 8, 5, 34, 10000}, 100, 7, IMM_UWORD_ANY_MOST_NEGATIVE, 0}, {{}, {0}, 0, 28, IMM_UWORD_RANGES_MOST_MASKED_NEGATIVE, 1}, }; #define TEST_MM_CMPESTRS_SWORD_DATA_LEN 2 static test_mm_cmpestri_sword_data_t test_mm_cmpestrs_sword_data[TEST_MM_CMPESTRS_SWORD_DATA_LEN] = { {{-30000, 2897, 1111, -4455}, {30, 40, 500, 6000, 20, -10, -789, -29999}, 4, 8, IMM_SWORD_ORDERED_LEAST_MASKED_NEGATIVE, 1}, {{34, 56, 789, 1024, 2048, 4096, 8192, -16384}, {3, 9, -27, 81, -216, 1011}, 9, 6, IMM_SWORD_EACH_LEAST_NEGATIVE, 0}, }; #define MM_CMPESTRS_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_MOST, __VA_ARGS__) \ _(UBYTE_RANGES_MOST, __VA_ARGS__) #define MM_CMPESTRS_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST_MASKED_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRS_UWORD_TEST_CASES(_, ...) \ _(UWORD_ANY_MOST_NEGATIVE, __VA_ARGS__) \ _(UWORD_RANGES_MOST_MASKED_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRS_SWORD_TEST_CASES(_, ...) \ _(SWORD_ANY_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_EACH_LEAST_NEGATIVE, __VA_ARGS__) #define GENERATE_MM_CMPESTRS_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestrs, CMPESTRS, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestrs, CMPESTRS, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestrs, CMPESTRS, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestrs, CMPESTRS, \ IS_CMPESTRI) result_t test_mm_cmpestrs(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRS_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPESTRZ_UBYTE_DATA_LEN 2 static test_mm_cmpestri_ubyte_data_t test_mm_cmpestrz_ubyte_data[TEST_MM_CMPESTRZ_UBYTE_DATA_LEN] = { {{0, 1, 2, 3, 4, 5, 6, 7}, {12, 67, 0, 3}, 8, 4, IMM_UBYTE_ANY_MOST_MASKED_NEGATIVE, 1}, {{255, 0, 127, 88}, {1, 2, 4, 8, 16, 32, 64, 128, 254, 233, 209, 41, 66, 77, 90, 100}, 4, 16, IMM_UBYTE_RANGES_MOST_MASKED_NEGATIVE, 0}, }; #define TEST_MM_CMPESTRZ_SBYTE_DATA_LEN 2 static test_mm_cmpestri_sbyte_data_t test_mm_cmpestrz_sbyte_data[TEST_MM_CMPESTRZ_SBYTE_DATA_LEN] = { {{}, {-90, -80, 111, 67, 88}, 0, 18, IMM_SBYTE_EACH_LEAST_NEGATIVE, 0}, {{9, 10, 10, -99, -100, -101, 56, 76}, {-127, 127, -100, -120, 13, 108, 1, -66, -34, 89, -89, 123, 22, -19, -8}, 7, 15, IMM_SBYTE_ORDERED_LEAST_NEGATIVE, 1}, }; #define TEST_MM_CMPESTRZ_UWORD_DATA_LEN 2 static test_mm_cmpestri_uword_data_t test_mm_cmpestrz_uword_data[TEST_MM_CMPESTRZ_UWORD_DATA_LEN] = { {{1}, {9000, 33333, 63333, 120, 8, 55, 34, 100}, 100, 7, IMM_UWORD_ANY_LEAST_NEGATIVE, 1}, {{1, 2, 3}, {1, 10000, 65535, 8964, 9487, 32, 451, 666}, 3, 8, IMM_UWORD_RANGES_MOST_NEGATIVE, 0}, }; #define TEST_MM_CMPESTRZ_SWORD_DATA_LEN 2 static test_mm_cmpestri_sword_data_t test_mm_cmpestrz_sword_data[TEST_MM_CMPESTRZ_SWORD_DATA_LEN] = { {{30000, 28997, 11111, 4455}, {30, 40, 500, 6000, 20, -10, -789, -29999}, 4, 8, IMM_SWORD_ORDERED_LEAST_MASKED_NEGATIVE, 0}, {{789, 1024, 2048, 4096, 8192}, {-3, 9, -27, 18, -217, 10111, 22222}, 5, 7, IMM_SWORD_EACH_LEAST_MASKED_NEGATIVE, 1}, }; #define MM_CMPESTRZ_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_MOST, __VA_ARGS__) \ _(UBYTE_RANGES_MOST, __VA_ARGS__) #define MM_CMPESTRZ_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRZ_UWORD_TEST_CASES(_, ...) \ _(UWORD_ANY_LEAST_NEGATIVE, __VA_ARGS__) \ _(UWORD_RANGES_MOST_NEGATIVE, __VA_ARGS__) #define MM_CMPESTRZ_SWORD_TEST_CASES(_, ...) \ _(SWORD_ANY_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_EACH_LEAST_MASKED_NEGATIVE, __VA_ARGS__) #define GENERATE_MM_CMPESTRZ_TEST_CASES \ ENUM_MM_CMPESTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpestrz, CMPESTRZ, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpestrz, CMPESTRZ, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(UWORD, uword, uint16_t, cmpestrz, CMPESTRZ, \ IS_CMPESTRI) \ ENUM_MM_CMPESTRX_TEST_CASES(SWORD, sword, int16_t, cmpestrz, CMPESTRZ, \ IS_CMPESTRI) result_t test_mm_cmpestrz(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPESTRZ_TEST_CASES return TEST_SUCCESS; } #undef IS_CMPESTRI result_t test_mm_cmpgt_epi64(const SSE2NEONTestImpl &impl, uint32_t iter) { const int64_t *_a = (const int64_t *) impl.mTestIntPointer1; const int64_t *_b = (const int64_t *) impl.mTestIntPointer2; int64_t result[2]; result[0] = _a[0] > _b[0] ? -1 : 0; result[1] = _a[1] > _b[1] ? -1 : 0; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); __m128i iret = _mm_cmpgt_epi64(a, b); return validateInt64(iret, result[0], result[1]); } #define IS_CMPISTRI 1 #define DEF_ENUM_MM_CMPISTRX_VARIANT(c, ...) c, #define EVAL_MM_CMPISTRX_TEST_CASE(c, type, data_type, im, IM) \ do { \ data_type *a = test_mm_##im##_##type##_data[c].a, \ *b = test_mm_##im##_##type##_data[c].b; \ const int imm8 = IMM_##c; \ IIF(IM) \ (int expect = test_mm_##im##_##type##_data[c].expect, \ data_type *expect = test_mm_##im##_##type##_data[c].expect); \ __m128i ma, mb; \ memcpy(&ma, a, sizeof(ma)); \ memcpy(&mb, b, sizeof(mb)); \ IIF(IM) \ (int res = _mm_##im(ma, mb, imm8), \ __m128i res = _mm_##im(ma, mb, imm8)); \ if (IIF(IM)(res != expect, memcmp(expect, &res, sizeof(__m128i)))) \ return TEST_FAIL; \ } while (0); #define ENUM_MM_CMPISTRX_TEST_CASES(type, type_lower, data_type, func, FUNC, \ IM) \ enum { MM_##FUNC##_##type##_TEST_CASES(DEF_ENUM_MM_CMPISTRX_VARIANT) }; \ MM_##FUNC##_##type##_TEST_CASES(EVAL_MM_CMPISTRX_TEST_CASE, type_lower, \ data_type, func, IM) typedef struct { uint8_t a[16], b[16]; const int imm8; int expect; } test_mm_cmpistri_ubyte_data_t; typedef struct { int8_t a[16], b[16]; const int imm8; int expect; } test_mm_cmpistri_sbyte_data_t; typedef struct { uint16_t a[8], b[8]; const int imm8; int expect; } test_mm_cmpistri_uword_data_t; typedef struct { int16_t a[8], b[8]; const int imm8; int expect; } test_mm_cmpistri_sword_data_t; #define TEST_MM_CMPISTRA_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistra_ubyte_data[TEST_MM_CMPISTRA_UBYTE_DATA_LEN] = { {{10, 11, 12, 13, 14, 15, 16, 17, 18, 9, 20, 98, 97, 96, 95, 127}, {1, 2, 3, 4, 5, 6, 7, 8, 99, 100, 101, 102, 103, 104, 105, 106}, IMM_UBYTE_ANY_LEAST, 1}, {{1, 22, 33, 44, 5, 66, 7, 88, 9, 10, 111, 0}, {2, 23, 34, 21, 6, 65, 8, 84, 99, 100, 11, 112, 123, 14, 15, 6}, IMM_UBYTE_EACH_LEAST, 1}, {{5, 15, 25, 35, 45, 55, 65, 75, 0}, {4, 6, 14, 16, 24, 26, 34, 36, 44, 46, 54, 56, 74, 76}, IMM_UBYTE_RANGES_LEAST, 0}, {{4, 14, 64, 84, 0}, {4, 14, 64, 84, 0, 4, 14, 65, 84, 0, 4, 14, 64, 84, 0, 1}, IMM_UBYTE_ORDERED_MOST_NEGATIVE, 0}, }; #define TEST_MM_CMPISTRA_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistra_sbyte_data[TEST_MM_CMPISTRA_SBYTE_DATA_LEN] = { {{-11, -13, -43, -50, 66, 77, 87, 98, -128, 127, 126, 99, 1, 2, 3, -5}, {-12, -13, -43, -56, 66, 78, 88, 98, -125, 127, 120, 9, 100, 22, 54, -10}, IMM_SBYTE_EACH_LEAST, 0}, {{10, 11, 100, -90, 0}, {8, 9, 10, 11, 0, 8, 9, 10, -90, 0}, IMM_SBYTE_ANY_LEAST_NEGATIVE, 0}, {{-90, -60, -34, -25, 34, 56, 70, 79, 0}, {-100, -59, -35, -24, -101, 33, 57, 69, 80, 81, -128, 100, 101, 102, -101, -102}, IMM_SBYTE_RANGES_LEAST, 1}, {{1, 1, 1, 1, -1, -1, -1, -1, -10, 10, -10, 10, 44, -44, 44, -44}, {1, 1, -1, 1, -1, -1, -1, -1, -10, 10, -10, 10, 44, -44, 44, -44}, IMM_SBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRA_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistra_uword_data[TEST_MM_CMPISTRA_UWORD_DATA_LEN] = { {{88, 888, 8888, 31888, 10888, 18088, 10880, 28888}, {888, 88, 8888, 32000, 10888, 18000, 10888, 28888}, IMM_UWORD_EACH_LEAST_NEGATIVE, 0}, {{3, 4, 555, 6666, 7777, 888, 9, 100}, {1, 2, 333, 4444, 5555, 666, 7, 8}, IMM_UWORD_ANY_LEAST, 1}, {{1000, 2000, 2002, 3000, 3002, 4000, 5000, 5999}, {999, 2001, 3001, 4001, 4002, 4999, 6000, 6001}, IMM_UWORD_RANGES_LEAST, 1}, {{55, 66, 77, 888, 0}, {55, 66, 77, 888, 0, 33, 2, 10000}, IMM_UWORD_ORDERED_LEAST, 0}, }; #define TEST_MM_CMPISTRA_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistra_sword_data[TEST_MM_CMPISTRA_SWORD_DATA_LEN] = { {{-32000, -28000, 0}, {-32001, -29999, -28001, -28000, -27999, -26000, -32768}, IMM_SWORD_RANGES_LEAST_MASKED_NEGATIVE, 0}, {{-12, -11, -10, -9, -8, -7, 90, 1000}, {-13, -10, 9, -8, -7, 1000, 1000, 90}, IMM_SWORD_EACH_LEAST, 1}, {{33, 44, 787, 23, 0}, {32, 43, 788, 0, 32, 0, 43, 0}, IMM_SWORD_ANY_LEAST, 0}, {{18, 78, 999, -56, 0}, {18, 78, 999, 56, 18, 78, 999, 4}, IMM_SWORD_ORDERED_LEAST, 1}, }; #define MM_CMPISTRA_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_MOST_NEGATIVE, __VA_ARGS__) #define MM_CMPISTRA_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRA_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST_NEGATIVE, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRA_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_LEAST, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRA_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistra, CMPISTRA, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistra, CMPISTRA, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistra, CMPISTRA, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistra, CMPISTRA, \ IS_CMPISTRI) result_t test_mm_cmpistra(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRA_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPISTRC_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistrc_ubyte_data[TEST_MM_CMPISTRC_UBYTE_DATA_LEN] = { {{89, 64, 88, 23, 11, 109, 34, 55, 0}, {2, 64, 87, 32, 1, 110, 43, 66, 0}, IMM_UBYTE_ANY_LEAST, 1}, {{99, 67, 2, 127, 125, 3, 24, 77, 32, 68, 96, 74, 70, 110, 111, 5}, {98, 88, 67, 125, 111, 4, 56, 88, 33, 69, 99, 79, 123, 11, 10, 6}, IMM_UBYTE_EACH_LEAST, 0}, {{2, 3, 74, 78, 81, 83, 85, 87, 89, 90, 0}, {86, 90, 74, 85, 87, 81, 2, 3, 3, 3, 75, 76, 77, 78, 82, 85}, IMM_UBYTE_RANGES_MOST_NEGATIVE, 0}, {{45, 67, 8, 9, 0}, {67, 45, 67, 8, 9, 45, 67, 8, 9, 45, 67, 8, 9, 45, 67, 8}, IMM_UBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRC_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistrc_sbyte_data[TEST_MM_CMPISTRC_SBYTE_DATA_LEN] = { {{35, -35, 67, -66, 34, 55, 12, -100, 34, -34, 66, -67, 52, 100, 127, -128}, {35, -35, 67, -66, 0, 55, 12, -100, 0, -34, 66, -67, 0, 100, 127, -128}, IMM_SBYTE_EACH_MOST_MASKED_NEGATIVE, 0}, {{-119, 112, 105, 104, 0}, {119, -112, 105, -104, 104, -34, 112, -119, 0}, IMM_SBYTE_ANY_LEAST, 1}, {{-79, -69, -40, -35, 34, 45, 67, 88, 0}, {1, 2, 3, 4, 5, 6, 7, 8, 0}, IMM_SBYTE_RANGES_LEAST, 0}, {{22, -109, 123, 115, -12, 0}, {22, -109, 12, 115, 22, -109, 123, 115, -12, 0}, IMM_SBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRC_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistrc_uword_data[TEST_MM_CMPISTRC_UWORD_DATA_LEN] = { {{23, 45, 67, 89, 102, 121, 23, 45}, {23, 45, 67, 89, 102, 121, 23, 44}, IMM_UWORD_EACH_LEAST, 1}, {{1, 11, 55, 75}, {13, 14, 56, 77, 0}, IMM_UWORD_ANY_LEAST, 0}, {{1, 9, 11, 19, 21, 29, 91, 99}, {10, 29, 30, 40, 50, 60, 70, 80}, IMM_UWORD_RANGES_LEAST, 1}, {{3, 4, 5, 0}, {0, 3, 4, 5, 3, 4, 5, 0}, IMM_UWORD_ORDERED_LEAST_MASKED_NEGATIVE, 0}, }; #define TEST_MM_CMPISTRC_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistrc_sword_data[TEST_MM_CMPISTRC_SWORD_DATA_LEN] = { {{-78, -56, 1000, 1002}, {-79, -55, -12, -13, 999, 1003, -80, 10000}, IMM_SWORD_RANGES_LEAST, 0}, {{45, 32767, -30000, 2345, -23450, 0}, {45, 32767, -30000, 2346, -23456, 0, 45, 333}, IMM_SWORD_EACH_LEAST, 1}, {{-10000, -20000, -30000, 10000, 20000, 30000, 0}, {10000, 20000, 30000, -10000, -20000, 20000, -30000, 12}, IMM_SWORD_ANY_MOST_NEGATIVE, 1}, {{1, 2, -3, -55, -666, -7777, 8888}, {2, -3, -55, -666, -7777, 8888, 1}, IMM_SWORD_ORDERED_LEAST, 0}, }; #define MM_CMPISTRC_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_MOST_NEGATIVE, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRC_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRC_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_LEAST_MASKED_NEGATIVE, __VA_ARGS__) #define MM_CMPISTRC_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_MOST_NEGATIVE, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRC_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistrc, CMPISTRC, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistrc, CMPISTRC, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistrc, CMPISTRC, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistrc, CMPISTRC, \ IS_CMPISTRI) result_t test_mm_cmpistrc(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRC_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPISTRI_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistri_ubyte_data[TEST_MM_CMPISTRI_UBYTE_DATA_LEN] = { {{104, 117, 110, 116, 114, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {33, 64, 35, 36, 37, 94, 38, 42, 40, 41, 91, 93, 58, 59, 60, 62}, IMM_UBYTE_ANY_LEAST, 16}, {{4, 5, 6, 7, 8, 111, 34, 21, 0, 0, 0, 0, 0, 0, 0, 0}, {5, 6, 7, 8, 8, 111, 43, 12, 0, 0, 0, 0, 0, 0, 0, 0}, IMM_UBYTE_EACH_MOST_MASKED_NEGATIVE, 15}, {{65, 90, 97, 122, 48, 57, 0}, {47, 46, 43, 44, 42, 43, 45, 41, 40, 123, 124, 125, 126, 127, 1, 2}, IMM_UBYTE_RANGES_LEAST, 16}, {{111, 222, 22, 0}, {33, 44, 55, 66, 77, 88, 99, 111, 222, 22, 11, 0}, IMM_UBYTE_ORDERED_LEAST, 7}, }; #define TEST_MM_CMPISTRI_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistri_sbyte_data[TEST_MM_CMPISTRI_SBYTE_DATA_LEN] = { {{1, 2, 3, 4, 5, -99, -128, -100, -1, 49, 0}, {2, 3, 3, 4, 5, -100, -128, -99, 1, 44, 0}, IMM_SBYTE_EACH_LEAST, 2}, {{99, 100, 23, -90, 0}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 99, 100, 23, -90, -90, 100}, IMM_SBYTE_ANY_LEAST, 10}, {{-10, -2, 89, 97, 0}, {-11, -12, -3, 1, 97, 0}, IMM_SBYTE_RANGES_LEAST_NEGATIVE, 0}, {{-10, -90, -22, 30, 87, 127, 0}, {0}, IMM_SBYTE_ORDERED_LEAST, 16}, }; #define TEST_MM_CMPISTRI_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistri_uword_data[TEST_MM_CMPISTRI_UWORD_DATA_LEN] = { {{38767, 99, 1234, 65535, 2222, 1, 34456, 11}, {38768, 999, 1235, 4444, 2222, 1, 34456, 12}, IMM_UWORD_EACH_LEAST, 4}, {{22222, 33333, 44444, 55555, 6000, 600, 60, 6}, {0}, IMM_UWORD_ANY_LEAST, 8}, {{34, 777, 1000, 1004, 0}, {33, 32, 889, 1003, 0}, IMM_UWORD_RANGES_LEAST, 3}, {{44, 555, 44, 0}, {44, 555, 44, 555, 44, 555, 44, 0}, IMM_UWORD_ORDERED_MOST_NEGATIVE, 7}, }; #define TEST_MM_CMPISTRI_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistri_sword_data[TEST_MM_CMPISTRI_SWORD_DATA_LEN] = { {{-1, -5, 10, 30, 40, 0}, {13, -2, 7, 80, 11, 0}, IMM_SWORD_RANGES_LEAST, 0}, {{-12, 12, 6666, 777, 0}, {11, 12, 6666, 777, 0}, IMM_SWORD_EACH_LEAST, 1}, {{23, 22, 33, 567, 9999, 12345, 0}, {23, 22, 23, 22, 23, 22, 23, 12222}, IMM_SWORD_ANY_MOST, 6}, {{12, -234, -567, 8888, 0}, {13, -234, -567, 8888, 12, -234, -567, 8889}, IMM_SWORD_ORDERED_LEAST, 8}, }; #define MM_CMPISTRI_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRI_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRI_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_MOST_NEGATIVE, __VA_ARGS__) #define MM_CMPISTRI_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_MOST, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRI_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistri, CMPISTRI, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistri, CMPISTRI, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistri, CMPISTRI, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistri, CMPISTRI, \ IS_CMPISTRI) result_t test_mm_cmpistri(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRI_TEST_CASES return TEST_SUCCESS; } #define IS_CMPISTRM 0 typedef struct { uint8_t a[16], b[16]; const int imm8; uint8_t expect[16]; } test_mm_cmpistrm_ubyte_data_t; typedef struct { int8_t a[16], b[16]; const int imm8; int8_t expect[16]; } test_mm_cmpistrm_sbyte_data_t; typedef struct { uint16_t a[8], b[8]; const int imm8; uint16_t expect[8]; } test_mm_cmpistrm_uword_data_t; typedef struct { int16_t a[8], b[8]; const int imm8; int16_t expect[8]; } test_mm_cmpistrm_sword_data_t; #define TEST_MM_CMPISTRM_UBYTE_DATA_LEN 4 static test_mm_cmpistrm_ubyte_data_t test_mm_cmpistrm_ubyte_data[TEST_MM_CMPISTRM_UBYTE_DATA_LEN] = { {{88, 89, 90, 91, 92, 93, 0}, {78, 88, 99, 127, 92, 93, 0}, IMM_UBYTE_EACH_UNIT, {0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}}, {{30, 41, 52, 63, 74, 85, 0}, {30, 42, 51, 63, 74, 85, 0}, IMM_UBYTE_ANY_BIT, {57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{34, 32, 21, 16, 7, 0}, {34, 33, 32, 31, 30, 29, 10, 6, 0}, IMM_UBYTE_RANGES_UNIT, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{33, 21, 123, 89, 76, 56, 0}, {33, 21, 124, 33, 21, 123, 89, 76, 56, 33, 21, 123, 89, 76, 56, 22}, IMM_UBYTE_ORDERED_UNIT, {0, 0, 0, 255, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0}}, }; #define TEST_MM_CMPISTRM_SBYTE_DATA_LEN 4 static test_mm_cmpistrm_sbyte_data_t test_mm_cmpistrm_sbyte_data[TEST_MM_CMPISTRM_SBYTE_DATA_LEN] = { {{-11, -90, -128, 127, 66, 45, 23, 32, 99, 10, 0}, {-10, -90, -124, 33, 66, 45, 23, 22, 99, 100, 0}, IMM_SBYTE_EACH_BIT_MASKED_NEGATIVE, {-115, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{13, 14, 55, 1, 32, 100, 101, 102, 103, 97, 23, 21, 45, 54, 55, 56}, {22, 109, 87, 45, 1, 103, 22, 102, 43, 87, 78, 56, 65, 55, 44, 33}, IMM_SBYTE_ANY_UNIT, {0, 0, 0, -1, -1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0}}, {{-31, -28, -9, 10, 45, 67, 88, 0}, {-30, -32, -33, -44, 93, 44, 9, 89, 0}, IMM_SBYTE_RANGES_UNIT, {-1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{34, -10, 78, -99, -100, 100, 0}, {34, 123, 88, 4, 34, -10, 78, -99, -100, 100, 34, -10, 78, -99, -100, -100}, IMM_SBYTE_ORDERED_UNIT, {0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, }; #define TEST_MM_CMPISTRM_UWORD_DATA_LEN 4 static test_mm_cmpistrm_uword_data_t test_mm_cmpistrm_uword_data[TEST_MM_CMPISTRM_UWORD_DATA_LEN] = { {{1024, 2048, 4096, 5000, 0}, {1023, 1000, 2047, 1596, 5566, 5666, 4477, 9487}, IMM_UWORD_RANGES_UNIT, {0, 0, 65535, 65535, 0, 0, 65535, 0}}, {{1, 2, 345, 7788, 10000, 0}, {2, 1, 345, 7788, 10000, 0}, IMM_UWORD_EACH_UNIT, {0, 0, 65535, 65535, 65535, 65535, 65535, 65535}}, {{100, 0}, {12345, 6766, 234, 0, 1, 34, 89, 100}, IMM_UWORD_ANY_UNIT, {0, 0, 0, 0, 0, 0, 0, 0}}, {{34, 122, 9000, 0}, {34, 122, 9000, 34, 122, 9000, 34, 122}, IMM_UWORD_ORDERED_UNIT_NEGATIVE, {0, 65535, 65535, 0, 65535, 65535, 0, 65535}}, }; #define TEST_MM_CMPISTRM_SWORD_DATA_LEN 4 static test_mm_cmpistrm_sword_data_t test_mm_cmpistrm_sword_data[TEST_MM_CMPISTRM_SWORD_DATA_LEN] = { {{-39, -10, 17, 89, 998, 1000, 1234, 4566}, {-40, -52, -39, -29, 100, 1024, 4565, 4600}, IMM_SWORD_RANGES_BIT, {0, 0, -1, -1, 0, 0, -1, 0}}, {{345, -1900, -10000, -30000, 50, 6789, 0}, {103, -1901, -10000, 32767, 50, 6780, 0}, IMM_SWORD_EACH_UNIT, {0, 0, -1, 0, -1, 0, -1, -1}}, {{677, 10001, 1001, 23, 0}, {345, 677, 10001, 1003, 1001, 32, 23, 677}, IMM_SWORD_ANY_UNIT, {0, -1, -1, 0, -1, 0, -1, -1}}, {{1024, -2288, 3752, -4096, 0}, {1024, 1024, -2288, 3752, -4096, 1024, -2288, 3752}, IMM_SWORD_ORDERED_UNIT, {0, -1, 0, 0, 0, -1, 0, 0}}, }; #define MM_CMPISTRM_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_EACH_UNIT, __VA_ARGS__) \ _(UBYTE_ANY_BIT, __VA_ARGS__) \ _(UBYTE_RANGES_UNIT, __VA_ARGS__) \ _(UBYTE_ORDERED_UNIT, __VA_ARGS__) #define MM_CMPISTRM_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_BIT_MASKED_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ANY_UNIT, __VA_ARGS__) \ _(SBYTE_RANGES_UNIT, __VA_ARGS__) \ _(SBYTE_ORDERED_UNIT, __VA_ARGS__) #define MM_CMPISTRM_UWORD_TEST_CASES(_, ...) \ _(UWORD_RANGES_UNIT, __VA_ARGS__) \ _(UWORD_EACH_UNIT, __VA_ARGS__) \ _(UWORD_ANY_UNIT, __VA_ARGS__) \ _(UWORD_ORDERED_UNIT_NEGATIVE, __VA_ARGS__) #define MM_CMPISTRM_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_UNIT, __VA_ARGS__) \ _(SWORD_EACH_UNIT, __VA_ARGS__) \ _(SWORD_ANY_UNIT, __VA_ARGS__) \ _(SWORD_ORDERED_UNIT, __VA_ARGS__) #define GENERATE_MM_CMPISTRM_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistrm, CMPISTRM, \ IS_CMPISTRM) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistrm, CMPISTRM, \ IS_CMPISTRM) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistrm, CMPISTRM, \ IS_CMPISTRM) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistrm, CMPISTRM, \ IS_CMPISTRM) result_t test_mm_cmpistrm(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRM_TEST_CASES return TEST_SUCCESS; } #undef IS_CMPISTRM #define TEST_MM_CMPISTRO_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistro_ubyte_data[TEST_MM_CMPISTRO_UBYTE_DATA_LEN] = { {{3, 4, 5, 0}, {5, 5, 5, 4, 3, 0}, IMM_UBYTE_ANY_LEAST, 1}, {{23, 127, 88, 3, 45, 6, 7, 2, 0}, {32, 127, 87, 2, 44, 32, 1, 2, 0}, IMM_UBYTE_EACH_MOST_NEGATIVE, 1}, {{3, 4, 55, 56, 0}, {2, 3, 4, 5, 43, 54, 55, 56, 0}, IMM_UBYTE_RANGES_LEAST, 0}, {{55, 66, 77, 11, 23, 0}, {55, 55, 66, 77, 11, 23, 55, 66, 77, 11, 23, 33, 123, 18, 0}, IMM_UBYTE_ORDERED_LEAST, 0}, }; #define TEST_MM_CMPISTRO_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistro_sbyte_data[TEST_MM_CMPISTRO_SBYTE_DATA_LEN] = { {{33, -33, 23, -32, -1, -1, 23, 46, 78, 34, 54, 100, 90, 91, 92, 101}, {32, 33, 23, -33, -2, -3, 23, 46, -78, 43, 56, 10, 9, 91, 90, 126}, IMM_SBYTE_EACH_LEAST, 0}, {{-1, -2, -3, -4, -5, -6, -7, -8, 87, 86, 85, 84, 83, 82, 81, 80}, {87, 79, 0}, IMM_SBYTE_ANY_LEAST, 1}, {{3, 4, 2, 0}, {3, 3, 4, 5, 6, 2, 0}, IMM_SBYTE_RANGES_MOST_NEGATIVE, 0}, {{23, 66, 1, 13, 17, 1, 13, 17, 0}, {23, 66, 1, 13, 17, 1, 13, 17, 32, 23, 66, 1, 13, 17, 1, 13}, IMM_SBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRO_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistro_uword_data[TEST_MM_CMPISTRO_UWORD_DATA_LEN] = { {{3333, 4444, 10000, 20000, 40000, 50000, 65535, 0}, {3332, 4443, 10000, 20001, 40000, 50000, 65534, 0}, IMM_UWORD_EACH_LEAST, 0}, {{1, 2, 333, 4444, 55555, 7777, 23, 347}, {4444, 7777, 55555, 23, 347, 2, 1, 0}, IMM_UWORD_ANY_LEAST, 1}, {{356, 380, 320, 456, 0}, {455, 379, 333, 319, 300, 299, 0}, IMM_UWORD_RANGES_LEAST, 1}, {{3, 1001, 235, 0}, {3, 1001, 235, 0, 3, 1001, 235, 0}, IMM_UWORD_ORDERED_MOST_MASKED_NEGATIVE, 0}, }; #define TEST_MM_CMPISTRO_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistro_sword_data[TEST_MM_CMPISTRO_SWORD_DATA_LEN] = { {{-10, -5, -100, -90, 45, 56, 1000, 1009}, {54, -1, -5, -6, 1001, 10001, 1009, 1009}, IMM_SWORD_RANGES_LEAST, 1}, {{456, -32768, 32767, 13, 0}, {455, -32768, 32767, 31, 0}, IMM_SWORD_EACH_LEAST, 0}, {{23, 46, -44, 32000, 0}, {23, 66, -44, 678, 32000, 0}, IMM_SWORD_ANY_MOST_MASKED_NEGATIVE, 0}, {{-7900, -101, -34, 666, 345, 0}, {-7900, -101, -34, 666, 345, -7900, -191, -34}, IMM_SWORD_ORDERED_LEAST, 1}, }; #define MM_CMPISTRO_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_MOST_NEGATIVE, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRO_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_MOST_NEGATIVE, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRO_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_MOST_MASKED_NEGATIVE, __VA_ARGS__) #define MM_CMPISTRO_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_MOST_MASKED_NEGATIVE, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRO_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistro, CMPISTRO, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistro, CMPISTRO, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistro, CMPISTRO, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistro, CMPISTRO, \ IS_CMPISTRI) result_t test_mm_cmpistro(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRO_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPISTRS_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistrs_ubyte_data[TEST_MM_CMPISTRS_UBYTE_DATA_LEN] = { {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, {1, 2, 3, 4, 5, 0}, IMM_UBYTE_ANY_LEAST, 0}, {{127, 126, 125, 124, 0}, {127, 1, 34, 43, 54, 0}, IMM_UBYTE_EACH_LEAST, 1}, {{127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127}, {56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 0}, IMM_UBYTE_RANGES_LEAST, 0}, {{33, 44, 55, 78, 99, 100, 101, 102, 0}, {0}, IMM_UBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRS_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistrs_sbyte_data[TEST_MM_CMPISTRS_SBYTE_DATA_LEN] = { {{100, 99, 98, 97, -67, -4, -5, -6, -7, -1, -2, -3, -128, -128, -128, -128}, {0}, IMM_SBYTE_EACH_LEAST, 0}, {{-128, -128, -128, -128, 127, 127, 127, 127, -128, -128, -128, -128, 127, 127, 127, 127}, {-1, -2, -11, -98, -12, 0}, IMM_SBYTE_ANY_LEAST, 0}, {{0, 1, 2, 3, 4, 5, -6, -7}, {0, 1, 2, 3, 4, 5, 6, 7}, IMM_SBYTE_RANGES_LEAST, 1}, {{0, 1, 0, -1, 0, -2, 0, 0, -3, 4, 0, 0, 5, 6, 7, 8}, {0}, IMM_SBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRS_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistrs_uword_data[TEST_MM_CMPISTRS_UWORD_DATA_LEN] = { {{0, 1, 2, 3, 65535, 0, 0, 0}, {9, 8, 7, 6, 5, 4, 3, 2}, IMM_UWORD_EACH_LEAST, 1}, {{4, 567, 65535, 32, 34, 0}, {0}, IMM_UWORD_ANY_LEAST, 1}, {{65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535}, {1, 2, 3, 4, 900, 7890, 6767, 0}, IMM_UWORD_RANGES_LEAST, 0}, {{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4, 0}, IMM_UWORD_ORDERED_LEAST, 0}, }; #define TEST_MM_CMPISTRS_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistrs_sword_data[TEST_MM_CMPISTRS_SWORD_DATA_LEN] = { {{-32768, -32768, -32768, -32768, -32768, -32768, -32768, -3276}, {34, 45, 6, 7, 9, 8, 7, 6}, IMM_SWORD_RANGES_LEAST, 0}, {{1000, 2000, 4000, 8000, 16000, 32000, 32767, 0}, {3, 4, 56, 23, 0}, IMM_SWORD_EACH_LEAST, 1}, {{0, 1, 3, 4, -32768, 9, 0, 1}, {56, 47, 43, 999, 1111, 0}, IMM_SWORD_ANY_LEAST, 1}, {{1111, 1212, 831, 2345, 32767, 32767, -32768, 32767}, {0}, IMM_SWORD_ORDERED_LEAST, 0}, }; #define MM_CMPISTRS_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRS_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRS_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRS_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_LEAST, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRS_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistrs, CMPISTRS, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistrs, CMPISTRS, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistrs, CMPISTRS, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistrs, CMPISTRS, \ IS_CMPISTRI) result_t test_mm_cmpistrs(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRS_TEST_CASES return TEST_SUCCESS; } #define TEST_MM_CMPISTRZ_UBYTE_DATA_LEN 4 static test_mm_cmpistri_ubyte_data_t test_mm_cmpistrz_ubyte_data[TEST_MM_CMPISTRZ_UBYTE_DATA_LEN] = { {{0}, {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, IMM_UBYTE_ANY_LEAST, 0}, {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, {1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 6, 7, 89, 89, 89, 89}, IMM_UBYTE_EACH_LEAST, 0}, {{1, 2, 3, 4, 0}, {}, IMM_UBYTE_RANGES_LEAST, 1}, {{127, 126, 125, 124, 124, 0}, {100, 101, 123, 100, 111, 122, 0}, IMM_UBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRZ_SBYTE_DATA_LEN 4 static test_mm_cmpistri_sbyte_data_t test_mm_cmpistrz_sbyte_data[TEST_MM_CMPISTRZ_SBYTE_DATA_LEN] = { {{127, 126, 99, -100, 0}, {-128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128, -128}, IMM_SBYTE_EACH_LEAST, 0}, {{120, 66, 54, 0}, {3, 4, 5, -99, -6, 0}, IMM_SBYTE_ANY_LEAST, 1}, {{0}, {127, 127, 127, 127, 126, 126, 126, 126, -127, -127, -127, -127, -1, -1, -1, -1}, IMM_SBYTE_RANGES_LEAST, 0}, {{12, 3, 4, 5, 6, 7, 8, 0}, {-1, -2, -3, -4, -6, 75, 0}, IMM_SBYTE_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRZ_UWORD_DATA_LEN 4 static test_mm_cmpistri_uword_data_t test_mm_cmpistrz_uword_data[TEST_MM_CMPISTRZ_UWORD_DATA_LEN] = { {{10000, 20000, 50000, 40000, 0}, {65535, 65533, 60000, 60000, 50000, 123, 1, 2}, IMM_UWORD_EACH_LEAST, 0}, {{0}, {65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535}, IMM_UWORD_ANY_LEAST, 0}, {{3, 333, 3333, 33333, 0}, {0}, IMM_UWORD_RANGES_LEAST, 1}, {{123, 456, 7, 890, 0}, {123, 456, 7, 900, 0}, IMM_UWORD_ORDERED_LEAST, 1}, }; #define TEST_MM_CMPISTRZ_SWORD_DATA_LEN 4 static test_mm_cmpistri_sword_data_t test_mm_cmpistrz_sword_data[TEST_MM_CMPISTRZ_SWORD_DATA_LEN] = { {{2, 22, 222, 2222, 22222, -2222, -222, -22}, {-32768, 32767, -32767, 32766, -32766, 32765, -32768, 32767}, IMM_SWORD_RANGES_LEAST, 0}, {{345, 10000, -10000, -30000, 0}, {1, 2, 3, 4, 5, 6, 7, 0}, IMM_SWORD_EACH_LEAST, 1}, {{}, {0}, IMM_SWORD_ANY_LEAST, 1}, {{1, 2, -789, -1, -90, 0}, {1, 10, 100, 1000, 10000, -10000, -1000, 1000}, IMM_SWORD_ORDERED_LEAST, 0}, }; #define MM_CMPISTRZ_UBYTE_TEST_CASES(_, ...) \ _(UBYTE_ANY_LEAST, __VA_ARGS__) \ _(UBYTE_EACH_LEAST, __VA_ARGS__) \ _(UBYTE_RANGES_LEAST, __VA_ARGS__) \ _(UBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRZ_SBYTE_TEST_CASES(_, ...) \ _(SBYTE_EACH_LEAST, __VA_ARGS__) \ _(SBYTE_ANY_LEAST, __VA_ARGS__) \ _(SBYTE_RANGES_LEAST, __VA_ARGS__) \ _(SBYTE_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRZ_UWORD_TEST_CASES(_, ...) \ _(UWORD_EACH_LEAST, __VA_ARGS__) \ _(UWORD_ANY_LEAST, __VA_ARGS__) \ _(UWORD_RANGES_LEAST, __VA_ARGS__) \ _(UWORD_ORDERED_LEAST, __VA_ARGS__) #define MM_CMPISTRZ_SWORD_TEST_CASES(_, ...) \ _(SWORD_RANGES_LEAST, __VA_ARGS__) \ _(SWORD_EACH_LEAST, __VA_ARGS__) \ _(SWORD_ANY_LEAST, __VA_ARGS__) \ _(SWORD_ORDERED_LEAST, __VA_ARGS__) #define GENERATE_MM_CMPISTRZ_TEST_CASES \ ENUM_MM_CMPISTRX_TEST_CASES(UBYTE, ubyte, uint8_t, cmpistrz, CMPISTRZ, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SBYTE, sbyte, int8_t, cmpistrz, CMPISTRZ, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(UWORD, uword, uint16_t, cmpistrz, CMPISTRZ, \ IS_CMPISTRI) \ ENUM_MM_CMPISTRX_TEST_CASES(SWORD, sword, int16_t, cmpistrz, CMPISTRZ, \ IS_CMPISTRI) result_t test_mm_cmpistrz(const SSE2NEONTestImpl &impl, uint32_t iter) { GENERATE_MM_CMPISTRZ_TEST_CASES return TEST_SUCCESS; } result_t test_mm_crc32_u16(const SSE2NEONTestImpl &impl, uint32_t iter) { uint32_t crc = *(const uint32_t *) impl.mTestIntPointer1; uint16_t v = (uint16_t) iter; uint32_t result = _mm_crc32_u16(crc, v); ASSERT_RETURN(result == canonical_crc32_u16(crc, v)); return TEST_SUCCESS; } result_t test_mm_crc32_u32(const SSE2NEONTestImpl &impl, uint32_t iter) { uint32_t crc = *(const uint32_t *) impl.mTestIntPointer1; uint32_t v = *(const uint32_t *) impl.mTestIntPointer2; uint32_t result = _mm_crc32_u32(crc, v); ASSERT_RETURN(result == canonical_crc32_u32(crc, v)); return TEST_SUCCESS; } result_t test_mm_crc32_u64(const SSE2NEONTestImpl &impl, uint32_t iter) { uint64_t crc = *(const uint64_t *) impl.mTestIntPointer1; uint64_t v = *(const uint64_t *) impl.mTestIntPointer2; uint64_t result = _mm_crc32_u64(crc, v); ASSERT_RETURN(result == canonical_crc32_u64(crc, v)); return TEST_SUCCESS; } result_t test_mm_crc32_u8(const SSE2NEONTestImpl &impl, uint32_t iter) { uint32_t crc = *(const uint32_t *) impl.mTestIntPointer1; uint8_t v = (uint8_t) iter; uint32_t result = _mm_crc32_u8(crc, v); ASSERT_RETURN(result == canonical_crc32_u8(crc, v)); return TEST_SUCCESS; } /* AES */ result_t test_mm_aesenc_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *a = (int32_t *) impl.mTestIntPointer1; const int32_t *b = (int32_t *) impl.mTestIntPointer2; __m128i data = _mm_loadu_si128((const __m128i *) a); __m128i rk = _mm_loadu_si128((const __m128i *) b); __m128i resultReference = aesenc_128_reference(data, rk); __m128i resultIntrinsic = _mm_aesenc_si128(data, rk); return validate128(resultReference, resultIntrinsic); } result_t test_mm_aesdec_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *a = (int32_t *) impl.mTestIntPointer1; const int32_t *b = (int32_t *) impl.mTestIntPointer2; __m128i data = _mm_loadu_si128((const __m128i *) a); __m128i rk = _mm_loadu_si128((const __m128i *) b); __m128i resultReference = aesdec_128_reference(data, rk); __m128i resultIntrinsic = _mm_aesdec_si128(data, rk); return validate128(resultReference, resultIntrinsic); } result_t test_mm_aesenclast_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const int32_t *a = (const int32_t *) impl.mTestIntPointer1; const int32_t *b = (const int32_t *) impl.mTestIntPointer2; __m128i data = _mm_loadu_si128((const __m128i *) a); __m128i rk = _mm_loadu_si128((const __m128i *) b); __m128i resultReference = aesenclast_128_reference(data, rk); __m128i resultIntrinsic = _mm_aesenclast_si128(data, rk); return validate128(resultReference, resultIntrinsic); } result_t test_mm_aesdeclast_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *a = (uint8_t *) impl.mTestIntPointer1; const uint8_t *rk = (uint8_t *) impl.mTestIntPointer2; __m128i _a = _mm_loadu_si128((const __m128i *) a); __m128i _rk = _mm_loadu_si128((const __m128i *) rk); uint8_t c[16] = {}; uint8_t v[4][4]; for (int i = 0; i < 16; ++i) { v[((i / 4) + (i % 4)) % 4][i % 4] = crypto_aes_rsbox[a[i]]; } for (int i = 0; i < 16; ++i) { c[i] = v[i / 4][i % 4] ^ rk[i]; } __m128i result_reference = _mm_loadu_si128((const __m128i *) c); __m128i result_intrinsic = _mm_aesdeclast_si128(_a, _rk); return validate128(result_reference, result_intrinsic); } result_t test_mm_aesimc_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint8_t *a = (uint8_t *) impl.mTestIntPointer1; __m128i _a = _mm_loadu_si128((const __m128i *) a); uint8_t e, f, g, h, v[4][4]; for (int i = 0; i < 16; ++i) { ((uint8_t *) v)[i] = a[i]; } for (int i = 0; i < 4; ++i) { e = v[i][0]; f = v[i][1]; g = v[i][2]; h = v[i][3]; v[i][0] = (uint8_t) (MULTIPLY(e, 0x0e) ^ MULTIPLY(f, 0x0b) ^ MULTIPLY(g, 0x0d) ^ MULTIPLY(h, 0x09)); v[i][1] = (uint8_t) (MULTIPLY(e, 0x09) ^ MULTIPLY(f, 0x0e) ^ MULTIPLY(g, 0x0b) ^ MULTIPLY(h, 0x0d)); v[i][2] = (uint8_t) (MULTIPLY(e, 0x0d) ^ MULTIPLY(f, 0x09) ^ MULTIPLY(g, 0x0e) ^ MULTIPLY(h, 0x0b)); v[i][3] = (uint8_t) (MULTIPLY(e, 0x0b) ^ MULTIPLY(f, 0x0d) ^ MULTIPLY(g, 0x09) ^ MULTIPLY(h, 0x0e)); } __m128i result_reference = _mm_loadu_si128((const __m128i *) v); __m128i result_intrinsic = _mm_aesimc_si128(_a); return validate128(result_reference, result_intrinsic); } static inline uint32_t sub_word(uint32_t in) { return (crypto_aes_sbox[(in >> 24) & 0xff] << 24) | (crypto_aes_sbox[(in >> 16) & 0xff] << 16) | (crypto_aes_sbox[(in >> 8) & 0xff] << 8) | (crypto_aes_sbox[in & 0xff]); } // FIXME: improve the test case for AES-256 key expansion. // Reference: // https://github.com/randombit/botan/blob/master/src/lib/block/aes/aes_ni/aes_ni.cpp result_t test_mm_aeskeygenassist_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint32_t *a = (uint32_t *) impl.mTestIntPointer1; __m128i data = load_m128i(a); uint32_t sub_x1 = sub_word(a[1]); uint32_t sub_x3 = sub_word(a[3]); __m128i result_reference; __m128i result_intrinsic; #define TEST_IMPL(IDX) \ uint32_t res##IDX[4] = { \ sub_x1, \ rotr(sub_x1, 8) ^ IDX, \ sub_x3, \ rotr(sub_x3, 8) ^ IDX, \ }; \ result_reference = load_m128i(res##IDX); \ result_intrinsic = _mm_aeskeygenassist_si128(data, IDX); \ CHECK_RESULT(validate128(result_reference, result_intrinsic)); IMM_256_ITER #undef TEST_IMPL return TEST_SUCCESS; } /* Others */ result_t test_mm_clmulepi64_si128(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint64_t *_a = (const uint64_t *) impl.mTestIntPointer1; const uint64_t *_b = (const uint64_t *) impl.mTestIntPointer2; __m128i a = load_m128i(_a); __m128i b = load_m128i(_b); auto result = clmul_64(_a[0], _b[0]); if (!validateUInt64(_mm_clmulepi64_si128(a, b, 0x00), result.first, result.second)) return TEST_FAIL; result = clmul_64(_a[1], _b[0]); if (!validateUInt64(_mm_clmulepi64_si128(a, b, 0x01), result.first, result.second)) return TEST_FAIL; result = clmul_64(_a[0], _b[1]); if (!validateUInt64(_mm_clmulepi64_si128(a, b, 0x10), result.first, result.second)) return TEST_FAIL; result = clmul_64(_a[1], _b[1]); if (!validateUInt64(_mm_clmulepi64_si128(a, b, 0x11), result.first, result.second)) return TEST_FAIL; return TEST_SUCCESS; } result_t test_mm_get_denormals_zero_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { int res_denormals_zero_on, res_denormals_zero_off; _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); res_denormals_zero_on = _MM_GET_DENORMALS_ZERO_MODE() == _MM_DENORMALS_ZERO_ON; _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_OFF); res_denormals_zero_off = _MM_GET_DENORMALS_ZERO_MODE() == _MM_DENORMALS_ZERO_OFF; return (res_denormals_zero_on && res_denormals_zero_off) ? TEST_SUCCESS : TEST_FAIL; } static int popcnt_reference(uint64_t a) { int count = 0; while (a != 0) { count += a & 1; a >>= 1; } return count; } result_t test_mm_popcnt_u32(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint64_t *a = (const uint64_t *) impl.mTestIntPointer1; ASSERT_RETURN(popcnt_reference((uint32_t) a[0]) == _mm_popcnt_u32((unsigned int) a[0])); return TEST_SUCCESS; } result_t test_mm_popcnt_u64(const SSE2NEONTestImpl &impl, uint32_t iter) { const uint64_t *a = (const uint64_t *) impl.mTestIntPointer1; ASSERT_RETURN(popcnt_reference(a[0]) == _mm_popcnt_u64(a[0])); return TEST_SUCCESS; } OPTNONE result_t test_mm_set_denormals_zero_mode(const SSE2NEONTestImpl &impl, uint32_t iter) { result_t res_set_denormals_zero_on, res_set_denormals_zero_off; float factor = 2; float denormal = FLT_MIN / factor; float denormals[4] = {denormal, denormal, denormal, denormal}; float factors[4] = {factor, factor, factor, factor}; __m128 ret = _mm_setzero_ps(); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); ret = _mm_mul_ps(load_m128(denormals), load_m128(factors)); res_set_denormals_zero_on = validateFloat(ret, 0, 0, 0, 0); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_OFF); ret = _mm_mul_ps(load_m128(denormals), load_m128(factors)); #if defined(__arm__) // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, // regardless of the value of the FZ bit. res_set_denormals_zero_off = validateFloat(ret, 0, 0, 0, 0); #else res_set_denormals_zero_off = validateFloat(ret, FLT_MIN, FLT_MIN, FLT_MIN, FLT_MIN); #endif if (res_set_denormals_zero_on == TEST_FAIL || res_set_denormals_zero_off == TEST_FAIL) return TEST_FAIL; return TEST_SUCCESS; } result_t test_rdtsc(const SSE2NEONTestImpl &impl, uint32_t iter) { uint64_t start = _rdtsc(); for (int i = 0; i < 100000; i++) { #if defined(_MSC_VER) _ReadWriteBarrier(); #else __asm__ __volatile__("" ::: "memory"); #endif } uint64_t end = _rdtsc(); return end > start ? TEST_SUCCESS : TEST_FAIL; } SSE2NEONTestImpl::SSE2NEONTestImpl(void) { mTestFloatPointer1 = (float *) platformAlignedAlloc(sizeof(__m128)); mTestFloatPointer2 = (float *) platformAlignedAlloc(sizeof(__m128)); mTestIntPointer1 = (int32_t *) platformAlignedAlloc(sizeof(__m128i)); mTestIntPointer2 = (int32_t *) platformAlignedAlloc(sizeof(__m128i)); SSE2NEON_INIT_RNG(123456); for (uint32_t i = 0; i < MAX_TEST_VALUE; i++) { mTestFloats[i] = ranf(-100000, 100000); mTestInts[i] = (int32_t) ranf(-100000, 100000); } } // Dummy function to match the case label in runSingleTest. result_t test_last(const SSE2NEONTestImpl &impl, uint32_t iter) { return TEST_SUCCESS; } result_t SSE2NEONTestImpl::loadTestFloatPointers(uint32_t i) { result_t ret = do_mm_store_ps(mTestFloatPointer1, mTestFloats[i], mTestFloats[i + 1], mTestFloats[i + 2], mTestFloats[i + 3]); if (ret == TEST_SUCCESS) { ret = do_mm_store_ps(mTestFloatPointer2, mTestFloats[i + 4], mTestFloats[i + 5], mTestFloats[i + 6], mTestFloats[i + 7]); } return ret; } result_t SSE2NEONTestImpl::loadTestIntPointers(uint32_t i) { result_t ret = do_mm_store_ps(mTestIntPointer1, mTestInts[i], mTestInts[i + 1], mTestInts[i + 2], mTestInts[i + 3]); if (ret == TEST_SUCCESS) { ret = do_mm_store_ps(mTestIntPointer2, mTestInts[i + 4], mTestInts[i + 5], mTestInts[i + 6], mTestInts[i + 7]); } return ret; } result_t SSE2NEONTestImpl::runSingleTest(InstructionTest test, uint32_t i) { result_t ret = TEST_SUCCESS; switch (test) { #define _(x) \ case it_##x: \ ret = test_##x(*this, i); \ break; INTRIN_LIST #undef _ } return ret; } SSE2NEONTest *SSE2NEONTest::create(void) { SSE2NEONTestImpl *st = new SSE2NEONTestImpl; return static_cast(st); } } // namespace SSE2NEON