/** * Author......: See docs/credits.txt * License.....: MIT */ #include "inc_vendor.cl" #include "inc_hash_constants.h" #include "inc_hash_functions.cl" #include "inc_types.cl" #include "inc_common.cl" #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" __constant u32a k_sha256[64] = { SHA256C00, SHA256C01, SHA256C02, SHA256C03, SHA256C04, SHA256C05, SHA256C06, SHA256C07, SHA256C08, SHA256C09, SHA256C0a, SHA256C0b, SHA256C0c, SHA256C0d, SHA256C0e, SHA256C0f, SHA256C10, SHA256C11, SHA256C12, SHA256C13, SHA256C14, SHA256C15, SHA256C16, SHA256C17, SHA256C18, SHA256C19, SHA256C1a, SHA256C1b, SHA256C1c, SHA256C1d, SHA256C1e, SHA256C1f, SHA256C20, SHA256C21, SHA256C22, SHA256C23, SHA256C24, SHA256C25, SHA256C26, SHA256C27, SHA256C28, SHA256C29, SHA256C2a, SHA256C2b, SHA256C2c, SHA256C2d, SHA256C2e, SHA256C2f, SHA256C30, SHA256C31, SHA256C32, SHA256C33, SHA256C34, SHA256C35, SHA256C36, SHA256C37, SHA256C38, SHA256C39, SHA256C3a, SHA256C3b, SHA256C3c, SHA256C3d, SHA256C3e, SHA256C3f, }; #if 1 void sha256_transform (const u32 w[16], u32 digest[8]) { u32 a = digest[0]; u32 b = digest[1]; u32 c = digest[2]; u32 d = digest[3]; u32 e = digest[4]; u32 f = digest[5]; u32 g = digest[6]; u32 h = digest[7]; u32 w0_t = swap32 (w[ 0]); u32 w1_t = swap32 (w[ 1]); u32 w2_t = swap32 (w[ 2]); u32 w3_t = swap32 (w[ 3]); u32 w4_t = swap32 (w[ 4]); u32 w5_t = swap32 (w[ 5]); u32 w6_t = swap32 (w[ 6]); u32 w7_t = swap32 (w[ 7]); u32 w8_t = swap32 (w[ 8]); u32 w9_t = swap32 (w[ 9]); u32 wa_t = swap32 (w[10]); u32 wb_t = swap32 (w[11]); u32 wc_t = swap32 (w[12]); u32 wd_t = swap32 (w[13]); u32 we_t = swap32 (w[14]); u32 wf_t = swap32 (w[15]); #define ROUND_EXPAND() \ { \ w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \ w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \ w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \ w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \ w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \ w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \ w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \ w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \ w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \ w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \ wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \ wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \ wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \ wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \ we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \ wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \ } #define ROUND_STEP(i) \ { \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \ } ROUND_STEP (0); #ifdef _unroll #pragma unroll #endif for (int i = 16; i < 64; i += 16) { ROUND_EXPAND (); ROUND_STEP (i); } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; digest[5] += f; digest[6] += g; digest[7] += h; } void sha256_transform_no14 (const u32 w[16], u32 digest[8]) { u32 w_t[16]; w_t[ 0] = w[ 0]; w_t[ 1] = w[ 1]; w_t[ 2] = w[ 2]; w_t[ 3] = w[ 3]; w_t[ 4] = w[ 4]; w_t[ 5] = w[ 5]; w_t[ 6] = w[ 6]; w_t[ 7] = w[ 7]; w_t[ 8] = w[ 8]; w_t[ 9] = w[ 9]; w_t[10] = w[10]; w_t[11] = w[11]; w_t[12] = w[12]; w_t[13] = w[13]; w_t[14] = 0; w_t[15] = w[15]; sha256_transform (w_t, digest); } void init_ctx (u32 digest[8]) { digest[0] = SHA256M_A; digest[1] = SHA256M_B; digest[2] = SHA256M_C; digest[3] = SHA256M_D; digest[4] = SHA256M_E; digest[5] = SHA256M_F; digest[6] = SHA256M_G; digest[7] = SHA256M_H; } void bzero16 (u32 block[16]) { block[ 0] = 0; block[ 1] = 0; block[ 2] = 0; block[ 3] = 0; block[ 4] = 0; block[ 5] = 0; block[ 6] = 0; block[ 7] = 0; block[ 8] = 0; block[ 9] = 0; block[10] = 0; block[11] = 0; block[12] = 0; block[13] = 0; block[14] = 0; block[15] = 0; } void bswap8 (u32 block[16]) { block[ 0] = swap32 (block[ 0]); block[ 1] = swap32 (block[ 1]); block[ 2] = swap32 (block[ 2]); block[ 3] = swap32 (block[ 3]); block[ 4] = swap32 (block[ 4]); block[ 5] = swap32 (block[ 5]); block[ 6] = swap32 (block[ 6]); block[ 7] = swap32 (block[ 7]); } u32 memcat16 (u32 block[16], const u32 offset, const u32 append[4], const u32 append_len) { u32 tmp0; u32 tmp1; u32 tmp2; u32 tmp3; u32 tmp4; const int offset_mod_4 = offset & 3; const int offset_minus_4 = 4 - offset_mod_4; #if defined IS_AMD || defined IS_GENERIC tmp0 = amd_bytealign (append[0], 0, offset_minus_4); tmp1 = amd_bytealign (append[1], append[0], offset_minus_4); tmp2 = amd_bytealign (append[2], append[1], offset_minus_4); tmp3 = amd_bytealign (append[3], append[2], offset_minus_4); tmp4 = amd_bytealign ( 0, append[3], offset_minus_4); if (offset_mod_4 == 0) { tmp0 = tmp1; tmp1 = tmp2; tmp2 = tmp3; tmp3 = tmp4; tmp4 = 0; } #endif #ifdef IS_NV const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff; tmp0 = __byte_perm ( 0, append[0], selector); tmp1 = __byte_perm (append[0], append[1], selector); tmp2 = __byte_perm (append[1], append[2], selector); tmp3 = __byte_perm (append[2], append[3], selector); tmp4 = __byte_perm (append[3], 0, selector); #endif switch (offset / 4) { case 0: block[ 0] |= tmp0; block[ 1] = tmp1; block[ 2] = tmp2; block[ 3] = tmp3; block[ 4] = tmp4; break; case 1: block[ 1] |= tmp0; block[ 2] = tmp1; block[ 3] = tmp2; block[ 4] = tmp3; block[ 5] = tmp4; break; case 2: block[ 2] |= tmp0; block[ 3] = tmp1; block[ 4] = tmp2; block[ 5] = tmp3; block[ 6] = tmp4; break; case 3: block[ 3] |= tmp0; block[ 4] = tmp1; block[ 5] = tmp2; block[ 6] = tmp3; block[ 7] = tmp4; break; case 4: block[ 4] |= tmp0; block[ 5] = tmp1; block[ 6] = tmp2; block[ 7] = tmp3; block[ 8] = tmp4; break; case 5: block[ 5] |= tmp0; block[ 6] = tmp1; block[ 7] = tmp2; block[ 8] = tmp3; block[ 9] = tmp4; break; case 6: block[ 6] |= tmp0; block[ 7] = tmp1; block[ 8] = tmp2; block[ 9] = tmp3; block[10] = tmp4; break; case 7: block[ 7] |= tmp0; block[ 8] = tmp1; block[ 9] = tmp2; block[10] = tmp3; block[11] = tmp4; break; case 8: block[ 8] |= tmp0; block[ 9] = tmp1; block[10] = tmp2; block[11] = tmp3; block[12] = tmp4; break; case 9: block[ 9] |= tmp0; block[10] = tmp1; block[11] = tmp2; block[12] = tmp3; block[13] = tmp4; break; case 10: block[10] |= tmp0; block[11] = tmp1; block[12] = tmp2; block[13] = tmp3; block[14] = tmp4; break; case 11: block[11] |= tmp0; block[12] = tmp1; block[13] = tmp2; block[14] = tmp3; block[15] = tmp4; break; case 12: block[12] |= tmp0; block[13] = tmp1; block[14] = tmp2; block[15] = tmp3; break; case 13: block[13] |= tmp0; block[14] = tmp1; block[15] = tmp2; break; case 14: block[14] |= tmp0; block[15] = tmp1; break; case 15: block[15] |= tmp0; break; } u32 new_len = offset + append_len; return new_len; } u32 memcat16c (u32 block[16], const u32 offset, const u32 append[4], const u32 append_len, u32 digest[8]) { u32 tmp0; u32 tmp1; u32 tmp2; u32 tmp3; u32 tmp4; const int offset_mod_4 = offset & 3; const int offset_minus_4 = 4 - offset_mod_4; #if defined IS_AMD || defined IS_GENERIC tmp0 = amd_bytealign (append[0], 0, offset_minus_4); tmp1 = amd_bytealign (append[1], append[0], offset_minus_4); tmp2 = amd_bytealign (append[2], append[1], offset_minus_4); tmp3 = amd_bytealign (append[3], append[2], offset_minus_4); tmp4 = amd_bytealign ( 0, append[3], offset_minus_4); if (offset_mod_4 == 0) { tmp0 = tmp1; tmp1 = tmp2; tmp2 = tmp3; tmp3 = tmp4; tmp4 = 0; } #endif #ifdef IS_NV const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff; tmp0 = __byte_perm ( 0, append[0], selector); tmp1 = __byte_perm (append[0], append[1], selector); tmp2 = __byte_perm (append[1], append[2], selector); tmp3 = __byte_perm (append[2], append[3], selector); tmp4 = __byte_perm (append[3], 0, selector); #endif u32 carry[4] = { 0, 0, 0, 0 }; switch (offset / 4) { case 0: block[ 0] |= tmp0; block[ 1] = tmp1; block[ 2] = tmp2; block[ 3] = tmp3; block[ 4] = tmp4; break; case 1: block[ 1] |= tmp0; block[ 2] = tmp1; block[ 3] = tmp2; block[ 4] = tmp3; block[ 5] = tmp4; break; case 2: block[ 2] |= tmp0; block[ 3] = tmp1; block[ 4] = tmp2; block[ 5] = tmp3; block[ 6] = tmp4; break; case 3: block[ 3] |= tmp0; block[ 4] = tmp1; block[ 5] = tmp2; block[ 6] = tmp3; block[ 7] = tmp4; break; case 4: block[ 4] |= tmp0; block[ 5] = tmp1; block[ 6] = tmp2; block[ 7] = tmp3; block[ 8] = tmp4; break; case 5: block[ 5] |= tmp0; block[ 6] = tmp1; block[ 7] = tmp2; block[ 8] = tmp3; block[ 9] = tmp4; break; case 6: block[ 6] |= tmp0; block[ 7] = tmp1; block[ 8] = tmp2; block[ 9] = tmp3; block[10] = tmp4; break; case 7: block[ 7] |= tmp0; block[ 8] = tmp1; block[ 9] = tmp2; block[10] = tmp3; block[11] = tmp4; break; case 8: block[ 8] |= tmp0; block[ 9] = tmp1; block[10] = tmp2; block[11] = tmp3; block[12] = tmp4; break; case 9: block[ 9] |= tmp0; block[10] = tmp1; block[11] = tmp2; block[12] = tmp3; block[13] = tmp4; break; case 10: block[10] |= tmp0; block[11] = tmp1; block[12] = tmp2; block[13] = tmp3; block[14] = tmp4; break; case 11: block[11] |= tmp0; block[12] = tmp1; block[13] = tmp2; block[14] = tmp3; block[15] = tmp4; break; case 12: block[12] |= tmp0; block[13] = tmp1; block[14] = tmp2; block[15] = tmp3; carry[ 0] = tmp4; break; case 13: block[13] |= tmp0; block[14] = tmp1; block[15] = tmp2; carry[ 0] = tmp3; carry[ 1] = tmp4; break; case 14: block[14] |= tmp0; block[15] = tmp1; carry[ 0] = tmp2; carry[ 1] = tmp3; carry[ 2] = tmp4; break; case 15: block[15] |= tmp0; carry[ 0] = tmp1; carry[ 1] = tmp2; carry[ 2] = tmp3; carry[ 3] = tmp4; break; } u32 new_len = offset + append_len; if (new_len >= 64) { new_len -= 64; sha256_transform (block, digest); bzero16 (block); block[0] = carry[0]; block[1] = carry[1]; block[2] = carry[2]; block[3] = carry[3]; } return new_len; } u32 memcat20 (u32 block[20], const u32 offset, const u32 append[4], const u32 append_len) { u32 tmp0; u32 tmp1; u32 tmp2; u32 tmp3; u32 tmp4; const int offset_mod_4 = offset & 3; const int offset_minus_4 = 4 - offset_mod_4; #if defined IS_AMD || defined IS_GENERIC tmp0 = amd_bytealign (append[0], 0, offset_minus_4); tmp1 = amd_bytealign (append[1], append[0], offset_minus_4); tmp2 = amd_bytealign (append[2], append[1], offset_minus_4); tmp3 = amd_bytealign (append[3], append[2], offset_minus_4); tmp4 = amd_bytealign ( 0, append[3], offset_minus_4); if (offset_mod_4 == 0) { tmp0 = tmp1; tmp1 = tmp2; tmp2 = tmp3; tmp3 = tmp4; tmp4 = 0; } #endif #ifdef IS_NV const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff; tmp0 = __byte_perm ( 0, append[0], selector); tmp1 = __byte_perm (append[0], append[1], selector); tmp2 = __byte_perm (append[1], append[2], selector); tmp3 = __byte_perm (append[2], append[3], selector); tmp4 = __byte_perm (append[3], 0, selector); #endif switch (offset / 4) { case 0: block[ 0] |= tmp0; block[ 1] = tmp1; block[ 2] = tmp2; block[ 3] = tmp3; block[ 4] = tmp4; break; case 1: block[ 1] |= tmp0; block[ 2] = tmp1; block[ 3] = tmp2; block[ 4] = tmp3; block[ 5] = tmp4; break; case 2: block[ 2] |= tmp0; block[ 3] = tmp1; block[ 4] = tmp2; block[ 5] = tmp3; block[ 6] = tmp4; break; case 3: block[ 3] |= tmp0; block[ 4] = tmp1; block[ 5] = tmp2; block[ 6] = tmp3; block[ 7] = tmp4; break; case 4: block[ 4] |= tmp0; block[ 5] = tmp1; block[ 6] = tmp2; block[ 7] = tmp3; block[ 8] = tmp4; break; case 5: block[ 5] |= tmp0; block[ 6] = tmp1; block[ 7] = tmp2; block[ 8] = tmp3; block[ 9] = tmp4; break; case 6: block[ 6] |= tmp0; block[ 7] = tmp1; block[ 8] = tmp2; block[ 9] = tmp3; block[10] = tmp4; break; case 7: block[ 7] |= tmp0; block[ 8] = tmp1; block[ 9] = tmp2; block[10] = tmp3; block[11] = tmp4; break; case 8: block[ 8] |= tmp0; block[ 9] = tmp1; block[10] = tmp2; block[11] = tmp3; block[12] = tmp4; break; case 9: block[ 9] |= tmp0; block[10] = tmp1; block[11] = tmp2; block[12] = tmp3; block[13] = tmp4; break; case 10: block[10] |= tmp0; block[11] = tmp1; block[12] = tmp2; block[13] = tmp3; block[14] = tmp4; break; case 11: block[11] |= tmp0; block[12] = tmp1; block[13] = tmp2; block[14] = tmp3; block[15] = tmp4; break; case 12: block[12] |= tmp0; block[13] = tmp1; block[14] = tmp2; block[15] = tmp3; block[16] = tmp4; break; case 13: block[13] |= tmp0; block[14] = tmp1; block[15] = tmp2; block[16] = tmp3; block[17] = tmp4; break; case 14: block[14] |= tmp0; block[15] = tmp1; block[16] = tmp2; block[17] = tmp3; block[18] = tmp4; break; case 15: block[15] |= tmp0; block[16] = tmp1; block[17] = tmp2; block[18] = tmp3; block[19] = tmp4; break; } return offset + append_len; } u32 memcat20_x80 (u32 block[20], const u32 offset, const u32 append[4], const u32 append_len) { u32 tmp0; u32 tmp1; u32 tmp2; u32 tmp3; u32 tmp4; const int offset_mod_4 = offset & 3; const int offset_minus_4 = 4 - offset_mod_4; #if defined IS_AMD || defined IS_GENERIC tmp0 = amd_bytealign (append[0], 0, offset_minus_4); tmp1 = amd_bytealign (append[1], append[0], offset_minus_4); tmp2 = amd_bytealign (append[2], append[1], offset_minus_4); tmp3 = amd_bytealign (append[3], append[2], offset_minus_4); tmp4 = amd_bytealign ( 0x80, append[3], offset_minus_4); if (offset_mod_4 == 0) { tmp0 = tmp1; tmp1 = tmp2; tmp2 = tmp3; tmp3 = tmp4; tmp4 = 0x80; } #endif #ifdef IS_NV const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff; tmp0 = __byte_perm ( 0, append[0], selector); tmp1 = __byte_perm (append[0], append[1], selector); tmp2 = __byte_perm (append[1], append[2], selector); tmp3 = __byte_perm (append[2], append[3], selector); tmp4 = __byte_perm (append[3], 0x80, selector); #endif switch (offset / 4) { case 0: block[ 0] |= tmp0; block[ 1] = tmp1; block[ 2] = tmp2; block[ 3] = tmp3; block[ 4] = tmp4; break; case 1: block[ 1] |= tmp0; block[ 2] = tmp1; block[ 3] = tmp2; block[ 4] = tmp3; block[ 5] = tmp4; break; case 2: block[ 2] |= tmp0; block[ 3] = tmp1; block[ 4] = tmp2; block[ 5] = tmp3; block[ 6] = tmp4; break; case 3: block[ 3] |= tmp0; block[ 4] = tmp1; block[ 5] = tmp2; block[ 6] = tmp3; block[ 7] = tmp4; break; case 4: block[ 4] |= tmp0; block[ 5] = tmp1; block[ 6] = tmp2; block[ 7] = tmp3; block[ 8] = tmp4; break; case 5: block[ 5] |= tmp0; block[ 6] = tmp1; block[ 7] = tmp2; block[ 8] = tmp3; block[ 9] = tmp4; break; case 6: block[ 6] |= tmp0; block[ 7] = tmp1; block[ 8] = tmp2; block[ 9] = tmp3; block[10] = tmp4; break; case 7: block[ 7] |= tmp0; block[ 8] = tmp1; block[ 9] = tmp2; block[10] = tmp3; block[11] = tmp4; break; case 8: block[ 8] |= tmp0; block[ 9] = tmp1; block[10] = tmp2; block[11] = tmp3; block[12] = tmp4; break; case 9: block[ 9] |= tmp0; block[10] = tmp1; block[11] = tmp2; block[12] = tmp3; block[13] = tmp4; break; case 10: block[10] |= tmp0; block[11] = tmp1; block[12] = tmp2; block[13] = tmp3; block[14] = tmp4; break; case 11: block[11] |= tmp0; block[12] = tmp1; block[13] = tmp2; block[14] = tmp3; block[15] = tmp4; break; case 12: block[12] |= tmp0; block[13] = tmp1; block[14] = tmp2; block[15] = tmp3; block[16] = tmp4; break; case 13: block[13] |= tmp0; block[14] = tmp1; block[15] = tmp2; block[16] = tmp3; block[17] = tmp4; break; case 14: block[14] |= tmp0; block[15] = tmp1; block[16] = tmp2; block[17] = tmp3; block[18] = tmp4; break; case 15: block[15] |= tmp0; block[16] = tmp1; block[17] = tmp2; block[18] = tmp3; block[19] = tmp4; break; } return offset + append_len; } __kernel void m07400_init (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; u32 w0[4]; w0[0] = pws[gid].i[0]; w0[1] = pws[gid].i[1]; w0[2] = pws[gid].i[2]; w0[3] = pws[gid].i[3]; const u32 pw_len = pws[gid].pw_len; /** * salt */ u32 salt_buf[4]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; salt_buf[2] = salt_bufs[salt_pos].salt_buf[2]; salt_buf[3] = salt_bufs[salt_pos].salt_buf[3]; u32 salt_len = salt_bufs[salt_pos].salt_len; /** * buffers */ u32 block_len; // never reaches > 64 u32 transform_len; // required for w[15] = len * 8 u32 block[16]; u32 alt_result[8]; u32 p_bytes[8]; u32 s_bytes[8]; /* Prepare for the real work. */ block_len = 0; bzero16 (block); /* Add key. */ block_len = memcat16 (block, block_len, w0, pw_len); /* Add salt. */ block_len = memcat16 (block, block_len, salt_buf, salt_len); /* Add key again. */ block_len = memcat16 (block, block_len, w0, pw_len); append_0x80_1x16 (block, block_len); block[15] = swap32 (block_len * 8); init_ctx (alt_result); sha256_transform (block, alt_result); bswap8 (alt_result); block_len = 0; bzero16 (block); u32 alt_result_tmp[8]; alt_result_tmp[0] = alt_result[0]; alt_result_tmp[1] = alt_result[1]; alt_result_tmp[2] = alt_result[2]; alt_result_tmp[3] = alt_result[3]; alt_result_tmp[4] = 0; alt_result_tmp[5] = 0; alt_result_tmp[6] = 0; alt_result_tmp[7] = 0; truncate_block_4x4_le (alt_result_tmp, pw_len); /* Add the key string. */ block_len = memcat16 (block, block_len, w0, pw_len); /* The last part is the salt string. This must be at most 8 characters and it ends at the first `$' character (for compatibility with existing implementations). */ block_len = memcat16 (block, block_len, salt_buf, salt_len); /* Now get result of this (32 bytes) and add it to the other context. */ block_len = memcat16 (block, block_len, alt_result_tmp, pw_len); transform_len = block_len; /* Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 the key. */ alt_result_tmp[0] = alt_result[0]; alt_result_tmp[1] = alt_result[1]; alt_result_tmp[2] = alt_result[2]; alt_result_tmp[3] = alt_result[3]; alt_result_tmp[4] = alt_result[4]; alt_result_tmp[5] = alt_result[5]; alt_result_tmp[6] = alt_result[6]; alt_result_tmp[7] = alt_result[7]; init_ctx (alt_result); for (u32 j = pw_len; j; j >>= 1) { if (j & 1) { block_len = memcat16c (block, block_len, &alt_result_tmp[0], 16, alt_result); block_len = memcat16c (block, block_len, &alt_result_tmp[4], 16, alt_result); transform_len += 32; } else { block_len = memcat16c (block, block_len, w0, pw_len, alt_result); transform_len += pw_len; } } append_0x80_1x16 (block, block_len); if (block_len >= 56) { sha256_transform (block, alt_result); bzero16 (block); } block[15] = swap32 (transform_len * 8); sha256_transform (block, alt_result); bswap8 (alt_result); tmps[gid].alt_result[0] = alt_result[0]; tmps[gid].alt_result[1] = alt_result[1]; tmps[gid].alt_result[2] = alt_result[2]; tmps[gid].alt_result[3] = alt_result[3]; tmps[gid].alt_result[4] = alt_result[4]; tmps[gid].alt_result[5] = alt_result[5]; tmps[gid].alt_result[6] = alt_result[6]; tmps[gid].alt_result[7] = alt_result[7]; /* Start computation of P byte sequence. */ block_len = 0; transform_len = 0; bzero16 (block); /* For every character in the password add the entire password. */ init_ctx (p_bytes); for (u32 j = 0; j < pw_len; j++) { block_len = memcat16c (block, block_len, w0, pw_len, p_bytes); transform_len += pw_len; } /* Finish the digest. */ append_0x80_1x16 (block, block_len); if (block_len >= 56) { sha256_transform (block, p_bytes); bzero16 (block); } block[15] = swap32 (transform_len * 8); sha256_transform (block, p_bytes); bswap8 (p_bytes); truncate_block_4x4_le (p_bytes, pw_len); tmps[gid].p_bytes[0] = p_bytes[0]; tmps[gid].p_bytes[1] = p_bytes[1]; tmps[gid].p_bytes[2] = p_bytes[2]; tmps[gid].p_bytes[3] = p_bytes[3]; /* Start computation of S byte sequence. */ block_len = 0; transform_len = 0; bzero16 (block); /* For every character in the password add the entire password. */ init_ctx (s_bytes); for (u32 j = 0; j < 16 + (alt_result[0] & 0xff); j++) { block_len = memcat16c (block, block_len, salt_buf, salt_len, s_bytes); transform_len += salt_len; } /* Finish the digest. */ append_0x80_1x16 (block, block_len); if (block_len >= 56) { sha256_transform (block, s_bytes); bzero16 (block); } block[15] = swap32 (transform_len * 8); sha256_transform (block, s_bytes); bswap8 (s_bytes); truncate_block_4x4_le (s_bytes, salt_len); tmps[gid].s_bytes[0] = s_bytes[0]; tmps[gid].s_bytes[1] = s_bytes[1]; tmps[gid].s_bytes[2] = s_bytes[2]; tmps[gid].s_bytes[3] = s_bytes[3]; } __kernel void m07400_loop (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; const u32 pw_len = pws[gid].pw_len; /** * base */ u32 p_bytes[4]; p_bytes[0] = tmps[gid].p_bytes[0]; p_bytes[1] = tmps[gid].p_bytes[1]; p_bytes[2] = tmps[gid].p_bytes[2]; p_bytes[3] = tmps[gid].p_bytes[3]; u32 p_bytes_x80[4]; p_bytes_x80[0] = tmps[gid].p_bytes[0]; p_bytes_x80[1] = tmps[gid].p_bytes[1]; p_bytes_x80[2] = tmps[gid].p_bytes[2]; p_bytes_x80[3] = tmps[gid].p_bytes[3]; append_0x80_1x4 (p_bytes_x80, pw_len); u32 s_bytes[4]; s_bytes[0] = tmps[gid].s_bytes[0]; s_bytes[1] = tmps[gid].s_bytes[1]; s_bytes[2] = tmps[gid].s_bytes[2]; s_bytes[3] = tmps[gid].s_bytes[3]; u32 alt_result[8]; alt_result[0] = tmps[gid].alt_result[0]; alt_result[1] = tmps[gid].alt_result[1]; alt_result[2] = tmps[gid].alt_result[2]; alt_result[3] = tmps[gid].alt_result[3]; alt_result[4] = tmps[gid].alt_result[4]; alt_result[5] = tmps[gid].alt_result[5]; alt_result[6] = tmps[gid].alt_result[6]; alt_result[7] = tmps[gid].alt_result[7]; u32 salt_len = salt_bufs[salt_pos].salt_len; /* Repeatedly run the collected hash value through SHA256 to burn CPU cycles. */ for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++) { u32 tmp[8]; init_ctx (tmp); u32 block[32]; bzero16 (&block[ 0]); bzero16 (&block[16]); u32 block_len = 0; const u32 j1 = (j & 1) ? 1 : 0; const u32 j3 = (j % 3) ? 1 : 0; const u32 j7 = (j % 7) ? 1 : 0; if (j1) { block[0] = p_bytes[0]; block[1] = p_bytes[1]; block[2] = p_bytes[2]; block[3] = p_bytes[3]; block_len = pw_len; } else { block[0] = alt_result[0]; block[1] = alt_result[1]; block[2] = alt_result[2]; block[3] = alt_result[3]; block[4] = alt_result[4]; block[5] = alt_result[5]; block[6] = alt_result[6]; block[7] = alt_result[7]; block_len = 32; } if (j3) { block_len = memcat20 (block, block_len, s_bytes, salt_len); } if (j7) { block_len = memcat20 (block, block_len, p_bytes, pw_len); } if (j1) { block_len = memcat20 (block, block_len, &alt_result[0], 16); block_len = memcat20_x80 (block, block_len, &alt_result[4], 16); } else { block_len = memcat20 (block, block_len, p_bytes_x80, pw_len); } if (block_len >= 56) { sha256_transform (block, tmp); block[ 0] = block[16]; block[ 1] = block[17]; block[ 2] = block[18]; block[ 3] = block[19]; block[ 4] = 0; block[ 5] = 0; block[ 6] = 0; block[ 7] = 0; block[ 8] = 0; block[ 9] = 0; block[10] = 0; block[11] = 0; block[12] = 0; block[13] = 0; block[14] = 0; block[15] = 0; } block[15] = swap32 (block_len * 8); sha256_transform_no14 (block, tmp); bswap8 (tmp); alt_result[0] = tmp[0]; alt_result[1] = tmp[1]; alt_result[2] = tmp[2]; alt_result[3] = tmp[3]; alt_result[4] = tmp[4]; alt_result[5] = tmp[5]; alt_result[6] = tmp[6]; alt_result[7] = tmp[7]; } tmps[gid].alt_result[0] = alt_result[0]; tmps[gid].alt_result[1] = alt_result[1]; tmps[gid].alt_result[2] = alt_result[2]; tmps[gid].alt_result[3] = alt_result[3]; tmps[gid].alt_result[4] = alt_result[4]; tmps[gid].alt_result[5] = alt_result[5]; tmps[gid].alt_result[6] = alt_result[6]; tmps[gid].alt_result[7] = alt_result[7]; } __kernel void m07400_comp (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; const u32 lid = get_local_id (0); const u32 r0 = tmps[gid].alt_result[0]; const u32 r1 = tmps[gid].alt_result[1]; const u32 r2 = tmps[gid].alt_result[2]; const u32 r3 = tmps[gid].alt_result[3]; #define il_pos 0 #include COMPARE_M } #else // this is basically a much cleaner version, but apparently drops speeds by over 100% :( #define PUTCHAR32_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c) #define GETCHAR32_BE(a,p) ((u8 *)(a))[(p) ^ 3] typedef struct { u32 state[8]; u32 buf[32]; int len; } sha256_ctx_t; void sha256_transform (const u32 w[16], u32 digest[8]) { u32 a = digest[0]; u32 b = digest[1]; u32 c = digest[2]; u32 d = digest[3]; u32 e = digest[4]; u32 f = digest[5]; u32 g = digest[6]; u32 h = digest[7]; u32 w0_t = w[ 0]; u32 w1_t = w[ 1]; u32 w2_t = w[ 2]; u32 w3_t = w[ 3]; u32 w4_t = w[ 4]; u32 w5_t = w[ 5]; u32 w6_t = w[ 6]; u32 w7_t = w[ 7]; u32 w8_t = w[ 8]; u32 w9_t = w[ 9]; u32 wa_t = w[10]; u32 wb_t = w[11]; u32 wc_t = w[12]; u32 wd_t = w[13]; u32 we_t = w[14]; u32 wf_t = w[15]; #define ROUND_EXPAND() \ { \ w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \ w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \ w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \ w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \ w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \ w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \ w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \ w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \ w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \ w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \ wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \ wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \ wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \ wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \ we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \ wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \ } #define ROUND_STEP(i) \ { \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \ SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \ } ROUND_STEP (0); #ifdef _unroll #pragma unroll #endif for (int i = 16; i < 64; i += 16) { ROUND_EXPAND (); ROUND_STEP (i); } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; digest[5] += f; digest[6] += g; digest[7] += h; } void sha256_init (sha256_ctx_t *sha256_ctx) { sha256_ctx->state[0] = SHA256M_A; sha256_ctx->state[1] = SHA256M_B; sha256_ctx->state[2] = SHA256M_C; sha256_ctx->state[3] = SHA256M_D; sha256_ctx->state[4] = SHA256M_E; sha256_ctx->state[5] = SHA256M_F; sha256_ctx->state[6] = SHA256M_G; sha256_ctx->state[7] = SHA256M_H; sha256_ctx->len = 0; } void sha256_update (sha256_ctx_t *sha256_ctx, const u32 *buf, int len) { int pos = sha256_ctx->len & 0x3f; sha256_ctx->len += len; if ((pos + len) < 64) { for (int i = 0; i < len; i++) { PUTCHAR32_BE (sha256_ctx->buf, pos++, GETCHAR32_BE (buf, i)); } return; } int cnt = 64 - pos; for (int i = 0; i < cnt; i++) { PUTCHAR32_BE (sha256_ctx->buf, pos++, GETCHAR32_BE (buf, i)); } sha256_transform (sha256_ctx->buf, sha256_ctx->state); len -= cnt; for (int i = 0; i < len; i++) { PUTCHAR32_BE (sha256_ctx->buf, i, GETCHAR32_BE (buf, cnt + i)); } } void sha256_final (sha256_ctx_t *sha256_ctx) { int pos = sha256_ctx->len & 0x3f; for (int i = pos; i < 64; i++) { PUTCHAR32_BE (sha256_ctx->buf, i, 0); } PUTCHAR32_BE (sha256_ctx->buf, pos, 0x80); if (pos >= 56) { sha256_transform (sha256_ctx->buf, sha256_ctx->state); sha256_ctx->buf[ 0] = 0; sha256_ctx->buf[ 1] = 0; sha256_ctx->buf[ 2] = 0; sha256_ctx->buf[ 3] = 0; sha256_ctx->buf[ 4] = 0; sha256_ctx->buf[ 5] = 0; sha256_ctx->buf[ 6] = 0; sha256_ctx->buf[ 7] = 0; sha256_ctx->buf[ 8] = 0; sha256_ctx->buf[ 9] = 0; sha256_ctx->buf[10] = 0; sha256_ctx->buf[11] = 0; sha256_ctx->buf[12] = 0; sha256_ctx->buf[13] = 0; sha256_ctx->buf[14] = 0; sha256_ctx->buf[15] = 0; } sha256_ctx->buf[15] = sha256_ctx->len * 8; sha256_transform (sha256_ctx->buf, sha256_ctx->state); } __kernel void m07400_init (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; u32 pw[4]; pw[0] = swap32 (pws[gid].i[0]); pw[1] = swap32 (pws[gid].i[1]); pw[2] = swap32 (pws[gid].i[2]); pw[3] = swap32 (pws[gid].i[3]); const u32 pw_len = pws[gid].pw_len; /** * salt */ u32 salt[4]; salt[0] = swap32 (salt_bufs[salt_pos].salt_buf[0]); salt[1] = swap32 (salt_bufs[salt_pos].salt_buf[1]); salt[2] = swap32 (salt_bufs[salt_pos].salt_buf[2]); salt[3] = swap32 (salt_bufs[salt_pos].salt_buf[3]); u32 salt_len = salt_bufs[salt_pos].salt_len; /** * begin */ sha256_ctx_t sha256_ctx; sha256_init (&sha256_ctx); sha256_update (&sha256_ctx, pw, pw_len); sha256_update (&sha256_ctx, salt, salt_len); sha256_update (&sha256_ctx, pw, pw_len); sha256_final (&sha256_ctx); u32 tmp[8]; tmp[0] = sha256_ctx.state[0]; tmp[1] = sha256_ctx.state[1]; tmp[2] = sha256_ctx.state[2]; tmp[3] = sha256_ctx.state[3]; tmp[4] = sha256_ctx.state[4]; tmp[5] = sha256_ctx.state[5]; tmp[6] = sha256_ctx.state[6]; tmp[7] = sha256_ctx.state[7]; sha256_init (&sha256_ctx); sha256_update (&sha256_ctx, pw, pw_len); sha256_update (&sha256_ctx, salt, salt_len); sha256_update (&sha256_ctx, tmp, pw_len); for (u32 j = pw_len; j; j >>= 1) { if (j & 1) { sha256_update (&sha256_ctx, tmp, 32); } else { sha256_update (&sha256_ctx, pw, pw_len); } } sha256_final (&sha256_ctx); tmps[gid].alt_result[0] = sha256_ctx.state[0]; tmps[gid].alt_result[1] = sha256_ctx.state[1]; tmps[gid].alt_result[2] = sha256_ctx.state[2]; tmps[gid].alt_result[3] = sha256_ctx.state[3]; tmps[gid].alt_result[4] = sha256_ctx.state[4]; tmps[gid].alt_result[5] = sha256_ctx.state[5]; tmps[gid].alt_result[6] = sha256_ctx.state[6]; tmps[gid].alt_result[7] = sha256_ctx.state[7]; // p_bytes sha256_init (&sha256_ctx); for (u32 j = 0; j < pw_len; j++) { sha256_update (&sha256_ctx, pw, pw_len); } sha256_final (&sha256_ctx); tmps[gid].p_bytes[0] = sha256_ctx.state[0]; tmps[gid].p_bytes[1] = sha256_ctx.state[1]; tmps[gid].p_bytes[2] = sha256_ctx.state[2]; tmps[gid].p_bytes[3] = sha256_ctx.state[3]; // s_bytes sha256_init (&sha256_ctx); for (u32 j = 0; j < 16 + ((tmps[gid].alt_result[0] >> 24) & 0xff); j++) { sha256_update (&sha256_ctx, salt, salt_len); } sha256_final (&sha256_ctx); tmps[gid].s_bytes[0] = sha256_ctx.state[0]; tmps[gid].s_bytes[1] = sha256_ctx.state[1]; tmps[gid].s_bytes[2] = sha256_ctx.state[2]; tmps[gid].s_bytes[3] = sha256_ctx.state[3]; } __kernel void m07400_loop (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; u32 p_bytes0[4]; p_bytes0[0] = tmps[gid].p_bytes[0]; p_bytes0[1] = tmps[gid].p_bytes[1]; p_bytes0[2] = tmps[gid].p_bytes[2]; p_bytes0[3] = tmps[gid].p_bytes[3]; const u32 pw_len = pws[gid].pw_len; u32 s_bytes0[4]; s_bytes0[0] = tmps[gid].s_bytes[0]; s_bytes0[1] = tmps[gid].s_bytes[1]; s_bytes0[2] = tmps[gid].s_bytes[2]; s_bytes0[3] = tmps[gid].s_bytes[3]; const u32 salt_len = salt_bufs[salt_pos].salt_len; u32 wpc_len[8]; wpc_len[0] = 32 + 0 + 0 + pw_len; wpc_len[1] = pw_len + 0 + 0 + 32; wpc_len[2] = 32 + salt_len + 0 + pw_len; wpc_len[3] = pw_len + salt_len + 0 + 32; wpc_len[4] = 32 + 0 + pw_len + pw_len; wpc_len[5] = pw_len + 0 + pw_len + 32; wpc_len[6] = 32 + salt_len + pw_len + pw_len; wpc_len[7] = pw_len + salt_len + pw_len + 32; u32 wpc[8][32] = { { 0 } }; for (u32 i = 0; i < 8; i++) { u32 block_len = 0; if (i & 1) { for (u32 j = 0; j < pw_len; j++) { PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j)); } } else { block_len += 32; } if (i & 2) { for (u32 j = 0; j < salt_len; j++) { PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (s_bytes0, j)); } } if (i & 4) { for (u32 j = 0; j < pw_len; j++) { PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j)); } } if (i & 1) { block_len += 32; } else { for (u32 j = 0; j < pw_len; j++) { PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j)); } } PUTCHAR32_BE (wpc[i], block_len, 0x80); if (block_len < 56) { wpc[i][15] = block_len * 8; } else { wpc[i][31] = block_len * 8; } } /** * base */ u32 alt_result[8]; alt_result[0] = tmps[gid].alt_result[0]; alt_result[1] = tmps[gid].alt_result[1]; alt_result[2] = tmps[gid].alt_result[2]; alt_result[3] = tmps[gid].alt_result[3]; alt_result[4] = tmps[gid].alt_result[4]; alt_result[5] = tmps[gid].alt_result[5]; alt_result[6] = tmps[gid].alt_result[6]; alt_result[7] = tmps[gid].alt_result[7]; /* Repeatedly run the collected hash value through SHA256 to burn CPU cycles. */ for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++) { const u32 j1 = (j & 1) ? 1 : 0; const u32 j3 = (j % 3) ? 2 : 0; const u32 j7 = (j % 7) ? 4 : 0; const u32 pc = j1 + j3 + j7; u32 block[32]; block[ 0] = wpc[pc][ 0]; block[ 1] = wpc[pc][ 1]; block[ 2] = wpc[pc][ 2]; block[ 3] = wpc[pc][ 3]; block[ 4] = wpc[pc][ 4]; block[ 5] = wpc[pc][ 5]; block[ 6] = wpc[pc][ 6]; block[ 7] = wpc[pc][ 7]; block[ 8] = wpc[pc][ 8]; block[ 9] = wpc[pc][ 9]; block[10] = wpc[pc][10]; block[11] = wpc[pc][11]; block[12] = wpc[pc][12]; block[13] = wpc[pc][13]; block[14] = wpc[pc][14]; block[15] = wpc[pc][15]; block[16] = wpc[pc][16]; block[17] = wpc[pc][17]; block[18] = wpc[pc][18]; block[19] = wpc[pc][19]; block[20] = wpc[pc][20]; block[21] = wpc[pc][21]; block[22] = wpc[pc][22]; block[23] = wpc[pc][23]; block[24] = wpc[pc][24]; block[25] = wpc[pc][25]; block[26] = wpc[pc][26]; block[27] = wpc[pc][27]; block[28] = wpc[pc][28]; block[29] = wpc[pc][29]; block[30] = wpc[pc][30]; block[31] = wpc[pc][31]; const u32 block_len = wpc_len[pc]; if (j1) { #ifdef _unroll #pragma unroll #endif for (u32 k = 0, p = block_len - 32; k < 32; k++, p++) { PUTCHAR32_BE (block, p, GETCHAR32_BE (alt_result, k)); } } else { block[0] = alt_result[0]; block[1] = alt_result[1]; block[2] = alt_result[2]; block[3] = alt_result[3]; block[4] = alt_result[4]; block[5] = alt_result[5]; block[6] = alt_result[6]; block[7] = alt_result[7]; } alt_result[0] = SHA256M_A; alt_result[1] = SHA256M_B; alt_result[2] = SHA256M_C; alt_result[3] = SHA256M_D; alt_result[4] = SHA256M_E; alt_result[5] = SHA256M_F; alt_result[6] = SHA256M_G; alt_result[7] = SHA256M_H; sha256_transform (block, alt_result); if (block_len >= 56) { sha256_transform (block + 16, alt_result); } } tmps[gid].alt_result[0] = alt_result[0]; tmps[gid].alt_result[1] = alt_result[1]; tmps[gid].alt_result[2] = alt_result[2]; tmps[gid].alt_result[3] = alt_result[3]; tmps[gid].alt_result[4] = alt_result[4]; tmps[gid].alt_result[5] = alt_result[5]; tmps[gid].alt_result[6] = alt_result[6]; tmps[gid].alt_result[7] = alt_result[7]; } __kernel void m07400_comp (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const pw_t *combs_buf, __global const bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global const void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max) { /** * base */ const u32 gid = get_global_id (0); if (gid >= gid_max) return; const u32 lid = get_local_id (0); const u32 r0 = swap32 (tmps[gid].alt_result[0]); const u32 r1 = swap32 (tmps[gid].alt_result[1]); const u32 r2 = swap32 (tmps[gid].alt_result[2]); const u32 r3 = swap32 (tmps[gid].alt_result[3]); #define il_pos 0 #include COMPARE_M } #endif