/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_scalar.cl" #include "inc_hash_sha1.cl" #include "inc_cipher_aes.cl" #endif typedef struct cryptoapi { u32 kern_type; u32 key_size; } cryptoapi_t; KERNEL_FQ void m14511_mxx (KERN_ATTR_VECTOR_ESALT (cryptoapi_t)) { /** * modifier */ const u64 gid = get_global_id (0); /** * aes shared */ #ifdef REAL_SHM const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= gid_max) return; /** * base */ u32 aes_key_len = esalt_bufs[DIGESTS_OFFSET].key_size; u32 padding[64] = { 0 }; padding[0] = 0x00000041; const u32 pw_len = pws[gid].pw_len; u32x w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; u32x _w[64]; u32 _w_len = pw_len; for (u32 i = 0; i < 64; i++) _w[i] = w[i]; sha1_ctx_t ctx0; sha1_init (&ctx0); sha1_update_swap (&ctx0, w, pw_len); sha1_final (&ctx0); const u32 k0 = ctx0.h[0]; const u32 k1 = ctx0.h[1]; const u32 k2 = ctx0.h[2]; const u32 k3 = ctx0.h[3]; u32 k4 = 0, k5 = 0, k6 = 0, k7 = 0; if (aes_key_len > 128) { k4 = ctx0.h[4]; sha1_ctx_t ctx; sha1_init (&ctx); sha1_update_swap(&ctx, padding, 1); sha1_update_swap(&ctx, _w, _w_len); sha1_final (&ctx); k5 = ctx.h[0]; if (aes_key_len > 192) { k6 = ctx.h[1]; k7 = ctx.h[2]; } } // key u32 ukey[8] = { 0 }; ukey[0] = k0; ukey[1] = k1; ukey[2] = k2; ukey[3] = k3; if (aes_key_len > 128) { ukey[4] = k4; ukey[5] = k5; if (aes_key_len > 192) { ukey[6] = k6; ukey[7] = k7; } } // IV const u32 iv[4] = { hc_swap32_S(salt_bufs[SALT_POS].salt_buf[0]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[1]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[2]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[3]) }; // CT u32 CT[4] = { 0 }; // aes u32 ks[60] = { 0 }; if (aes_key_len == 128) { AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES128_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } else if (aes_key_len == 192) { AES192_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES192_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } else { AES256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES256_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } const u32 r0 = CT[0]; const u32 r1 = CT[1]; const u32 r2 = CT[2]; const u32 r3 = CT[3]; COMPARE_M_SCALAR (r0, r1, r2, r3); } } KERNEL_FQ void m14511_sxx (KERN_ATTR_VECTOR_ESALT (cryptoapi_t)) { /** * modifier */ const u64 gid = get_global_id (0); /** * aes shared */ #ifdef REAL_SHM const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= gid_max) return; /** * digest */ const u32 search[4] = { digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R0], digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R1], digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R2], digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R3] }; /** * base */ u32 aes_key_len = esalt_bufs[DIGESTS_OFFSET].key_size; u32 padding[64] = { 0 }; padding[0] = 0x00000041; const u32 pw_len = pws[gid].pw_len; u32x w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; u32x _w[64]; u32 _w_len = pw_len; for (u32 i = 0; i < 64; i++) _w[i] = w[i]; sha1_ctx_t ctx0; sha1_init (&ctx0); sha1_update_swap(&ctx0, w, pw_len); sha1_final (&ctx0); const u32 k0 = ctx0.h[0]; const u32 k1 = ctx0.h[1]; const u32 k2 = ctx0.h[2]; const u32 k3 = ctx0.h[3]; u32 k4 = 0, k5 = 0, k6 = 0, k7 = 0; if (aes_key_len > 128) { k4 = ctx0.h[4]; sha1_ctx_t ctx; sha1_init (&ctx); sha1_update_swap(&ctx, padding, 1); sha1_update_swap(&ctx, _w, _w_len); sha1_final (&ctx); k5 = ctx.h[0]; if (aes_key_len > 192) { k6 = ctx.h[1]; k7 = ctx.h[2]; } } // key u32 ukey[8] = { 0 }; ukey[0] = k0; ukey[1] = k1; ukey[2] = k2; ukey[3] = k3; if (aes_key_len > 128) { ukey[4] = k4; ukey[5] = k5; if (aes_key_len > 192) { ukey[6] = k6; ukey[7] = k7; } } // IV const u32 iv[4] = { hc_swap32_S(salt_bufs[SALT_POS].salt_buf[0]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[1]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[2]), hc_swap32_S(salt_bufs[SALT_POS].salt_buf[3]) }; // CT u32 CT[4] = { 0 }; // aes u32 ks[60] = { 0 }; if (aes_key_len == 128) { AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES128_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } else if (aes_key_len == 192) { AES192_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES192_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } else { AES256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); AES256_encrypt (ks, iv, CT, s_te0, s_te1, s_te2, s_te3, s_te4); } const u32 r0 = CT[0]; const u32 r1 = CT[1]; const u32 r2 = CT[2]; const u32 r3 = CT[3]; COMPARE_S_SCALAR (r0, r1, r2, r3); } }