/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_hash_sha256.cl" #include "inc_cipher_aes.cl" #endif #define MIN(a,b) (((a) < (b)) ? (a) : (b)) typedef struct bestcrypt_tmp { u32 salt_pw_buf[33]; u32 out[8]; } bestcrypt_tmp_t; typedef struct bestcrypt { u32 data[24]; } bestcrypt_t; KERNEL_FQ void m23900_init (KERN_ATTR_TMPS_ESALT (bestcrypt_tmp_t, bestcrypt_t)) { const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; const int salt_pw_len = 8 + MIN (pws[gid].pw_len, 56); u32 comb[16]; comb[ 0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; comb[ 1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; comb[ 2] = hc_swap32_S (pws[gid].i[ 0]); // in theory BE is faster because it comb[ 3] = hc_swap32_S (pws[gid].i[ 1]); // avoids several other byte swaps later on comb[ 4] = hc_swap32_S (pws[gid].i[ 2]); comb[ 5] = hc_swap32_S (pws[gid].i[ 3]); comb[ 6] = hc_swap32_S (pws[gid].i[ 4]); comb[ 7] = hc_swap32_S (pws[gid].i[ 5]); comb[ 8] = hc_swap32_S (pws[gid].i[ 6]); comb[ 9] = hc_swap32_S (pws[gid].i[ 7]); comb[10] = hc_swap32_S (pws[gid].i[ 8]); comb[11] = hc_swap32_S (pws[gid].i[ 9]); comb[12] = hc_swap32_S (pws[gid].i[10]); comb[13] = hc_swap32_S (pws[gid].i[11]); comb[14] = hc_swap32_S (pws[gid].i[12]); comb[15] = hc_swap32_S (pws[gid].i[13]); u32 salt_pw_buf[32 + 1] = { 0 }; // 8 + 56 + 64 = 128 bytes for (int i = 0; i < 128; i += salt_pw_len) { const int idx = i / 4; const int mod = i % 4; const int full_len = MIN (salt_pw_len, 128 - i); const int copy_len = (full_len + 3) / 4; // ceil () + convert to 4-byte block (u32) for (int j = 0, k = idx; j < copy_len; j++, k++) { // salt_pw_buf[k] |= comb[j] >> (mod * 8); // if (mod) salt_pw_buf[k + 1] |= comb[j] << ((4 - mod) * 8); switch (mod) { case 0: salt_pw_buf[k + 0] |= comb[j]; break; case 1: salt_pw_buf[k + 0] |= comb[j] >> 8; salt_pw_buf[k + 1] |= comb[j] << 24; break; case 2: salt_pw_buf[k + 0] |= comb[j] >> 16; salt_pw_buf[k + 1] |= comb[j] << 16; break; case 3: salt_pw_buf[k + 0] |= comb[j] >> 24; salt_pw_buf[k + 1] |= comb[j] << 8; break; } } } #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 33; i++) { tmps[gid].salt_pw_buf[i] = salt_pw_buf[i]; } } KERNEL_FQ void m23900_loop (KERN_ATTR_TMPS_ESALT (bestcrypt_tmp_t, bestcrypt_t)) { const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; const int salt_pw_len = 8 + MIN (pws[gid].pw_len, 56); u32 salt_pw_buf[32 + 1]; // 8 + 56 + 64 = 128 bytes #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 33; i++) { salt_pw_buf[i] = tmps[gid].salt_pw_buf[i]; } u32 tbl[1024] = { 0 }; // 4 KiB lookup table for (int i = 0; i < 64; i++) { const int idx = i / 4; const int mod = i % 4; // init: int k = i * 16; int l = idx; // tbl[k] |= salt_pw_buf[l] << (mod * 8); switch (mod) { case 0: tbl[k] |= salt_pw_buf[l]; break; case 1: tbl[k] |= salt_pw_buf[l] << 8; break; case 2: tbl[k] |= salt_pw_buf[l] << 16; break; case 3: tbl[k] |= salt_pw_buf[l] << 24; break; } k += 1; l += 1; // loop: for (int j = 1; j < 16; j++, k++, l++) { // if (mod) tbl[k - 1] |= salt_pw_buf[l] >> ((4 - mod) * 8); // tbl[k] |= salt_pw_buf[l] << (mod * 8); switch (mod) { case 0: tbl[k - 0] |= salt_pw_buf[l]; break; case 1: tbl[k - 0] |= salt_pw_buf[l] << 8; tbl[k - 1] |= salt_pw_buf[l] >> 24; break; case 2: tbl[k - 0] |= salt_pw_buf[l] << 16; tbl[k - 1] |= salt_pw_buf[l] >> 16; break; case 3: tbl[k - 0] |= salt_pw_buf[l] << 24; tbl[k - 1] |= salt_pw_buf[l] >> 8; break; } } // final: // if (mod) tbl[k - 1] |= salt_pw_buf[l] >> ((4 - mod) * 8); switch (mod) { case 0: break; case 1: tbl[k - 1] |= salt_pw_buf[l] >> 24; break; case 2: tbl[k - 1] |= salt_pw_buf[l] >> 16; break; case 3: tbl[k - 1] |= salt_pw_buf[l] >> 8; break; } } u32 digest[8]; digest[0] = SHA256M_A; digest[1] = SHA256M_B; digest[2] = SHA256M_C; digest[3] = SHA256M_D; digest[4] = SHA256M_E; digest[5] = SHA256M_F; digest[6] = SHA256M_G; digest[7] = SHA256M_H; for (int i = 0; i < 65536; i += 64) { const int idx = (i % salt_pw_len) * 16; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = tbl[idx + 0]; w0[1] = tbl[idx + 1]; w0[2] = tbl[idx + 2]; w0[3] = tbl[idx + 3]; w1[0] = tbl[idx + 4]; w1[1] = tbl[idx + 5]; w1[2] = tbl[idx + 6]; w1[3] = tbl[idx + 7]; w2[0] = tbl[idx + 8]; w2[1] = tbl[idx + 9]; w2[2] = tbl[idx + 10]; w2[3] = tbl[idx + 11]; w3[0] = tbl[idx + 12]; w3[1] = tbl[idx + 13]; w3[2] = tbl[idx + 14]; w3[3] = tbl[idx + 15]; sha256_transform (w0, w1, w2, w3, digest); } tmps[gid].out[0] = digest[0]; tmps[gid].out[1] = digest[1]; tmps[gid].out[2] = digest[2]; tmps[gid].out[3] = digest[3]; tmps[gid].out[4] = digest[4]; tmps[gid].out[5] = digest[5]; tmps[gid].out[6] = digest[6]; tmps[gid].out[7] = digest[7]; } KERNEL_FQ void m23900_comp (KERN_ATTR_TMPS_ESALT (bestcrypt_tmp_t, bestcrypt_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_MAX) return; // final transform of sha256: u32 digest[8]; digest[0] = tmps[gid].out[0]; digest[1] = tmps[gid].out[1]; digest[2] = tmps[gid].out[2]; digest[3] = tmps[gid].out[3]; digest[4] = tmps[gid].out[4]; digest[5] = tmps[gid].out[5]; digest[6] = tmps[gid].out[6]; digest[7] = tmps[gid].out[7]; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 65536 * 8; sha256_transform (w0, w1, w2, w3, digest); /** * AES part */ #define KEYLEN 60 u32 ks[KEYLEN]; AES256_set_decrypt_key (ks, digest, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 iv[4] = { 0 }; u32 res[20]; // full would be 24 x u32 (96 bytes) for (u32 i = 0; i < 20; i += 4) // 96 bytes output would contain the full 32 byte checksum { u32 data[4]; data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[i + 0]; data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[i + 1]; data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[i + 2]; data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[i + 3]; u32 out[4]; aes256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); res[i + 0] = hc_swap32_S (out[0] ^ iv[0]); res[i + 1] = hc_swap32_S (out[1] ^ iv[1]); res[i + 2] = hc_swap32_S (out[2] ^ iv[2]); res[i + 3] = hc_swap32_S (out[3] ^ iv[3]); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; } // checksum: // sha256_ctx_t ctx; // sha256_init (&ctx); // sha256_update_swap (&ctx, res, 64); // sha256_final (&ctx); digest[0] = SHA256M_A; digest[1] = SHA256M_B; digest[2] = SHA256M_C; digest[3] = SHA256M_D; digest[4] = SHA256M_E; digest[5] = SHA256M_F; digest[6] = SHA256M_G; digest[7] = SHA256M_H; w0[0] = res[ 0]; w0[1] = res[ 1]; w0[2] = res[ 2]; w0[3] = res[ 3]; w1[0] = res[ 4]; w1[1] = res[ 5]; w1[2] = res[ 6]; w1[3] = res[ 7]; w2[0] = res[ 8]; w2[1] = res[ 9]; w2[2] = res[10]; w2[3] = res[11]; w3[0] = res[12]; w3[1] = res[13]; w3[2] = res[14]; w3[3] = res[15]; sha256_transform (w0, w1, w2, w3, digest); w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 64 * 8; sha256_transform (w0, w1, w2, w3, digest); if ((digest[0] == res[16]) && (digest[1] == res[17]) && (digest[2] == res[18]) && (digest[3] == res[19])) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } return; } }