/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_hash_sha1.cl" #include "inc_cipher_aes.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" #define ROUNDS 0x40000 #define PUTCHAR(a,p,c) ((u8 *)(a))[(p)] = (u8) (c) #define GETCHAR(a,p) ((u8 *)(a))[(p)] #define PUTCHAR_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c) #define GETCHAR_BE(a,p) ((u8 *)(a))[(p) ^ 3] #define MIN(a,b) (((a) < (b)) ? (a) : (b)) typedef struct rar3 { u32 first_block_encrypted[4]; } rar3_t; typedef struct rar3_tmp { u32 dgst[17][5]; } rar3_tmp_t; typedef struct rar3_hook { u32 key[4]; u32 iv[4]; u32 first_block_decrypted[4]; u32 crc32; } rar3_hook_t; KERNEL_FQ void m23800_init (KERN_ATTR_TMPS_HOOKS_ESALT (rar3_tmp_t, rar3_hook_t, rar3_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; tmps[gid].dgst[0][0] = SHA1M_A; tmps[gid].dgst[0][1] = SHA1M_B; tmps[gid].dgst[0][2] = SHA1M_C; tmps[gid].dgst[0][3] = SHA1M_D; tmps[gid].dgst[0][4] = SHA1M_E; } KERNEL_FQ void m23800_loop (KERN_ATTR_TMPS_HOOKS_ESALT (rar3_tmp_t, rar3_hook_t, rar3_t)) { const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; u32 pw_buf[10]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; pw_buf[5] = pws[gid].i[5]; pw_buf[6] = pws[gid].i[6]; pw_buf[7] = pws[gid].i[7]; pw_buf[8] = pws[gid].i[8]; pw_buf[9] = pws[gid].i[9]; const u32 pw_len = MIN (pws[gid].pw_len, 40); u32 salt_buf[2]; salt_buf[0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; salt_buf[1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; const u32 salt_len = 8; // this is large enough to hold all possible w[] arrays for 64 iterations #define LARGEBLOCK_ELEMS ((40 + 8 + 3) * 16) u32 largeblock[LARGEBLOCK_ELEMS]; for (u32 i = 0; i < LARGEBLOCK_ELEMS; i++) largeblock[i] = 0; for (u32 i = 0, p = 0; i < 64; i++) { for (u32 j = 0; j < pw_len; j++, p += 1) { PUTCHAR_BE (largeblock, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (largeblock, p, GETCHAR (salt_buf, j)); } PUTCHAR_BE (largeblock, p + 2, (LOOP_POS >> 16) & 0xff); p += 3; } const u32 p2 = pw_len + salt_len; const u32 p3 = pw_len + salt_len + 3; const u32 init_pos = LOOP_POS / (ROUNDS / 16); u32 dgst[5]; dgst[0] = tmps[gid].dgst[init_pos][0]; dgst[1] = tmps[gid].dgst[init_pos][1]; dgst[2] = tmps[gid].dgst[init_pos][2]; dgst[3] = tmps[gid].dgst[init_pos][3]; dgst[4] = tmps[gid].dgst[init_pos][4]; u32 iter = LOOP_POS; for (u32 i = 0; i < 256; i++) { u32 tmp = 0; u32 k = p2; for (u32 j = 0; j < p3; j++) { const u32 j16 = j * 16; u32 w[16 + 1]; w[ 0] = largeblock[j16 + 0] | tmp; w[ 1] = largeblock[j16 + 1]; w[ 2] = largeblock[j16 + 2]; w[ 3] = largeblock[j16 + 3]; w[ 4] = largeblock[j16 + 4]; w[ 5] = largeblock[j16 + 5]; w[ 6] = largeblock[j16 + 6]; w[ 7] = largeblock[j16 + 7]; w[ 8] = largeblock[j16 + 8]; w[ 9] = largeblock[j16 + 9]; w[10] = largeblock[j16 + 10]; w[11] = largeblock[j16 + 11]; w[12] = largeblock[j16 + 12]; w[13] = largeblock[j16 + 13]; w[14] = largeblock[j16 + 14]; w[15] = largeblock[j16 + 15]; w[16] = 0; while (k < 64) { const u32 iter_s = hc_swap32_S (iter); u32 mask0 = 0; u32 mask1 = 0; u32 tmp0 = 0; u32 tmp1 = 0; const int kd = k / 4; const int km = k & 3; if (km == 0) { tmp0 = iter_s >> 0; tmp1 = 0; mask0 = 0x0000ffff; mask1 = 0xffffffff; } else if (km == 1) { tmp0 = iter_s >> 8; tmp1 = 0; mask0 = 0xff0000ff; mask1 = 0xffffffff; } else if (km == 2) { tmp0 = iter_s >> 16; tmp1 = 0; mask0 = 0xffff0000; mask1 = 0xffffffff; } else if (km == 3) { tmp0 = iter_s >> 24; tmp1 = iter_s << 8; mask0 = 0xffffff00; mask1 = 0x00ffffff; } switch (kd) { case 0: w[ 0] = (w[ 0] & mask0) | tmp0; w[ 1] = (w[ 1] & mask1) | tmp1; break; case 1: w[ 1] = (w[ 1] & mask0) | tmp0; w[ 2] = (w[ 2] & mask1) | tmp1; break; case 2: w[ 2] = (w[ 2] & mask0) | tmp0; w[ 3] = (w[ 3] & mask1) | tmp1; break; case 3: w[ 3] = (w[ 3] & mask0) | tmp0; w[ 4] = (w[ 4] & mask1) | tmp1; break; case 4: w[ 4] = (w[ 4] & mask0) | tmp0; w[ 5] = (w[ 5] & mask1) | tmp1; break; case 5: w[ 5] = (w[ 5] & mask0) | tmp0; w[ 6] = (w[ 6] & mask1) | tmp1; break; case 6: w[ 6] = (w[ 6] & mask0) | tmp0; w[ 7] = (w[ 7] & mask1) | tmp1; break; case 7: w[ 7] = (w[ 7] & mask0) | tmp0; w[ 8] = (w[ 8] & mask1) | tmp1; break; case 8: w[ 8] = (w[ 8] & mask0) | tmp0; w[ 9] = (w[ 9] & mask1) | tmp1; break; case 9: w[ 9] = (w[ 9] & mask0) | tmp0; w[10] = (w[10] & mask1) | tmp1; break; case 10: w[10] = (w[10] & mask0) | tmp0; w[11] = (w[11] & mask1) | tmp1; break; case 11: w[11] = (w[11] & mask0) | tmp0; w[12] = (w[12] & mask1) | tmp1; break; case 12: w[12] = (w[12] & mask0) | tmp0; w[13] = (w[13] & mask1) | tmp1; break; case 13: w[13] = (w[13] & mask0) | tmp0; w[14] = (w[14] & mask1) | tmp1; break; case 14: w[14] = (w[14] & mask0) | tmp0; w[15] = (w[15] & mask1) | tmp1; break; case 15: w[15] = (w[15] & mask0) | tmp0; w[16] = tmp1; break; } iter++; k += p3; } sha1_transform (w + 0, w + 4, w + 8, w + 12, dgst); k &= 63; tmp = w[16]; } } tmps[gid].dgst[init_pos + 1][0] = dgst[0]; tmps[gid].dgst[init_pos + 1][1] = dgst[1]; tmps[gid].dgst[init_pos + 1][2] = dgst[2]; tmps[gid].dgst[init_pos + 1][3] = dgst[3]; tmps[gid].dgst[init_pos + 1][4] = dgst[4]; } KERNEL_FQ void m23800_hook23 (KERN_ATTR_TMPS_HOOKS_ESALT (rar3_tmp_t, rar3_hook_t, rar3_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif SYNC_THREADS (); if (gid >= GID_MAX) return; /** * base */ const u32 pw_len = MIN (pws[gid].pw_len, 40); const u32 salt_len = 8; const u32 p3 = pw_len + salt_len + 3; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (p3 * ROUNDS) * 8; u32 h[5]; h[0] = tmps[gid].dgst[16][0]; h[1] = tmps[gid].dgst[16][1]; h[2] = tmps[gid].dgst[16][2]; h[3] = tmps[gid].dgst[16][3]; h[4] = tmps[gid].dgst[16][4]; sha1_transform (w0, w1, w2, w3, h); u32 iv[4]; iv[0] = 0; iv[1] = 0; iv[2] = 0; iv[3] = 0; for (int i = 0; i < 16; i++) { u32 pw_buf[10]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; pw_buf[5] = pws[gid].i[5]; pw_buf[6] = pws[gid].i[6]; pw_buf[7] = pws[gid].i[7]; pw_buf[8] = pws[gid].i[8]; pw_buf[9] = pws[gid].i[9]; //const u32 pw_len = pws[gid].pw_len; u32 salt_buf[2]; salt_buf[0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; salt_buf[1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; //const u32 salt_len = 8; //const u32 p3 = pw_len + salt_len + 3; u32 w[16]; w[ 0] = 0; w[ 1] = 0; w[ 2] = 0; w[ 3] = 0; w[ 4] = 0; w[ 5] = 0; w[ 6] = 0; w[ 7] = 0; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; u32 p = 0; for (u32 j = 0; j < pw_len; j++, p += 1) { PUTCHAR_BE (w, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (w, p, GETCHAR (salt_buf, j)); } const u32 iter_pos = i * (ROUNDS / 16); PUTCHAR_BE (w, p + 0, (iter_pos >> 0) & 0xff); PUTCHAR_BE (w, p + 1, (iter_pos >> 8) & 0xff); PUTCHAR_BE (w, p + 2, (iter_pos >> 16) & 0xff); PUTCHAR_BE (w, p3, 0x80); w[15] = ((iter_pos + 1) * p3) * 8; u32 dgst[5]; dgst[0] = tmps[gid].dgst[i][0]; dgst[1] = tmps[gid].dgst[i][1]; dgst[2] = tmps[gid].dgst[i][2]; dgst[3] = tmps[gid].dgst[i][3]; dgst[4] = tmps[gid].dgst[i][4]; sha1_transform (w + 0, w + 4, w + 8, w + 12, dgst); PUTCHAR (iv, i, dgst[4] & 0xff); } hooks[gid].key[0] = h[0]; hooks[gid].key[1] = h[1]; hooks[gid].key[2] = h[2]; hooks[gid].key[3] = h[3]; hooks[gid].iv[0] = iv[0]; hooks[gid].iv[1] = iv[1]; hooks[gid].iv[2] = iv[2]; hooks[gid].iv[3] = iv[3]; u32 ukey[4]; ukey[0] = hc_swap32_S (h[0]); ukey[1] = hc_swap32_S (h[1]); ukey[2] = hc_swap32_S (h[2]); ukey[3] = hc_swap32_S (h[3]); u32 ks[44]; AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 data[4]; data[0] = hc_swap32_S (esalt_bufs[DIGESTS_OFFSET_HOST].first_block_encrypted[0]); data[1] = hc_swap32_S (esalt_bufs[DIGESTS_OFFSET_HOST].first_block_encrypted[1]); data[2] = hc_swap32_S (esalt_bufs[DIGESTS_OFFSET_HOST].first_block_encrypted[2]); data[3] = hc_swap32_S (esalt_bufs[DIGESTS_OFFSET_HOST].first_block_encrypted[3]); u32 out[4]; AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); out[0] ^= hc_swap32_S (iv[0]); out[1] ^= hc_swap32_S (iv[1]); out[2] ^= hc_swap32_S (iv[2]); out[3] ^= hc_swap32_S (iv[3]); hooks[gid].first_block_decrypted[0] = hc_swap32_S (out[0]); hooks[gid].first_block_decrypted[1] = hc_swap32_S (out[1]); hooks[gid].first_block_decrypted[2] = hc_swap32_S (out[2]); hooks[gid].first_block_decrypted[3] = hc_swap32_S (out[3]); } KERNEL_FQ void m23800_comp (KERN_ATTR_TMPS_HOOKS_ESALT (rar3_tmp_t, rar3_hook_t, rar3_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; u32 crc32 = hooks[gid].crc32; const u32 r0 = crc32; const u32 r1 = 0; const u32 r2 = 0; const u32 r3 = 0; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }