/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_sha512.cl" #include "inc_cipher_aes.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" typedef struct office2013_tmp { u64 out[8]; } office2013_tmp_t; typedef struct office2013 { u32 encryptedVerifier[4]; u32 encryptedVerifierHash[8]; } office2013_t; KERNEL_FQ void m09600_init (KERN_ATTR_TMPS_ESALT (office2013_tmp_t, office2013_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_MAX) return; sha512_ctx_t ctx; sha512_init (&ctx); sha512_update_global (&ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len); sha512_update_global_utf16le_swap (&ctx, pws[gid].i, pws[gid].pw_len); sha512_final (&ctx); tmps[gid].out[0] = ctx.h[0]; tmps[gid].out[1] = ctx.h[1]; tmps[gid].out[2] = ctx.h[2]; tmps[gid].out[3] = ctx.h[3]; tmps[gid].out[4] = ctx.h[4]; tmps[gid].out[5] = ctx.h[5]; tmps[gid].out[6] = ctx.h[6]; tmps[gid].out[7] = ctx.h[7]; } KERNEL_FQ void m09600_loop (KERN_ATTR_TMPS_ESALT (office2013_tmp_t, office2013_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= GID_MAX) return; u64x t0 = pack64v (tmps, out, gid, 0); u64x t1 = pack64v (tmps, out, gid, 1); u64x t2 = pack64v (tmps, out, gid, 2); u64x t3 = pack64v (tmps, out, gid, 3); u64x t4 = pack64v (tmps, out, gid, 4); u64x t5 = pack64v (tmps, out, gid, 5); u64x t6 = pack64v (tmps, out, gid, 6); u64x t7 = pack64v (tmps, out, gid, 7); u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; u32x w4[4]; u32x w5[4]; u32x w6[4]; u32x w7[4]; w0[0] = 0; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; w4[0] = 0; w4[1] = 0x80000000; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = (4 + 64) * 8; for (u32 i = 0, j = LOOP_POS; i < LOOP_CNT; i++, j++) { w0[0] = hc_swap32 (j); w0[1] = h32_from_64 (t0); w0[2] = l32_from_64 (t0); w0[3] = h32_from_64 (t1); w1[0] = l32_from_64 (t1); w1[1] = h32_from_64 (t2); w1[2] = l32_from_64 (t2); w1[3] = h32_from_64 (t3); w2[0] = l32_from_64 (t3); w2[1] = h32_from_64 (t4); w2[2] = l32_from_64 (t4); w2[3] = h32_from_64 (t5); w3[0] = l32_from_64 (t5); w3[1] = h32_from_64 (t6); w3[2] = l32_from_64 (t6); w3[3] = h32_from_64 (t7); w4[0] = l32_from_64 (t7); u64x digest[8]; digest[0] = SHA512M_A; digest[1] = SHA512M_B; digest[2] = SHA512M_C; digest[3] = SHA512M_D; digest[4] = SHA512M_E; digest[5] = SHA512M_F; digest[6] = SHA512M_G; digest[7] = SHA512M_H; sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest); t0 = digest[0]; t1 = digest[1]; t2 = digest[2]; t3 = digest[3]; t4 = digest[4]; t5 = digest[5]; t6 = digest[6]; t7 = digest[7]; } unpack64v (tmps, out, gid, 0, t0); unpack64v (tmps, out, gid, 1, t1); unpack64v (tmps, out, gid, 2, t2); unpack64v (tmps, out, gid, 3, t3); unpack64v (tmps, out, gid, 4, t4); unpack64v (tmps, out, gid, 5, t5); unpack64v (tmps, out, gid, 6, t6); unpack64v (tmps, out, gid, 7, t7); } KERNEL_FQ void m09600_comp (KERN_ATTR_TMPS_ESALT (office2013_tmp_t, office2013_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_MAX) return; /** * base */ u32 encryptedVerifierHashInputBlockKey[2] = { 0xfea7d276, 0x3b4b9e79 }; u32 encryptedVerifierHashValueBlockKey[2] = { 0xd7aa0f6d, 0x3061344e }; u64 tmp[8]; tmp[0] = tmps[gid].out[0]; tmp[1] = tmps[gid].out[1]; tmp[2] = tmps[gid].out[2]; tmp[3] = tmps[gid].out[3]; tmp[4] = tmps[gid].out[4]; tmp[5] = tmps[gid].out[5]; tmp[6] = tmps[gid].out[6]; tmp[7] = tmps[gid].out[7]; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; u32 w4[4]; u32 w5[4]; u32 w6[4]; u32 w7[4]; w0[0] = h32_from_64_S (tmp[0]); w0[1] = l32_from_64_S (tmp[0]); w0[2] = h32_from_64_S (tmp[1]); w0[3] = l32_from_64_S (tmp[1]); w1[0] = h32_from_64_S (tmp[2]); w1[1] = l32_from_64_S (tmp[2]); w1[2] = h32_from_64_S (tmp[3]); w1[3] = l32_from_64_S (tmp[3]); w2[0] = h32_from_64_S (tmp[4]); w2[1] = l32_from_64_S (tmp[4]); w2[2] = h32_from_64_S (tmp[5]); w2[3] = l32_from_64_S (tmp[5]); w3[0] = h32_from_64_S (tmp[6]); w3[1] = l32_from_64_S (tmp[6]); w3[2] = h32_from_64_S (tmp[7]); w3[3] = l32_from_64_S (tmp[7]); w4[0] = encryptedVerifierHashInputBlockKey[0]; w4[1] = encryptedVerifierHashInputBlockKey[1]; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = 0; sha512_ctx_t ctx; sha512_init (&ctx); sha512_update_128 (&ctx, w0, w1, w2, w3, w4, w5, w6, w7, 64 + 8); sha512_final (&ctx); u64 digest0[4]; digest0[0] = ctx.h[0]; digest0[1] = ctx.h[1]; digest0[2] = ctx.h[2]; digest0[3] = ctx.h[3]; w0[0] = h32_from_64_S (tmp[0]); w0[1] = l32_from_64_S (tmp[0]); w0[2] = h32_from_64_S (tmp[1]); w0[3] = l32_from_64_S (tmp[1]); w1[0] = h32_from_64_S (tmp[2]); w1[1] = l32_from_64_S (tmp[2]); w1[2] = h32_from_64_S (tmp[3]); w1[3] = l32_from_64_S (tmp[3]); w2[0] = h32_from_64_S (tmp[4]); w2[1] = l32_from_64_S (tmp[4]); w2[2] = h32_from_64_S (tmp[5]); w2[3] = l32_from_64_S (tmp[5]); w3[0] = h32_from_64_S (tmp[6]); w3[1] = l32_from_64_S (tmp[6]); w3[2] = h32_from_64_S (tmp[7]); w3[3] = l32_from_64_S (tmp[7]); w4[0] = encryptedVerifierHashValueBlockKey[0]; w4[1] = encryptedVerifierHashValueBlockKey[1]; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = 0; sha512_init (&ctx); sha512_update_128 (&ctx, w0, w1, w2, w3, w4, w5, w6, w7, 64 + 8); sha512_final (&ctx); u64 digest1[4]; digest1[0] = ctx.h[0]; digest1[1] = ctx.h[1]; digest1[2] = ctx.h[2]; digest1[3] = ctx.h[3]; // now we got the AES key, decrypt the verifier u32 ukey[8]; ukey[0] = h32_from_64_S (digest0[0]); ukey[1] = l32_from_64_S (digest0[0]); ukey[2] = h32_from_64_S (digest0[1]); ukey[3] = l32_from_64_S (digest0[1]); ukey[4] = h32_from_64_S (digest0[2]); ukey[5] = l32_from_64_S (digest0[2]); ukey[6] = h32_from_64_S (digest0[3]); ukey[7] = l32_from_64_S (digest0[3]); u32 ks[60]; AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); const u32 digest_cur = DIGESTS_OFFSET_HOST + LOOP_POS; u32 data[4]; data[0] = esalt_bufs[digest_cur].encryptedVerifier[0]; data[1] = esalt_bufs[digest_cur].encryptedVerifier[1]; data[2] = esalt_bufs[digest_cur].encryptedVerifier[2]; data[3] = esalt_bufs[digest_cur].encryptedVerifier[3]; u32 out[4]; AES256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); out[0] ^= salt_bufs[SALT_POS_HOST].salt_buf[0]; out[1] ^= salt_bufs[SALT_POS_HOST].salt_buf[1]; out[2] ^= salt_bufs[SALT_POS_HOST].salt_buf[2]; out[3] ^= salt_bufs[SALT_POS_HOST].salt_buf[3]; // do a sha512 of the result w0[0] = out[0]; w0[1] = out[1]; w0[2] = out[2]; w0[3] = out[3]; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; w4[0] = 0; w4[1] = 0; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = 0; sha512_init (&ctx); sha512_update_128 (&ctx, w0, w1, w2, w3, w4, w5, w6, w7, 16); sha512_final (&ctx); u64 digest[4]; digest[0] = ctx.h[0]; digest[1] = ctx.h[1]; digest[2] = ctx.h[2]; digest[3] = ctx.h[3]; // encrypt with 2nd key ukey[0] = h32_from_64_S (digest1[0]); ukey[1] = l32_from_64_S (digest1[0]); ukey[2] = h32_from_64_S (digest1[1]); ukey[3] = l32_from_64_S (digest1[1]); ukey[4] = h32_from_64_S (digest1[2]); ukey[5] = l32_from_64_S (digest1[2]); ukey[6] = h32_from_64_S (digest1[3]); ukey[7] = l32_from_64_S (digest1[3]); AES256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); data[0] = h32_from_64_S (digest[0]) ^ salt_bufs[SALT_POS_HOST].salt_buf[0]; data[1] = l32_from_64_S (digest[0]) ^ salt_bufs[SALT_POS_HOST].salt_buf[1]; data[2] = h32_from_64_S (digest[1]) ^ salt_bufs[SALT_POS_HOST].salt_buf[2]; data[3] = l32_from_64_S (digest[1]) ^ salt_bufs[SALT_POS_HOST].salt_buf[3]; AES256_encrypt (ks, data, out, s_te0, s_te1, s_te2, s_te3, s_te4); const u32 r0 = out[0]; const u32 r1 = out[1]; const u32 r2 = out[2]; const u32 r3 = out[3]; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }