/** * Author......: See docs/credits.txt * License.....: MIT */ #include "common.h" #include "types.h" #include "memory.h" #include "filehandling.h" #include "interface.h" #include "timer.h" #include "logging.h" #include "ext_OpenCL.h" #include "ext_ADL.h" #include "ext_nvapi.h" #include "ext_nvml.h" #include "ext_xnvctrl.h" #include "tuningdb.h" #include "opencl.h" #include "hwmon.h" #include "restore.h" #include "hash_management.h" #include "thread.h" #include "rp_cpu.h" #include "terminal.h" #include "mpsp.h" #include "outfile.h" #include "potfile.h" #include "debugfile.h" #include "loopback.h" #include "status.h" #include "dictstat.h" #include "wordlist.h" #include "data.h" #include "status.h" #include "shared.h" #include "dispatch.h" extern hc_global_data_t data; extern hc_thread_mutex_t mux_counter; hc_thread_mutex_t mux_dispatcher; static void set_kernel_power_final (const u64 kernel_power_final) { if (data.quiet == 0) { clear_prompt (); //log_info (""); log_info ("INFO: approaching final keyspace, workload adjusted"); log_info (""); send_prompt (); } data.kernel_power_final = kernel_power_final; } static u32 get_power (hc_device_param_t *device_param) { const u64 kernel_power_final = data.kernel_power_final; if (kernel_power_final) { const double device_factor = (double) device_param->hardware_power / data.hardware_power_all; const u64 words_left_device = (u64) CEIL (kernel_power_final * device_factor); // work should be at least the hardware power available without any accelerator const u64 work = MAX (words_left_device, device_param->hardware_power); return work; } return device_param->kernel_power; } static uint get_work (hc_device_param_t *device_param, const u64 max) { hc_thread_mutex_lock (mux_dispatcher); const u64 words_cur = data.words_cur; const u64 words_base = (data.limit == 0) ? data.words_base : MIN (data.limit, data.words_base); device_param->words_off = words_cur; const u64 kernel_power_all = data.kernel_power_all; const u64 words_left = words_base - words_cur; if (words_left < kernel_power_all) { if (data.kernel_power_final == 0) { set_kernel_power_final (words_left); } } const u32 kernel_power = get_power (device_param); uint work = MIN (words_left, kernel_power); work = MIN (work, max); data.words_cur += work; hc_thread_mutex_unlock (mux_dispatcher); return work; } void *thread_calc_stdin (void *p) { hc_device_param_t *device_param = (hc_device_param_t *) p; if (device_param->skipped) return NULL; opencl_ctx_t *opencl_ctx = data.opencl_ctx; hashconfig_t *hashconfig = data.hashconfig; hashes_t *hashes = data.hashes; char *buf = (char *) mymalloc (HCBUFSIZ_LARGE); const uint attack_kern = data.attack_kern; while (opencl_ctx->run_thread_level1 == true) { hc_thread_mutex_lock (mux_dispatcher); if (feof (stdin) != 0) { hc_thread_mutex_unlock (mux_dispatcher); break; } uint words_cur = 0; while (words_cur < device_param->kernel_power) { char *line_buf = fgets (buf, HCBUFSIZ_LARGE - 1, stdin); if (line_buf == NULL) break; uint line_len = in_superchop (line_buf); line_len = convert_from_hex (line_buf, line_len); // post-process rule engine if (run_rule_engine (data.rule_len_l, data.rule_buf_l)) { char rule_buf_out[BLOCK_SIZE] = { 0 }; int rule_len_out = -1; if (line_len < BLOCK_SIZE) { rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out); } if (rule_len_out < 0) continue; line_buf = rule_buf_out; line_len = rule_len_out; } if (line_len > PW_MAX) { continue; } // hmm that's always the case, or? if (attack_kern == ATTACK_KERN_STRAIGHT) { if ((line_len < data.pw_min) || (line_len > data.pw_max)) { hc_thread_mutex_lock (mux_counter); for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++) { data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt; } hc_thread_mutex_unlock (mux_counter); continue; } } pw_add (device_param, (u8 *) line_buf, line_len); words_cur++; while (opencl_ctx->run_thread_level1 == false) break; } hc_thread_mutex_unlock (mux_dispatcher); while (opencl_ctx->run_thread_level1 == false) break; // flush const uint pws_cnt = device_param->pws_cnt; if (pws_cnt) { run_copy (opencl_ctx, device_param, hashconfig, pws_cnt); run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt); device_param->pws_cnt = 0; /* still required? if (attack_kern == ATTACK_KERN_STRAIGHT) { run_kernel_bzero (opencl_ctx, device_param, device_param->d_rules_c, device_param->size_rules_c); } else if (attack_kern == ATTACK_KERN_COMBI) { run_kernel_bzero (opencl_ctx, device_param, device_param->d_combs_c, device_param->size_combs); } */ } } device_param->kernel_accel = 0; device_param->kernel_loops = 0; myfree (buf); return NULL; } void *thread_calc (void *p) { hc_device_param_t *device_param = (hc_device_param_t *) p; if (device_param->skipped) return NULL; opencl_ctx_t *opencl_ctx = data.opencl_ctx; hashconfig_t *hashconfig = data.hashconfig; hashes_t *hashes = data.hashes; const uint attack_mode = data.attack_mode; const uint attack_kern = data.attack_kern; if (attack_mode == ATTACK_MODE_BF) { while (opencl_ctx->run_thread_level1 == true) { const uint work = get_work (device_param, -1u); if (work == 0) break; const u64 words_off = device_param->words_off; const u64 words_fin = words_off + work; const uint pws_cnt = work; device_param->pws_cnt = pws_cnt; if (pws_cnt) { run_copy (opencl_ctx, device_param, hashconfig, pws_cnt); run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt); device_param->pws_cnt = 0; /* still required? run_kernel_bzero (device_param, device_param->d_bfs_c, device_param->size_bfs); */ } if (opencl_ctx->run_thread_level1 == false) break; if (data.benchmark == 1) break; device_param->words_done = words_fin; } } else { const uint segment_size = data.segment_size; char *dictfile = data.dictfile; if (attack_mode == ATTACK_MODE_COMBI) { if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT) { dictfile = data.dictfile2; } } FILE *fd = fopen (dictfile, "rb"); if (fd == NULL) { log_error ("ERROR: %s: %s", dictfile, strerror (errno)); return NULL; } if (attack_mode == ATTACK_MODE_COMBI) { const uint combs_mode = data.combs_mode; if (combs_mode == COMBINATOR_MODE_BASE_LEFT) { const char *dictfilec = data.dictfile2; FILE *combs_fp = fopen (dictfilec, "rb"); if (combs_fp == NULL) { log_error ("ERROR: %s: %s", dictfilec, strerror (errno)); fclose (fd); return NULL; } device_param->combs_fp = combs_fp; } else if (combs_mode == COMBINATOR_MODE_BASE_RIGHT) { const char *dictfilec = data.dictfile; FILE *combs_fp = fopen (dictfilec, "rb"); if (combs_fp == NULL) { log_error ("ERROR: %s: %s", dictfilec, strerror (errno)); fclose (fd); return NULL; } device_param->combs_fp = combs_fp; } } wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t)); wl_data->buf = (char *) mymalloc (segment_size); wl_data->avail = segment_size; wl_data->incr = segment_size; wl_data->cnt = 0; wl_data->pos = 0; u64 words_cur = 0; while (opencl_ctx->run_thread_level1 == true) { u64 words_off = 0; u64 words_fin = 0; u64 max = -1llu; while (max) { const uint work = get_work (device_param, max); if (work == 0) break; max = 0; words_off = device_param->words_off; words_fin = words_off + work; char *line_buf; uint line_len; for ( ; words_cur < words_off; words_cur++) get_next_word (wl_data, fd, &line_buf, &line_len); for ( ; words_cur < words_fin; words_cur++) { get_next_word (wl_data, fd, &line_buf, &line_len); line_len = convert_from_hex (line_buf, line_len); // post-process rule engine if (run_rule_engine (data.rule_len_l, data.rule_buf_l)) { char rule_buf_out[BLOCK_SIZE] = { 0 }; int rule_len_out = -1; if (line_len < BLOCK_SIZE) { rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out); } if (rule_len_out < 0) continue; line_buf = rule_buf_out; line_len = rule_len_out; } if (attack_kern == ATTACK_KERN_STRAIGHT) { if ((line_len < data.pw_min) || (line_len > data.pw_max)) { max++; hc_thread_mutex_lock (mux_counter); for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++) { data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt; } hc_thread_mutex_unlock (mux_counter); continue; } } else if (attack_kern == ATTACK_KERN_COMBI) { // do not check if minimum restriction is satisfied (line_len >= data.pw_min) here // since we still need to combine the plains if (line_len > data.pw_max) { max++; hc_thread_mutex_lock (mux_counter); for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++) { data.words_progress_rejected[salt_pos] += data.combs_cnt; } hc_thread_mutex_unlock (mux_counter); continue; } } pw_add (device_param, (u8 *) line_buf, line_len); if (opencl_ctx->run_thread_level1 == false) break; } if (opencl_ctx->run_thread_level1 == false) break; } if (opencl_ctx->run_thread_level1 == false) break; // // flush // const uint pws_cnt = device_param->pws_cnt; if (pws_cnt) { run_copy (opencl_ctx, device_param, hashconfig, pws_cnt); run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt); device_param->pws_cnt = 0; /* still required? if (attack_kern == ATTACK_KERN_STRAIGHT) { run_kernel_bzero (device_param, device_param->d_rules_c, device_param->size_rules_c); } else if (attack_kern == ATTACK_KERN_COMBI) { run_kernel_bzero (device_param, device_param->d_combs_c, device_param->size_combs); } */ } if (opencl_ctx->run_thread_level1 == false) break; if (words_fin == 0) break; device_param->words_done = words_fin; } if (attack_mode == ATTACK_MODE_COMBI) { fclose (device_param->combs_fp); } free (wl_data->buf); free (wl_data); fclose (fd); } device_param->kernel_accel = 0; device_param->kernel_loops = 0; return NULL; }