/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_hash_sha256.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes-gcm.cl) #endif #define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl) typedef struct pbkdf2_sha256_tmp { u32 ipad[8]; u32 opad[8]; u32 dgst[32]; u32 out[32]; } pbkdf2_sha256_tmp_t; typedef struct onepassword8 { u32 hkdf_salt_buf[8]; u32 hkdf_key_buf[8]; u32 iv_buf[4]; u32 tag_buf[4]; u32 email_buf[64]; int email_len; u32 ct_buf[1024]; int ct_len; } onepassword8_t; DECLSPEC void hmac_sha256_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; digest[5] = ipad[5]; digest[6] = ipad[6]; digest[7] = ipad[7]; sha256_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = digest[5]; w1[2] = digest[6]; w1[3] = digest[7]; w2[0] = 0x80000000; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 32) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; digest[5] = opad[5]; digest[6] = opad[6]; digest[7] = opad[7]; sha256_transform_vector (w0, w1, w2, w3, digest); } KERNEL_FQ void m31800_init (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, onepassword8_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; sha256_hmac_ctx_t sha256_hmac_ctx; sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad[0] = sha256_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha256_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha256_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha256_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha256_hmac_ctx.ipad.h[4]; tmps[gid].ipad[5] = sha256_hmac_ctx.ipad.h[5]; tmps[gid].ipad[6] = sha256_hmac_ctx.ipad.h[6]; tmps[gid].ipad[7] = sha256_hmac_ctx.ipad.h[7]; tmps[gid].opad[0] = sha256_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha256_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha256_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha256_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha256_hmac_ctx.opad.h[4]; tmps[gid].opad[5] = sha256_hmac_ctx.opad.h[5]; tmps[gid].opad[6] = sha256_hmac_ctx.opad.h[6]; tmps[gid].opad[7] = sha256_hmac_ctx.opad.h[7]; u32 salt_buf[16]; salt_buf[ 0] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[0]; salt_buf[ 1] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[1]; salt_buf[ 2] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[2]; salt_buf[ 3] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[3]; salt_buf[ 4] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[4]; salt_buf[ 5] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[5]; salt_buf[ 6] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[6]; salt_buf[ 7] = esalt_bufs[DIGESTS_OFFSET_HOST].hkdf_salt_buf[7]; salt_buf[ 8] = 0; salt_buf[ 9] = 0; salt_buf[10] = 0; salt_buf[11] = 0; salt_buf[12] = 0; salt_buf[13] = 0; salt_buf[14] = 0; salt_buf[15] = 0; sha256_hmac_update (&sha256_hmac_ctx, salt_buf, 32); for (u32 i = 0, j = 1; i < 8; i += 8, j += 1) { sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4); sha256_hmac_final (&sha256_hmac_ctx2); tmps[gid].dgst[i + 0] = sha256_hmac_ctx2.opad.h[0]; tmps[gid].dgst[i + 1] = sha256_hmac_ctx2.opad.h[1]; tmps[gid].dgst[i + 2] = sha256_hmac_ctx2.opad.h[2]; tmps[gid].dgst[i + 3] = sha256_hmac_ctx2.opad.h[3]; tmps[gid].dgst[i + 4] = sha256_hmac_ctx2.opad.h[4]; tmps[gid].dgst[i + 5] = sha256_hmac_ctx2.opad.h[5]; tmps[gid].dgst[i + 6] = sha256_hmac_ctx2.opad.h[6]; tmps[gid].dgst[i + 7] = sha256_hmac_ctx2.opad.h[7]; tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0]; tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1]; tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2]; tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3]; tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4]; tmps[gid].out[i + 5] = tmps[gid].dgst[i + 5]; tmps[gid].out[i + 6] = tmps[gid].dgst[i + 6]; tmps[gid].out[i + 7] = tmps[gid].dgst[i + 7]; } } KERNEL_FQ void m31800_loop (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, onepassword8_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= GID_CNT) return; u32x ipad[8]; u32x opad[8]; ipad[0] = packv (tmps, ipad, gid, 0); ipad[1] = packv (tmps, ipad, gid, 1); ipad[2] = packv (tmps, ipad, gid, 2); ipad[3] = packv (tmps, ipad, gid, 3); ipad[4] = packv (tmps, ipad, gid, 4); ipad[5] = packv (tmps, ipad, gid, 5); ipad[6] = packv (tmps, ipad, gid, 6); ipad[7] = packv (tmps, ipad, gid, 7); opad[0] = packv (tmps, opad, gid, 0); opad[1] = packv (tmps, opad, gid, 1); opad[2] = packv (tmps, opad, gid, 2); opad[3] = packv (tmps, opad, gid, 3); opad[4] = packv (tmps, opad, gid, 4); opad[5] = packv (tmps, opad, gid, 5); opad[6] = packv (tmps, opad, gid, 6); opad[7] = packv (tmps, opad, gid, 7); for (u32 i = 0; i < 8; i += 8) { u32x dgst[8]; u32x out[8]; dgst[0] = packv (tmps, dgst, gid, i + 0); dgst[1] = packv (tmps, dgst, gid, i + 1); dgst[2] = packv (tmps, dgst, gid, i + 2); dgst[3] = packv (tmps, dgst, gid, i + 3); dgst[4] = packv (tmps, dgst, gid, i + 4); dgst[5] = packv (tmps, dgst, gid, i + 5); dgst[6] = packv (tmps, dgst, gid, i + 6); dgst[7] = packv (tmps, dgst, gid, i + 7); out[0] = packv (tmps, out, gid, i + 0); out[1] = packv (tmps, out, gid, i + 1); out[2] = packv (tmps, out, gid, i + 2); out[3] = packv (tmps, out, gid, i + 3); out[4] = packv (tmps, out, gid, i + 4); out[5] = packv (tmps, out, gid, i + 5); out[6] = packv (tmps, out, gid, i + 6); out[7] = packv (tmps, out, gid, i + 7); for (u32 j = 0; j < LOOP_CNT; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = dgst[5]; w1[2] = dgst[6]; w1[3] = dgst[7]; w2[0] = 0x80000000; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 32) * 8; hmac_sha256_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; out[5] ^= dgst[5]; out[6] ^= dgst[6]; out[7] ^= dgst[7]; } unpackv (tmps, dgst, gid, i + 0, dgst[0]); unpackv (tmps, dgst, gid, i + 1, dgst[1]); unpackv (tmps, dgst, gid, i + 2, dgst[2]); unpackv (tmps, dgst, gid, i + 3, dgst[3]); unpackv (tmps, dgst, gid, i + 4, dgst[4]); unpackv (tmps, dgst, gid, i + 5, dgst[5]); unpackv (tmps, dgst, gid, i + 6, dgst[6]); unpackv (tmps, dgst, gid, i + 7, dgst[7]); unpackv (tmps, out, gid, i + 0, out[0]); unpackv (tmps, out, gid, i + 1, out[1]); unpackv (tmps, out, gid, i + 2, out[2]); unpackv (tmps, out, gid, i + 3, out[3]); unpackv (tmps, out, gid, i + 4, out[4]); unpackv (tmps, out, gid, i + 5, out[5]); unpackv (tmps, out, gid, i + 6, out[6]); unpackv (tmps, out, gid, i + 7, out[7]); } } KERNEL_FQ void m31800_comp (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, onepassword8_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; const u32 digest_pos = LOOP_POS; const u32 digest_cur = DIGESTS_OFFSET_HOST + digest_pos; GLOBAL_AS const onepassword8_t *onepassword8 = &esalt_bufs[digest_cur]; // keys u32 hkdf_key[8]; hkdf_key[0] = onepassword8->hkdf_key_buf[0]; hkdf_key[1] = onepassword8->hkdf_key_buf[1]; hkdf_key[2] = onepassword8->hkdf_key_buf[2]; hkdf_key[3] = onepassword8->hkdf_key_buf[3]; hkdf_key[4] = onepassword8->hkdf_key_buf[4]; hkdf_key[5] = onepassword8->hkdf_key_buf[5]; hkdf_key[6] = onepassword8->hkdf_key_buf[6]; hkdf_key[7] = onepassword8->hkdf_key_buf[7]; u32 out[8]; out[0] = tmps[gid].out[0]; out[1] = tmps[gid].out[1]; out[2] = tmps[gid].out[2]; out[3] = tmps[gid].out[3]; out[4] = tmps[gid].out[4]; out[5] = tmps[gid].out[5]; out[6] = tmps[gid].out[6]; out[7] = tmps[gid].out[7]; u32 muk[8]; muk[0] = out[0] ^ hkdf_key[0]; muk[1] = out[1] ^ hkdf_key[1]; muk[2] = out[2] ^ hkdf_key[2]; muk[3] = out[3] ^ hkdf_key[3]; muk[4] = out[4] ^ hkdf_key[4]; muk[5] = out[5] ^ hkdf_key[5]; muk[6] = out[6] ^ hkdf_key[6]; muk[7] = out[7] ^ hkdf_key[7]; u32 key_len = 32 * 8; u32 key[60] = { 0 }; u32 subKey[4] = { 0 }; AES_GCM_Init (muk, key_len, key, subKey, s_te0, s_te1, s_te2, s_te3, s_te4); // iv u32 iv[4]; iv[0] = onepassword8->iv_buf[0]; iv[1] = onepassword8->iv_buf[1]; iv[2] = onepassword8->iv_buf[2]; iv[3] = onepassword8->iv_buf[3]; const u32 iv_len = 16; u32 J0[4] = { 0 }; AES_GCM_Prepare_J0 (iv, iv_len, subKey, J0); u32 ct[8]; ct[0] = onepassword8->ct_buf[0]; ct[1] = onepassword8->ct_buf[1]; ct[2] = onepassword8->ct_buf[2]; ct[3] = onepassword8->ct_buf[3]; ct[4] = onepassword8->ct_buf[4]; ct[5] = onepassword8->ct_buf[5]; ct[6] = onepassword8->ct_buf[6]; ct[7] = onepassword8->ct_buf[7]; u32 pt[8] = { 0 }; AES_GCM_decrypt (key, J0, ct, 32, pt, s_te0, s_te1, s_te2, s_te3, s_te4); const int correct = is_valid_printable_32 (pt[0]) + is_valid_printable_32 (pt[1]) + is_valid_printable_32 (pt[2]) + is_valid_printable_32 (pt[3]) + is_valid_printable_32 (pt[4]) + is_valid_printable_32 (pt[5]) + is_valid_printable_32 (pt[6]) + is_valid_printable_32 (pt[7]); if (correct != 8) return; /* const int pt_len = 28; // not using 32 byte but 28 because our UTF8 allows up to 4 byte per character and since we decrypt 32 byte // only we can't garantee it is not in the middle of a UTF8 byte stream at that point if (hc_enc_scan (pt, pt_len)) { hc_enc_t hc_enc; hc_enc_init (&hc_enc); while (hc_enc_has_next (&hc_enc, pt_len)) { u32 enc_buf[16] = { 0 }; const int enc_len = hc_enc_next (&hc_enc, pt, pt_len, 32, enc_buf, sizeof (enc_buf)); if (enc_len == -1) return; } } */ const u32 r0 = ct[0]; const u32 r1 = ct[1]; const u32 r2 = ct[2]; const u32 r3 = ct[3]; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }