/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_sha512.cl" #include "inc_ecc_secp256k1.cl" #include "inc_cipher_aes.cl" #include "inc_zip_inflate.cl" #endif typedef struct electrum { secp256k1_t coords; u32 data_buf[256]; } electrum_t; typedef struct electrum_tmp { u64 ipad[8]; u64 opad[8]; u64 dgst[8]; u64 out[8]; } electrum_tmp_t; DECLSPEC void hmac_sha512_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *w4, u32x *w5, u32x *w6, u32x *w7, u64x *ipad, u64x *opad, u64x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; digest[5] = ipad[5]; digest[6] = ipad[6]; digest[7] = ipad[7]; sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest); w0[0] = h32_from_64 (digest[0]); w0[1] = l32_from_64 (digest[0]); w0[2] = h32_from_64 (digest[1]); w0[3] = l32_from_64 (digest[1]); w1[0] = h32_from_64 (digest[2]); w1[1] = l32_from_64 (digest[2]); w1[2] = h32_from_64 (digest[3]); w1[3] = l32_from_64 (digest[3]); w2[0] = h32_from_64 (digest[4]); w2[1] = l32_from_64 (digest[4]); w2[2] = h32_from_64 (digest[5]); w2[3] = l32_from_64 (digest[5]); w3[0] = h32_from_64 (digest[6]); w3[1] = l32_from_64 (digest[6]); w3[2] = h32_from_64 (digest[7]); w3[3] = l32_from_64 (digest[7]); w4[0] = 0x80000000; w4[1] = 0; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = (128 + 64) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; digest[5] = opad[5]; digest[6] = opad[6]; digest[7] = opad[7]; sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest); } KERNEL_FQ void m21800_init (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; sha512_hmac_ctx_t sha512_hmac_ctx; sha512_hmac_init_global_swap (&sha512_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad[0] = sha512_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha512_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha512_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha512_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha512_hmac_ctx.ipad.h[4]; tmps[gid].ipad[5] = sha512_hmac_ctx.ipad.h[5]; tmps[gid].ipad[6] = sha512_hmac_ctx.ipad.h[6]; tmps[gid].ipad[7] = sha512_hmac_ctx.ipad.h[7]; tmps[gid].opad[0] = sha512_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha512_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha512_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha512_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha512_hmac_ctx.opad.h[4]; tmps[gid].opad[5] = sha512_hmac_ctx.opad.h[5]; tmps[gid].opad[6] = sha512_hmac_ctx.opad.h[6]; tmps[gid].opad[7] = sha512_hmac_ctx.opad.h[7]; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; u32 w4[4]; u32 w5[4]; u32 w6[4]; u32 w7[4]; w0[0] = 1; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; w4[0] = 0; w4[1] = 0; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = 0; sha512_hmac_update_128 (&sha512_hmac_ctx, w0, w1, w2, w3, w4, w5, w6, w7, 4); sha512_hmac_final (&sha512_hmac_ctx); tmps[gid].dgst[0] = sha512_hmac_ctx.opad.h[0]; tmps[gid].dgst[1] = sha512_hmac_ctx.opad.h[1]; tmps[gid].dgst[2] = sha512_hmac_ctx.opad.h[2]; tmps[gid].dgst[3] = sha512_hmac_ctx.opad.h[3]; tmps[gid].dgst[4] = sha512_hmac_ctx.opad.h[4]; tmps[gid].dgst[5] = sha512_hmac_ctx.opad.h[5]; tmps[gid].dgst[6] = sha512_hmac_ctx.opad.h[6]; tmps[gid].dgst[7] = sha512_hmac_ctx.opad.h[7]; tmps[gid].out[0] = tmps[gid].dgst[0]; tmps[gid].out[1] = tmps[gid].dgst[1]; tmps[gid].out[2] = tmps[gid].dgst[2]; tmps[gid].out[3] = tmps[gid].dgst[3]; tmps[gid].out[4] = tmps[gid].dgst[4]; tmps[gid].out[5] = tmps[gid].dgst[5]; tmps[gid].out[6] = tmps[gid].dgst[6]; tmps[gid].out[7] = tmps[gid].dgst[7]; } KERNEL_FQ void m21800_loop (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= gid_max) return; u64x ipad[8]; u64x opad[8]; ipad[0] = pack64v (tmps, ipad, gid, 0); ipad[1] = pack64v (tmps, ipad, gid, 1); ipad[2] = pack64v (tmps, ipad, gid, 2); ipad[3] = pack64v (tmps, ipad, gid, 3); ipad[4] = pack64v (tmps, ipad, gid, 4); ipad[5] = pack64v (tmps, ipad, gid, 5); ipad[6] = pack64v (tmps, ipad, gid, 6); ipad[7] = pack64v (tmps, ipad, gid, 7); opad[0] = pack64v (tmps, opad, gid, 0); opad[1] = pack64v (tmps, opad, gid, 1); opad[2] = pack64v (tmps, opad, gid, 2); opad[3] = pack64v (tmps, opad, gid, 3); opad[4] = pack64v (tmps, opad, gid, 4); opad[5] = pack64v (tmps, opad, gid, 5); opad[6] = pack64v (tmps, opad, gid, 6); opad[7] = pack64v (tmps, opad, gid, 7); u64x dgst[8]; u64x out[8]; dgst[0] = pack64v (tmps, dgst, gid, 0); dgst[1] = pack64v (tmps, dgst, gid, 1); dgst[2] = pack64v (tmps, dgst, gid, 2); dgst[3] = pack64v (tmps, dgst, gid, 3); dgst[4] = pack64v (tmps, dgst, gid, 4); dgst[5] = pack64v (tmps, dgst, gid, 5); dgst[6] = pack64v (tmps, dgst, gid, 6); dgst[7] = pack64v (tmps, dgst, gid, 7); out[0] = pack64v (tmps, out, gid, 0); out[1] = pack64v (tmps, out, gid, 1); out[2] = pack64v (tmps, out, gid, 2); out[3] = pack64v (tmps, out, gid, 3); out[4] = pack64v (tmps, out, gid, 4); out[5] = pack64v (tmps, out, gid, 5); out[6] = pack64v (tmps, out, gid, 6); out[7] = pack64v (tmps, out, gid, 7); for (u32 j = 0; j < loop_cnt; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; u32x w4[4]; u32x w5[4]; u32x w6[4]; u32x w7[4]; w0[0] = h32_from_64 (dgst[0]); w0[1] = l32_from_64 (dgst[0]); w0[2] = h32_from_64 (dgst[1]); w0[3] = l32_from_64 (dgst[1]); w1[0] = h32_from_64 (dgst[2]); w1[1] = l32_from_64 (dgst[2]); w1[2] = h32_from_64 (dgst[3]); w1[3] = l32_from_64 (dgst[3]); w2[0] = h32_from_64 (dgst[4]); w2[1] = l32_from_64 (dgst[4]); w2[2] = h32_from_64 (dgst[5]); w2[3] = l32_from_64 (dgst[5]); w3[0] = h32_from_64 (dgst[6]); w3[1] = l32_from_64 (dgst[6]); w3[2] = h32_from_64 (dgst[7]); w3[3] = l32_from_64 (dgst[7]); w4[0] = 0x80000000; w4[1] = 0; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = (128 + 64) * 8; hmac_sha512_run_V (w0, w1, w2, w3, w4, w5, w6, w7, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; out[5] ^= dgst[5]; out[6] ^= dgst[6]; out[7] ^= dgst[7]; } unpack64v (tmps, dgst, gid, 0, dgst[0]); unpack64v (tmps, dgst, gid, 1, dgst[1]); unpack64v (tmps, dgst, gid, 2, dgst[2]); unpack64v (tmps, dgst, gid, 3, dgst[3]); unpack64v (tmps, dgst, gid, 4, dgst[4]); unpack64v (tmps, dgst, gid, 5, dgst[5]); unpack64v (tmps, dgst, gid, 6, dgst[6]); unpack64v (tmps, dgst, gid, 7, dgst[7]); unpack64v (tmps, out, gid, 0, out[0]); unpack64v (tmps, out, gid, 1, out[1]); unpack64v (tmps, out, gid, 2, out[2]); unpack64v (tmps, out, gid, 3, out[3]); unpack64v (tmps, out, gid, 4, out[4]); unpack64v (tmps, out, gid, 5, out[5]); unpack64v (tmps, out, gid, 6, out[6]); unpack64v (tmps, out, gid, 7, out[7]); } KERNEL_FQ void m21800_comp (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= gid_max) return; /* * Start by copying/aligning the data */ u64 out[8]; out[0] = tmps[gid].out[0]; out[1] = tmps[gid].out[1]; out[2] = tmps[gid].out[2]; out[3] = tmps[gid].out[3]; out[4] = tmps[gid].out[4]; out[5] = tmps[gid].out[5]; out[6] = tmps[gid].out[6]; out[7] = tmps[gid].out[7]; /* * First calculate the modulo of the pbkdf2 hash with SECP256K1_N: */ u32 a[16]; a[ 0] = h32_from_64_S (out[0]); a[ 1] = l32_from_64_S (out[0]); a[ 2] = h32_from_64_S (out[1]); a[ 3] = l32_from_64_S (out[1]); a[ 4] = h32_from_64_S (out[2]); a[ 5] = l32_from_64_S (out[2]); a[ 6] = h32_from_64_S (out[3]); a[ 7] = l32_from_64_S (out[3]); a[ 8] = h32_from_64_S (out[4]); a[ 9] = l32_from_64_S (out[4]); a[10] = h32_from_64_S (out[5]); a[11] = l32_from_64_S (out[5]); a[12] = h32_from_64_S (out[6]); a[13] = l32_from_64_S (out[6]); a[14] = h32_from_64_S (out[7]); a[15] = l32_from_64_S (out[7]); mod_512 (a); // copy the last 256 bit (32 bytes) of modulo (a): u32 tweak[8]; tweak[0] = a[15]; tweak[1] = a[14]; tweak[2] = a[13]; tweak[3] = a[12]; tweak[4] = a[11]; tweak[5] = a[10]; tweak[6] = a[ 9]; tweak[7] = a[ 8]; /* * the main secp256k1 point multiplication by a scalar/tweak: */ GLOBAL_AS secp256k1_t *coords = (GLOBAL_AS secp256k1_t *) &esalt_bufs[digests_offset].coords; u32 pubkey[64] = { 0 }; // for point_mul () we need: 1 + 32 bytes (for sha512 () we need more) point_mul (pubkey, tweak, coords); /* * sha512 () of the pubkey: */ sha512_ctx_t sha512_ctx; sha512_init (&sha512_ctx); sha512_update (&sha512_ctx, pubkey, 33); // 33 because of 32 byte curve point + sign sha512_final (&sha512_ctx); // ... now we have the result in sha512_ctx.h[0]...sha512_ctx.h[7] u32 iv[4]; iv[0] = h32_from_64_S (sha512_ctx.h[0]); iv[1] = l32_from_64_S (sha512_ctx.h[0]); iv[2] = h32_from_64_S (sha512_ctx.h[1]); iv[3] = l32_from_64_S (sha512_ctx.h[1]); iv[0] = hc_swap32_S (iv[0]); iv[1] = hc_swap32_S (iv[1]); iv[2] = hc_swap32_S (iv[2]); iv[3] = hc_swap32_S (iv[3]); u32 key[4]; key[0] = h32_from_64_S (sha512_ctx.h[2]); key[1] = l32_from_64_S (sha512_ctx.h[2]); key[2] = h32_from_64_S (sha512_ctx.h[3]); key[3] = l32_from_64_S (sha512_ctx.h[3]); key[0] = hc_swap32_S (key[0]); key[1] = hc_swap32_S (key[1]); key[2] = hc_swap32_S (key[2]); key[3] = hc_swap32_S (key[3]); /* * AES decrypt the data_buf */ // init AES #define KEYLEN 44 u32 ks[KEYLEN]; aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); // #define AES_LEN 1024 // in my tests it also worked with only 128 input bytes ! #define AES_LEN 128 #define AES_LEN_DIV_4 32 u32 buf_full[AES_LEN_DIV_4]; // we need to run it at least once: GLOBAL_AS u32 *data_buf = (GLOBAL_AS u32 *) esalt_bufs[digests_offset].data_buf; u32 data[4]; data[0] = data_buf[0]; data[1] = data_buf[1]; data[2] = data_buf[2]; data[3] = data_buf[3]; u32 buf[4]; aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4); buf[0] ^= iv[0]; // early reject if ((buf[0] & 0x0007ffff) != 0x00059c78) return; buf[1] ^= iv[1]; buf[2] ^= iv[2]; buf[3] ^= iv[3]; buf_full[0] = buf[0]; buf_full[1] = buf[1]; buf_full[2] = buf[2]; buf_full[3] = buf[3]; iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; // for AES_LEN > 16 we need to loop for (int i = 16, j = 4; i < AES_LEN; i += 16, j += 4) { data[0] = data_buf[j + 0]; data[1] = data_buf[j + 1]; data[2] = data_buf[j + 2]; data[3] = data_buf[j + 3]; aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4); buf[0] ^= iv[0]; buf[1] ^= iv[1]; buf[2] ^= iv[2]; buf[3] ^= iv[3]; iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; buf_full[j + 0] = buf[0]; buf_full[j + 1] = buf[1]; buf_full[j + 2] = buf[2]; buf_full[j + 3] = buf[3]; } /* * zlib inflate/decompress: */ mz_stream infstream; infstream.opaque = Z_NULL; // input: infstream.avail_in = AES_LEN; infstream.next_in = (u8 *) buf_full; // output: #define OUT_SIZE 16 u8 tmp[OUT_SIZE]; infstream.avail_out = OUT_SIZE; infstream.next_out = tmp; // decompress it: inflate_state pStream; mz_inflateInit2 (&infstream, MAX_WBITS, &pStream); const int zlib_ret = inflate (&infstream, Z_NO_FLUSH); if ((zlib_ret != MZ_OK) && (zlib_ret != MZ_STREAM_END)) { return; } /* * Verify if decompressed data is either: * - "{\n \"" or * - "{\r\n \"" */ if (((tmp[0] == 0x7b) && (tmp[1] == 0x0a) && (tmp[2] == 0x20) && (tmp[3] == 0x20) && (tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x22)) || ((tmp[0] == 0x7b) && (tmp[1] == 0x0d) && (tmp[2] == 0x0a) && (tmp[3] == 0x20) && (tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x20) && (tmp[7] == 0x22))) { if (atomic_inc (&hashes_shown[digests_offset]) == 0) { mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, 0, 0, 0); } return; } }