/** * Author......: See docs/credits.txt * License.....: MIT */ #define BLOCK_SIZE 8 #define KEY_LENGTH 24 #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_cipher_des.cl" #include "inc_pem_common.cl" #endif // KERNEL_STATIC KERNEL_FQ void m22911_sxx (KERN_ATTR_ESALT (pem_t)) { /** * base */ const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); if (gid >= gid_max) return; #ifdef REAL_SHM LOCAL_VK u32 data_len; data_len = esalt_bufs[digests_offset].data_len; LOCAL_VK u32 data[HC_PEM_MAX_DATA_LENGTH / 4]; for (u32 i = lid; i <= data_len / 4; i += lsz) { data[i] = esalt_bufs[digests_offset].data[i]; } LOCAL_VK u32 s_SPtrans[8][64]; LOCAL_VK u32 s_skb[8][64]; for (u32 i = lid; i < 64; i += lsz) { s_SPtrans[0][i] = c_SPtrans[0][i]; s_SPtrans[1][i] = c_SPtrans[1][i]; s_SPtrans[2][i] = c_SPtrans[2][i]; s_SPtrans[3][i] = c_SPtrans[3][i]; s_SPtrans[4][i] = c_SPtrans[4][i]; s_SPtrans[5][i] = c_SPtrans[5][i]; s_SPtrans[6][i] = c_SPtrans[6][i]; s_SPtrans[7][i] = c_SPtrans[7][i]; s_skb[0][i] = c_skb[0][i]; s_skb[1][i] = c_skb[1][i]; s_skb[2][i] = c_skb[2][i]; s_skb[3][i] = c_skb[3][i]; s_skb[4][i] = c_skb[4][i]; s_skb[5][i] = c_skb[5][i]; s_skb[6][i] = c_skb[6][i]; s_skb[7][i] = c_skb[7][i]; } SYNC_THREADS (); #else const size_t data_len = esalt_bufs[digests_offset].data_len; u32 data[HC_PEM_MAX_DATA_LENGTH / 4]; #ifdef _unroll #pragma unroll #endif for (u32 i = 0; i < data_len / 4; i++) { data[i] = esalt_bufs[digests_offset].data[i]; } CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans; CONSTANT_AS u32a (*s_skb)[64] = c_skb; #endif // REAL_SHM u32 salt_buf[16] = { 0 }; u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4]; prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]); const u32 pw_len = pws[gid].pw_len; u32 w[16] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ for (u32 il_pos = 0; il_pos < il_cnt; il_pos++) { const u32 comb_len = combs_buf[il_pos].pw_len; u32 c[64]; #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 16; i++) { c[i] = combs_buf[il_pos].i[i]; } switch_buffer_by_offset_1x64_be_S (c, pw_len); #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 16; i++) { c[i] |= w[i]; } u32 key[HC_PEM_MAX_KEY_LENGTH / 4]; generate_key (salt_buf, c, pw_len + comb_len, key); u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4]; u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4]; u32 K0[16], K1[16], K2[16], K3[16], K4[16], K5[16]; _des_crypt_keysetup (key[0], key[1], K0, K1, s_skb); _des_crypt_keysetup (key[2], key[3], K2, K3, s_skb); _des_crypt_keysetup (key[4], key[5], K4, K5, s_skb); u32 p1[BLOCK_SIZE / 4], p2[BLOCK_SIZE / 4]; _des_crypt_decrypt (p1, first_block, K4, K5, s_SPtrans); _des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans); _des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans); #ifdef _unroll #pragma unroll #endif for (u32 i = 0; i < BLOCK_SIZE / 4; i++) { plaintext[i] ^= salt_iv[i]; } #ifdef DEBUG printf("First plaintext block:"); for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]); printf("\n"); #endif // DEBUG if (data_len < 128) { asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030; plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2; } else if (data_len < 256) { asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130; plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3; } else if (data_len < 65536) { asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002); plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4; } #ifdef DEBUG if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n"); #endif // DEBUG if (asn1_ok == 0) { continue; } #ifdef _unroll #pragma unroll #endif for (u32 i = 0; i < BLOCK_SIZE / 4; i++) { iv[i] = first_block[i]; } for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4) { #ifdef _unroll #pragma unroll #endif for (u32 j = 0; j < BLOCK_SIZE / 4; j++) { ciphertext[j] = data[i + j]; } _des_crypt_decrypt (p1, ciphertext, K4, K5, s_SPtrans); _des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans); _des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans); #ifdef _unroll #pragma unroll #endif for (u32 j = 0; j < BLOCK_SIZE / 4; j++) { plaintext[j] ^= iv[j]; iv[j] = ciphertext[j]; } #ifdef DEBUG printf("Plaintext block %u:", i / (BLOCK_SIZE / 4)); for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]); printf("\n"); #endif } u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24; u8 *pt_bytes = (u8 *) plaintext; #ifdef DEBUG printf("Padding byte: 0x%02x\n", padding_count); #endif if (padding_count > BLOCK_SIZE || padding_count == 0) { // That *can't* be right padding_ok = 0; } else { padding_ok = 1; } for (u32 i = 0; i < padding_count; i++) { if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count) { padding_ok = 0; break; } plaintext_length++; } #ifdef DEBUG if (padding_ok == 1) printf("Padding checks out\n"); if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n"); #endif if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len) { if (atomic_inc (&hashes_shown[digests_offset]) == 0) { mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0); } } } }