/**
 * Author......: See docs/credits.txt
 * License.....: MIT
 */

#define NEW_SIMD_CODE

#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#include "inc_cipher_aes.cl"
#endif

typedef struct telegram_tmp
{
  u32 ipad[5];
  u32 opad[5];

  u32 dgst[35];
  u32 out [35];

} telegram_tmp_t;

typedef struct telegram
{
  u32 data[72];

} telegram_t;

DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
  digest[0] = ipad[0];
  digest[1] = ipad[1];
  digest[2] = ipad[2];
  digest[3] = ipad[3];
  digest[4] = ipad[4];

  sha1_transform_vector (w0, w1, w2, w3, digest);

  w0[0] = digest[0];
  w0[1] = digest[1];
  w0[2] = digest[2];
  w0[3] = digest[3];
  w1[0] = digest[4];
  w1[1] = 0x80000000;
  w1[2] = 0;
  w1[3] = 0;
  w2[0] = 0;
  w2[1] = 0;
  w2[2] = 0;
  w2[3] = 0;
  w3[0] = 0;
  w3[1] = 0;
  w3[2] = 0;
  w3[3] = (64 + 20) * 8;

  digest[0] = opad[0];
  digest[1] = opad[1];
  digest[2] = opad[2];
  digest[3] = opad[3];
  digest[4] = opad[4];

  sha1_transform_vector (w0, w1, w2, w3, digest);
}

DECLSPEC void sha1_run (u32 *w, u32 *res)
{
  u32 w0[4];
  u32 w1[4];
  u32 w2[4];
  u32 w3[4];

  w0[0] = w[ 0];
  w0[1] = w[ 1];
  w0[2] = w[ 2];
  w0[3] = w[ 3];
  w1[0] = w[ 4];
  w1[1] = w[ 5];
  w1[2] = w[ 6];
  w1[3] = w[ 7];
  w2[0] = w[ 8];
  w2[1] = w[ 9];
  w2[2] = w[10];
  w2[3] = w[11];
  w3[0] = 0x80000000;
  w3[1] = 0;
  w3[2] = 0;
  w3[3] = 48 * 8;

  u32 digest[5];

  digest[0] = SHA1M_A;
  digest[1] = SHA1M_B;
  digest[2] = SHA1M_C;
  digest[3] = SHA1M_D;
  digest[4] = SHA1M_E;

  sha1_transform (w0, w1, w2, w3, digest);

  res[0] = digest[0];
  res[1] = digest[1];
  res[2] = digest[2];
  res[3] = digest[3];
  res[4] = digest[4];
}

KERNEL_FQ void m22600_init (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t))
{
  /**
   * base
   */

  const u64 gid = get_global_id (0);

  if (gid >= gid_max) return;

  sha1_hmac_ctx_t sha1_hmac_ctx;

  sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);

  tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
  tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
  tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
  tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
  tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];

  tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
  tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
  tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
  tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
  tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];

  // salt length is always 32 bytes:

  sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);

  for (u32 i = 0, j = 1; i < 34; i += 5, j += 1)
  {
    sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;

    u32 w0[4];
    u32 w1[4];
    u32 w2[4];
    u32 w3[4];

    w0[0] = j;
    w0[1] = 0;
    w0[2] = 0;
    w0[3] = 0;
    w1[0] = 0;
    w1[1] = 0;
    w1[2] = 0;
    w1[3] = 0;
    w2[0] = 0;
    w2[1] = 0;
    w2[2] = 0;
    w2[3] = 0;
    w3[0] = 0;
    w3[1] = 0;
    w3[2] = 0;
    w3[3] = 0;

    sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);

    sha1_hmac_final (&sha1_hmac_ctx2);

    tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
    tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
    tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
    tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
    tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];

    tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
    tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
    tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
    tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
    tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
  }
}

KERNEL_FQ void m22600_loop (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t))
{
  const u64 gid = get_global_id (0);

  if ((gid * VECT_SIZE) >= gid_max) return;

  u32x ipad[5];
  u32x opad[5];

  ipad[0] = packv (tmps, ipad, gid, 0);
  ipad[1] = packv (tmps, ipad, gid, 1);
  ipad[2] = packv (tmps, ipad, gid, 2);
  ipad[3] = packv (tmps, ipad, gid, 3);
  ipad[4] = packv (tmps, ipad, gid, 4);

  opad[0] = packv (tmps, opad, gid, 0);
  opad[1] = packv (tmps, opad, gid, 1);
  opad[2] = packv (tmps, opad, gid, 2);
  opad[3] = packv (tmps, opad, gid, 3);
  opad[4] = packv (tmps, opad, gid, 4);

  for (u32 i = 0; i < 34; i += 5)
  {
    u32x dgst[5];
    u32x out[5];

    dgst[0] = packv (tmps, dgst, gid, i + 0);
    dgst[1] = packv (tmps, dgst, gid, i + 1);
    dgst[2] = packv (tmps, dgst, gid, i + 2);
    dgst[3] = packv (tmps, dgst, gid, i + 3);
    dgst[4] = packv (tmps, dgst, gid, i + 4);

    out[0] = packv (tmps, out, gid, i + 0);
    out[1] = packv (tmps, out, gid, i + 1);
    out[2] = packv (tmps, out, gid, i + 2);
    out[3] = packv (tmps, out, gid, i + 3);
    out[4] = packv (tmps, out, gid, i + 4);

    for (u32 j = 0; j < loop_cnt; j++)
    {
      u32x w0[4];
      u32x w1[4];
      u32x w2[4];
      u32x w3[4];

      w0[0] = dgst[0];
      w0[1] = dgst[1];
      w0[2] = dgst[2];
      w0[3] = dgst[3];
      w1[0] = dgst[4];
      w1[1] = 0x80000000;
      w1[2] = 0;
      w1[3] = 0;
      w2[0] = 0;
      w2[1] = 0;
      w2[2] = 0;
      w2[3] = 0;
      w3[0] = 0;
      w3[1] = 0;
      w3[2] = 0;
      w3[3] = (64 + 20) * 8;

      hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);

      out[0] ^= dgst[0];
      out[1] ^= dgst[1];
      out[2] ^= dgst[2];
      out[3] ^= dgst[3];
      out[4] ^= dgst[4];
    }

    unpackv (tmps, dgst, gid, i + 0, dgst[0]);
    unpackv (tmps, dgst, gid, i + 1, dgst[1]);
    unpackv (tmps, dgst, gid, i + 2, dgst[2]);
    unpackv (tmps, dgst, gid, i + 3, dgst[3]);
    unpackv (tmps, dgst, gid, i + 4, dgst[4]);

    unpackv (tmps, out, gid, i + 0, out[0]);
    unpackv (tmps, out, gid, i + 1, out[1]);
    unpackv (tmps, out, gid, i + 2, out[2]);
    unpackv (tmps, out, gid, i + 3, out[3]);
    unpackv (tmps, out, gid, i + 4, out[4]);
  }
}

KERNEL_FQ void m22600_comp (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t))
{
  /**
   * base
   */

  const u64 gid = get_global_id (0);
  const u64 lid = get_local_id (0);
  const u64 lsz = get_local_size (0);

  /**
   * aes shared
   */

  #ifdef REAL_SHM

  LOCAL_VK u32 s_td0[256];
  LOCAL_VK u32 s_td1[256];
  LOCAL_VK u32 s_td2[256];
  LOCAL_VK u32 s_td3[256];
  LOCAL_VK u32 s_td4[256];

  LOCAL_VK u32 s_te0[256];
  LOCAL_VK u32 s_te1[256];
  LOCAL_VK u32 s_te2[256];
  LOCAL_VK u32 s_te3[256];
  LOCAL_VK u32 s_te4[256];

  for (u32 i = lid; i < 256; i += lsz)
  {
    s_td0[i] = td0[i];
    s_td1[i] = td1[i];
    s_td2[i] = td2[i];
    s_td3[i] = td3[i];
    s_td4[i] = td4[i];

    s_te0[i] = te0[i];
    s_te1[i] = te1[i];
    s_te2[i] = te2[i];
    s_te3[i] = te3[i];
    s_te4[i] = te4[i];
  }

  SYNC_THREADS ();

  #else

  CONSTANT_AS u32a *s_td0 = td0;
  CONSTANT_AS u32a *s_td1 = td1;
  CONSTANT_AS u32a *s_td2 = td2;
  CONSTANT_AS u32a *s_td3 = td3;
  CONSTANT_AS u32a *s_td4 = td4;

  CONSTANT_AS u32a *s_te0 = te0;
  CONSTANT_AS u32a *s_te1 = te1;
  CONSTANT_AS u32a *s_te2 = te2;
  CONSTANT_AS u32a *s_te3 = te3;
  CONSTANT_AS u32a *s_te4 = te4;

  #endif

  if (gid >= gid_max) return;

  u32 message_key[4];

  message_key[0] = esalt_bufs[DIGESTS_OFFSET].data[0];
  message_key[1] = esalt_bufs[DIGESTS_OFFSET].data[1];
  message_key[2] = esalt_bufs[DIGESTS_OFFSET].data[2];
  message_key[3] = esalt_bufs[DIGESTS_OFFSET].data[3];

  u32 data_a[12];
  u32 data_b[12];
  u32 data_c[12];
  u32 data_d[12];

  data_a[ 0] = message_key[0];
  data_a[ 1] = message_key[1];
  data_a[ 2] = message_key[2];
  data_a[ 3] = message_key[3];

  data_b[ 4] = message_key[0];
  data_b[ 5] = message_key[1];
  data_b[ 6] = message_key[2];
  data_b[ 7] = message_key[3];

  data_c[ 8] = message_key[0];
  data_c[ 9] = message_key[1];
  data_c[10] = message_key[2];
  data_c[11] = message_key[3];

  data_d[ 0] = message_key[0];
  data_d[ 1] = message_key[1];
  data_d[ 2] = message_key[2];
  data_d[ 3] = message_key[3];

  data_a[ 4] = tmps[gid].out[ 2]; // not a bug: out[0], out[1] are ignored
  data_a[ 5] = tmps[gid].out[ 3];
  data_a[ 6] = tmps[gid].out[ 4];
  data_a[ 7] = tmps[gid].out[ 5];
  data_a[ 8] = tmps[gid].out[ 6];
  data_a[ 9] = tmps[gid].out[ 7];
  data_a[10] = tmps[gid].out[ 8];
  data_a[11] = tmps[gid].out[ 9];

  data_b[ 0] = tmps[gid].out[10];
  data_b[ 1] = tmps[gid].out[11];
  data_b[ 2] = tmps[gid].out[12];
  data_b[ 3] = tmps[gid].out[13];

  data_b[ 8] = tmps[gid].out[14];
  data_b[ 9] = tmps[gid].out[15];
  data_b[10] = tmps[gid].out[16];
  data_b[11] = tmps[gid].out[17];

  data_c[ 0] = tmps[gid].out[18];
  data_c[ 1] = tmps[gid].out[19];
  data_c[ 2] = tmps[gid].out[20];
  data_c[ 3] = tmps[gid].out[21];
  data_c[ 4] = tmps[gid].out[22];
  data_c[ 5] = tmps[gid].out[23];
  data_c[ 6] = tmps[gid].out[24];
  data_c[ 7] = tmps[gid].out[25];

  data_d[ 4] = tmps[gid].out[26];
  data_d[ 5] = tmps[gid].out[27];
  data_d[ 6] = tmps[gid].out[28];
  data_d[ 7] = tmps[gid].out[29];
  data_d[ 8] = tmps[gid].out[30];
  data_d[ 9] = tmps[gid].out[31];
  data_d[10] = tmps[gid].out[32];
  data_d[11] = tmps[gid].out[33];

  // hash (SHA1 ()) the data_*:

  u32 a[5];

  sha1_run (data_a, a);

  u32 b[5];

  sha1_run (data_b, b);

  u32 c[5];

  sha1_run (data_c, c);

  u32 d[5];

  sha1_run (data_d, d);

  // set up AES key and AES IV:

  u32 key[8];

  key[0] = a[0];
  key[1] = a[1];
  key[2] = b[2];
  key[3] = b[3];
  key[4] = b[4];
  key[5] = c[1];
  key[6] = c[2];
  key[7] = c[3];

  u32 iv[8];

  iv[0] = a[2];
  iv[1] = a[3];
  iv[2] = a[4];
  iv[3] = b[0];
  iv[4] = b[1];
  iv[5] = c[4];
  iv[6] = d[0];
  iv[7] = d[1];

  // decrypt with AES-IGE:

  #define KEYLEN 60

  u32 ks[KEYLEN];

  AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);

  u32 x_prev[4];

  x_prev[0] = iv[0];
  x_prev[1] = iv[1];
  x_prev[2] = iv[2];
  x_prev[3] = iv[3];

  u32 y_prev[4];

  y_prev[0] = iv[4];
  y_prev[1] = iv[5];
  y_prev[2] = iv[6];
  y_prev[3] = iv[7];

  u32 out[80] = { 0 }; // 64-byte aligned for SHA1

  for (int i = 0; i < 68; i += 4)
  {
    u32 x[4];

    x[0] = esalt_bufs[DIGESTS_OFFSET].data[4 + i];
    x[1] = esalt_bufs[DIGESTS_OFFSET].data[5 + i];
    x[2] = esalt_bufs[DIGESTS_OFFSET].data[6 + i];
    x[3] = esalt_bufs[DIGESTS_OFFSET].data[7 + i];

    u32 y[4];

    y[0] = x[0] ^ y_prev[0];
    y[1] = x[1] ^ y_prev[1];
    y[2] = x[2] ^ y_prev[2];
    y[3] = x[3] ^ y_prev[3];

    u32 dec[4];

    AES256_decrypt (ks, y, dec, s_td0, s_td1, s_td2, s_td3, s_td4);

    y_prev[0] = dec[0] ^ x_prev[0];
    y_prev[1] = dec[1] ^ x_prev[1];
    y_prev[2] = dec[2] ^ x_prev[2];
    y_prev[3] = dec[3] ^ x_prev[3];

    out[i + 0] = y_prev[0];
    out[i + 1] = y_prev[1];
    out[i + 2] = y_prev[2];
    out[i + 3] = y_prev[3];

    x_prev[0] = x[0];
    x_prev[1] = x[1];
    x_prev[2] = x[2];
    x_prev[3] = x[3];
  }

  // final SHA1 checksum of the decrypted data (out):

  sha1_ctx_t ctx;

  sha1_init   (&ctx);
  sha1_update (&ctx, out, 272);
  sha1_final  (&ctx);

  const u32 r0 = ctx.h[0];
  const u32 r1 = ctx.h[1];
  const u32 r2 = ctx.h[2];
  const u32 r3 = ctx.h[3];

  // verify:

  if (r0 == message_key[0] &&
      r1 == message_key[1] &&
      r2 == message_key[2] &&
      r3 == message_key[3])
  {
    if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET]) == 0)
    {
      mark_hash (plains_buf, d_return_buf, SALT_POS, digests_cnt, 0, DIGESTS_OFFSET + 0, gid, 0, 0, 0);
    }
  }
}