/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_hash_sha1.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #endif typedef struct telegram_tmp { u32 ipad[5]; u32 opad[5]; u32 dgst[35]; u32 out [35]; } telegram_tmp_t; typedef struct telegram { u32 data[72]; } telegram_t; DECLSPEC void hmac_sha1_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; sha1_transform_vector (w0, w1, w2, w3, digest); } DECLSPEC void sha1_run (PRIVATE_AS u32 *w, PRIVATE_AS u32 *res) { u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = w[ 0]; w0[1] = w[ 1]; w0[2] = w[ 2]; w0[3] = w[ 3]; w1[0] = w[ 4]; w1[1] = w[ 5]; w1[2] = w[ 6]; w1[3] = w[ 7]; w2[0] = w[ 8]; w2[1] = w[ 9]; w2[2] = w[10]; w2[3] = w[11]; w3[0] = 0x80000000; w3[1] = 0; w3[2] = 0; w3[3] = 48 * 8; u32 digest[5]; digest[0] = SHA1M_A; digest[1] = SHA1M_B; digest[2] = SHA1M_C; digest[3] = SHA1M_D; digest[4] = SHA1M_E; sha1_transform (w0, w1, w2, w3, digest); res[0] = digest[0]; res[1] = digest[1]; res[2] = digest[2]; res[3] = digest[3]; res[4] = digest[4]; } KERNEL_FQ void m22600_init (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; sha1_hmac_ctx_t sha1_hmac_ctx; sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0]; tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1]; tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2]; tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3]; tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4]; tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0]; tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1]; tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2]; tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3]; tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4]; // salt length is always 32 bytes: sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len); for (u32 i = 0, j = 1; i < 34; i += 5, j += 1) { sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4); sha1_hmac_final (&sha1_hmac_ctx2); tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0]; tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1]; tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2]; tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3]; tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4]; tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0]; tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1]; tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2]; tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3]; tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4]; } } KERNEL_FQ void m22600_loop (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= GID_CNT) return; u32x ipad[5]; u32x opad[5]; ipad[0] = packv (tmps, ipad, gid, 0); ipad[1] = packv (tmps, ipad, gid, 1); ipad[2] = packv (tmps, ipad, gid, 2); ipad[3] = packv (tmps, ipad, gid, 3); ipad[4] = packv (tmps, ipad, gid, 4); opad[0] = packv (tmps, opad, gid, 0); opad[1] = packv (tmps, opad, gid, 1); opad[2] = packv (tmps, opad, gid, 2); opad[3] = packv (tmps, opad, gid, 3); opad[4] = packv (tmps, opad, gid, 4); for (u32 i = 0; i < 34; i += 5) { u32x dgst[5]; u32x out[5]; dgst[0] = packv (tmps, dgst, gid, i + 0); dgst[1] = packv (tmps, dgst, gid, i + 1); dgst[2] = packv (tmps, dgst, gid, i + 2); dgst[3] = packv (tmps, dgst, gid, i + 3); dgst[4] = packv (tmps, dgst, gid, i + 4); out[0] = packv (tmps, out, gid, i + 0); out[1] = packv (tmps, out, gid, i + 1); out[2] = packv (tmps, out, gid, i + 2); out[3] = packv (tmps, out, gid, i + 3); out[4] = packv (tmps, out, gid, i + 4); for (u32 j = 0; j < LOOP_CNT; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = 0x80000000; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (64 + 20) * 8; hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; } unpackv (tmps, dgst, gid, i + 0, dgst[0]); unpackv (tmps, dgst, gid, i + 1, dgst[1]); unpackv (tmps, dgst, gid, i + 2, dgst[2]); unpackv (tmps, dgst, gid, i + 3, dgst[3]); unpackv (tmps, dgst, gid, i + 4, dgst[4]); unpackv (tmps, out, gid, i + 0, out[0]); unpackv (tmps, out, gid, i + 1, out[1]); unpackv (tmps, out, gid, i + 2, out[2]); unpackv (tmps, out, gid, i + 3, out[3]); unpackv (tmps, out, gid, i + 4, out[4]); } } KERNEL_FQ void m22600_comp (KERN_ATTR_TMPS_ESALT (telegram_tmp_t, telegram_t)) { /** * base */ const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; u32 message_key[4]; message_key[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[0]; message_key[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[1]; message_key[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[2]; message_key[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[3]; u32 data_a[12]; u32 data_b[12]; u32 data_c[12]; u32 data_d[12]; data_a[ 0] = message_key[0]; data_a[ 1] = message_key[1]; data_a[ 2] = message_key[2]; data_a[ 3] = message_key[3]; data_b[ 4] = message_key[0]; data_b[ 5] = message_key[1]; data_b[ 6] = message_key[2]; data_b[ 7] = message_key[3]; data_c[ 8] = message_key[0]; data_c[ 9] = message_key[1]; data_c[10] = message_key[2]; data_c[11] = message_key[3]; data_d[ 0] = message_key[0]; data_d[ 1] = message_key[1]; data_d[ 2] = message_key[2]; data_d[ 3] = message_key[3]; data_a[ 4] = tmps[gid].out[ 2]; // not a bug: out[0], out[1] are ignored data_a[ 5] = tmps[gid].out[ 3]; data_a[ 6] = tmps[gid].out[ 4]; data_a[ 7] = tmps[gid].out[ 5]; data_a[ 8] = tmps[gid].out[ 6]; data_a[ 9] = tmps[gid].out[ 7]; data_a[10] = tmps[gid].out[ 8]; data_a[11] = tmps[gid].out[ 9]; data_b[ 0] = tmps[gid].out[10]; data_b[ 1] = tmps[gid].out[11]; data_b[ 2] = tmps[gid].out[12]; data_b[ 3] = tmps[gid].out[13]; data_b[ 8] = tmps[gid].out[14]; data_b[ 9] = tmps[gid].out[15]; data_b[10] = tmps[gid].out[16]; data_b[11] = tmps[gid].out[17]; data_c[ 0] = tmps[gid].out[18]; data_c[ 1] = tmps[gid].out[19]; data_c[ 2] = tmps[gid].out[20]; data_c[ 3] = tmps[gid].out[21]; data_c[ 4] = tmps[gid].out[22]; data_c[ 5] = tmps[gid].out[23]; data_c[ 6] = tmps[gid].out[24]; data_c[ 7] = tmps[gid].out[25]; data_d[ 4] = tmps[gid].out[26]; data_d[ 5] = tmps[gid].out[27]; data_d[ 6] = tmps[gid].out[28]; data_d[ 7] = tmps[gid].out[29]; data_d[ 8] = tmps[gid].out[30]; data_d[ 9] = tmps[gid].out[31]; data_d[10] = tmps[gid].out[32]; data_d[11] = tmps[gid].out[33]; // hash (SHA1 ()) the data_*: u32 a[5]; sha1_run (data_a, a); u32 b[5]; sha1_run (data_b, b); u32 c[5]; sha1_run (data_c, c); u32 d[5]; sha1_run (data_d, d); // set up AES key and AES IV: u32 key[8]; key[0] = a[0]; key[1] = a[1]; key[2] = b[2]; key[3] = b[3]; key[4] = b[4]; key[5] = c[1]; key[6] = c[2]; key[7] = c[3]; u32 iv[8]; iv[0] = a[2]; iv[1] = a[3]; iv[2] = a[4]; iv[3] = b[0]; iv[4] = b[1]; iv[5] = c[4]; iv[6] = d[0]; iv[7] = d[1]; // decrypt with AES-IGE: #define KEYLEN 60 u32 ks[KEYLEN]; AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 x_prev[4]; x_prev[0] = iv[0]; x_prev[1] = iv[1]; x_prev[2] = iv[2]; x_prev[3] = iv[3]; u32 y_prev[4]; y_prev[0] = iv[4]; y_prev[1] = iv[5]; y_prev[2] = iv[6]; y_prev[3] = iv[7]; u32 out[80] = { 0 }; // 64-byte aligned for SHA1 for (int i = 0; i < 68; i += 4) { u32 x[4]; x[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[4 + i]; x[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[5 + i]; x[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[6 + i]; x[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[7 + i]; u32 y[4]; y[0] = x[0] ^ y_prev[0]; y[1] = x[1] ^ y_prev[1]; y[2] = x[2] ^ y_prev[2]; y[3] = x[3] ^ y_prev[3]; u32 dec[4]; AES256_decrypt (ks, y, dec, s_td0, s_td1, s_td2, s_td3, s_td4); y_prev[0] = dec[0] ^ x_prev[0]; y_prev[1] = dec[1] ^ x_prev[1]; y_prev[2] = dec[2] ^ x_prev[2]; y_prev[3] = dec[3] ^ x_prev[3]; out[i + 0] = y_prev[0]; out[i + 1] = y_prev[1]; out[i + 2] = y_prev[2]; out[i + 3] = y_prev[3]; x_prev[0] = x[0]; x_prev[1] = x[1]; x_prev[2] = x[2]; x_prev[3] = x[3]; } // final SHA1 checksum of the decrypted data (out): sha1_ctx_t ctx; sha1_init (&ctx); sha1_update (&ctx, out, 272); sha1_final (&ctx); const u32 r0 = ctx.h[0]; const u32 r1 = ctx.h[1]; const u32 r2 = ctx.h[2]; const u32 r3 = ctx.h[3]; // verify: if (r0 == message_key[0] && r1 == message_key[1] && r2 == message_key[2] && r3 == message_key[3]) { if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0); } } }