/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_hash_sha1.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #endif #define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl) typedef struct office2007_tmp { u32 out[5]; } office2007_tmp_t; typedef struct office2007 { u32 encryptedVerifier[4]; u32 encryptedVerifierHash[5]; u32 keySize; } office2007_t; KERNEL_FQ void m09400_init (KERN_ATTR_TMPS_ESALT (office2007_tmp_t, office2007_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; sha1_ctx_t ctx; sha1_init (&ctx); sha1_update_global (&ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len); sha1_update_global_utf16le_swap (&ctx, pws[gid].i, pws[gid].pw_len); sha1_final (&ctx); tmps[gid].out[0] = ctx.h[0]; tmps[gid].out[1] = ctx.h[1]; tmps[gid].out[2] = ctx.h[2]; tmps[gid].out[3] = ctx.h[3]; tmps[gid].out[4] = ctx.h[4]; } KERNEL_FQ void m09400_loop (KERN_ATTR_TMPS_ESALT (office2007_tmp_t, office2007_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= GID_CNT) return; u32x t0 = packv (tmps, out, gid, 0); u32x t1 = packv (tmps, out, gid, 1); u32x t2 = packv (tmps, out, gid, 2); u32x t3 = packv (tmps, out, gid, 3); u32x t4 = packv (tmps, out, gid, 4); u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = 0; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0x80000000; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (4 + 20) * 8; for (u32 i = 0, j = LOOP_POS; i < LOOP_CNT; i++, j++) { w0[0] = hc_swap32 (j); w0[1] = t0; w0[2] = t1; w0[3] = t2; w1[0] = t3; w1[1] = t4; u32x digest[5]; digest[0] = SHA1M_A; digest[1] = SHA1M_B; digest[2] = SHA1M_C; digest[3] = SHA1M_D; digest[4] = SHA1M_E; sha1_transform_vector (w0, w1, w2, w3, digest); t0 = digest[0]; t1 = digest[1]; t2 = digest[2]; t3 = digest[3]; t4 = digest[4]; } unpackv (tmps, out, gid, 0, t0); unpackv (tmps, out, gid, 1, t1); unpackv (tmps, out, gid, 2, t2); unpackv (tmps, out, gid, 3, t3); unpackv (tmps, out, gid, 4, t4); } KERNEL_FQ void m09400_comp (KERN_ATTR_TMPS_ESALT (office2007_tmp_t, office2007_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * base */ u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = tmps[gid].out[0]; w0[1] = tmps[gid].out[1]; w0[2] = tmps[gid].out[2]; w0[3] = tmps[gid].out[3]; w1[0] = tmps[gid].out[4]; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_ctx_t ctx; sha1_init (&ctx); sha1_update_64 (&ctx, w0, w1, w2, w3, 20 + 4); sha1_final (&ctx); u32 digest_common[5]; digest_common[0] = ctx.h[0]; digest_common[1] = ctx.h[1]; digest_common[2] = ctx.h[2]; digest_common[3] = ctx.h[3]; digest_common[4] = ctx.h[4]; w0[0] = 0x36363636 ^ digest_common[0]; w0[1] = 0x36363636 ^ digest_common[1]; w0[2] = 0x36363636 ^ digest_common[2]; w0[3] = 0x36363636 ^ digest_common[3]; w1[0] = 0x36363636 ^ digest_common[4]; w1[1] = 0x36363636; w1[2] = 0x36363636; w1[3] = 0x36363636; w2[0] = 0x36363636; w2[1] = 0x36363636; w2[2] = 0x36363636; w2[3] = 0x36363636; w3[0] = 0x36363636; w3[1] = 0x36363636; w3[2] = 0x36363636; w3[3] = 0x36363636; sha1_init (&ctx); sha1_update_64 (&ctx, w0, w1, w2, w3, 64); sha1_final (&ctx); u32 digest_saved[5]; digest_saved[0] = ctx.h[0]; digest_saved[1] = ctx.h[1]; digest_saved[2] = ctx.h[2]; digest_saved[3] = ctx.h[3]; digest_saved[4] = ctx.h[4]; // now we got the AES key, decrypt the verifier u32 ukey[8]; ukey[0] = digest_saved[0]; ukey[1] = digest_saved[1]; ukey[2] = digest_saved[2]; ukey[3] = digest_saved[3]; u32 ks[60]; AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 verifier[4]; verifier[0] = esalt_bufs[DIGESTS_OFFSET_HOST].encryptedVerifier[0]; verifier[1] = esalt_bufs[DIGESTS_OFFSET_HOST].encryptedVerifier[1]; verifier[2] = esalt_bufs[DIGESTS_OFFSET_HOST].encryptedVerifier[2]; verifier[3] = esalt_bufs[DIGESTS_OFFSET_HOST].encryptedVerifier[3]; u32 data[4]; data[0] = verifier[0]; data[1] = verifier[1]; data[2] = verifier[2]; data[3] = verifier[3]; u32 out[4]; AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); // do a sha1 of the result w0[0] = out[0]; w0[1] = out[1]; w0[2] = out[2]; w0[3] = out[3]; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_init (&ctx); sha1_update_64 (&ctx, w0, w1, w2, w3, 16); sha1_final (&ctx); // encrypt it again for verify AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); data[0] = ctx.h[0]; data[1] = ctx.h[1]; data[2] = ctx.h[2]; data[3] = ctx.h[3]; AES128_encrypt (ks, data, out, s_te0, s_te1, s_te2, s_te3, s_te4); { const u32 r0 = out[0]; const u32 r1 = out[1]; const u32 r2 = out[2]; const u32 r3 = out[3]; #ifdef KERNEL_STATIC #define il_pos 0 #endif #include COMPARE_M } /* * AES-256 test */ // try same procedure but with AES-256 w0[0] = 0x5c5c5c5c ^ digest_common[0]; w0[1] = 0x5c5c5c5c ^ digest_common[1]; w0[2] = 0x5c5c5c5c ^ digest_common[2]; w0[3] = 0x5c5c5c5c ^ digest_common[3]; w1[0] = 0x5c5c5c5c ^ digest_common[4]; w1[1] = 0x5c5c5c5c; w1[2] = 0x5c5c5c5c; w1[3] = 0x5c5c5c5c; w2[0] = 0x5c5c5c5c; w2[1] = 0x5c5c5c5c; w2[2] = 0x5c5c5c5c; w2[3] = 0x5c5c5c5c; w3[0] = 0x5c5c5c5c; w3[1] = 0x5c5c5c5c; w3[2] = 0x5c5c5c5c; w3[3] = 0x5c5c5c5c; sha1_init (&ctx); sha1_update_64 (&ctx, w0, w1, w2, w3, 64); sha1_final (&ctx); // now we got the AES key, decrypt the verifier ukey[0] = digest_saved[0]; ukey[1] = digest_saved[1]; ukey[2] = digest_saved[2]; ukey[3] = digest_saved[3]; ukey[4] = digest_saved[4]; ukey[5] = ctx.h[0]; ukey[6] = ctx.h[1]; ukey[7] = ctx.h[2]; AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); data[0] = verifier[0]; data[1] = verifier[1]; data[2] = verifier[2]; data[3] = verifier[3]; AES256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); // do a sha1 of the result w0[0] = out[0]; w0[1] = out[1]; w0[2] = out[2]; w0[3] = out[3]; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha1_init (&ctx); sha1_update_64 (&ctx, w0, w1, w2, w3, 16); sha1_final (&ctx); // encrypt it again for verify AES256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); data[0] = ctx.h[0]; data[1] = ctx.h[1]; data[2] = ctx.h[2]; data[3] = ctx.h[3]; AES256_encrypt (ks, data, out, s_te0, s_te1, s_te2, s_te3, s_te4); { const u32 r0 = out[0]; const u32 r1 = out[1]; const u32 r2 = out[2]; const u32 r3 = out[3]; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif } }