/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_hash_sha512.cl) #endif #define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl) #define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl) typedef struct sha512crypt_tmp { u64 l_alt_result[8]; u64 l_p_bytes[2]; u64 l_s_bytes[2]; // pure version u32 alt_result[16]; u32 p_bytes[64]; u32 s_bytes[64]; } sha512crypt_tmp_t; KERNEL_FQ void m01800_init (KERN_ATTR_TMPS (sha512crypt_tmp_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; /** * init */ const u32 pw_len = pws[gid].pw_len; u32 w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = hc_swap32_S (w[idx]); } const u32 salt_len = salt_bufs[SALT_POS_HOST].salt_len; u32 s[64] = { 0 }; for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1) { s[idx] = salt_bufs[SALT_POS_HOST].salt_buf[idx]; } for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1) { s[idx] = hc_swap32_S (s[idx]); } /** * prepare */ sha512_ctx_t ctx; sha512_init (&ctx); sha512_update (&ctx, w, pw_len); sha512_update (&ctx, s, salt_len); sha512_update (&ctx, w, pw_len); sha512_final (&ctx); u32 final[32] = { 0 }; final[ 0] = h32_from_64_S (ctx.h[0]); final[ 1] = l32_from_64_S (ctx.h[0]); final[ 2] = h32_from_64_S (ctx.h[1]); final[ 3] = l32_from_64_S (ctx.h[1]); final[ 4] = h32_from_64_S (ctx.h[2]); final[ 5] = l32_from_64_S (ctx.h[2]); final[ 6] = h32_from_64_S (ctx.h[3]); final[ 7] = l32_from_64_S (ctx.h[3]); final[ 8] = h32_from_64_S (ctx.h[4]); final[ 9] = l32_from_64_S (ctx.h[4]); final[10] = h32_from_64_S (ctx.h[5]); final[11] = l32_from_64_S (ctx.h[5]); final[12] = h32_from_64_S (ctx.h[6]); final[13] = l32_from_64_S (ctx.h[6]); final[14] = h32_from_64_S (ctx.h[7]); final[15] = l32_from_64_S (ctx.h[7]); // alt_result sha512_init (&ctx); sha512_update (&ctx, w, pw_len); sha512_update (&ctx, s, salt_len); int pl; for (pl = pw_len; pl > 64; pl -= 64) { sha512_update (&ctx, final, 64); } u32 t_final[32] = { 0 }; #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 16; i++) t_final[i] = final[i]; truncate_block_16x4_be_S (t_final + 0, t_final + 4, t_final + 8, t_final + 12, pl); sha512_update (&ctx, t_final, pl); for (int cnt = pw_len; cnt > 0; cnt >>= 1) { if ((cnt & 1) != 0) { sha512_update (&ctx, final, 64); } else { sha512_update (&ctx, w, pw_len); } } sha512_final (&ctx); tmps[gid].alt_result[ 0] = h32_from_64_S (ctx.h[0]); tmps[gid].alt_result[ 1] = l32_from_64_S (ctx.h[0]); tmps[gid].alt_result[ 2] = h32_from_64_S (ctx.h[1]); tmps[gid].alt_result[ 3] = l32_from_64_S (ctx.h[1]); tmps[gid].alt_result[ 4] = h32_from_64_S (ctx.h[2]); tmps[gid].alt_result[ 5] = l32_from_64_S (ctx.h[2]); tmps[gid].alt_result[ 6] = h32_from_64_S (ctx.h[3]); tmps[gid].alt_result[ 7] = l32_from_64_S (ctx.h[3]); tmps[gid].alt_result[ 8] = h32_from_64_S (ctx.h[4]); tmps[gid].alt_result[ 9] = l32_from_64_S (ctx.h[4]); tmps[gid].alt_result[10] = h32_from_64_S (ctx.h[5]); tmps[gid].alt_result[11] = l32_from_64_S (ctx.h[5]); tmps[gid].alt_result[12] = h32_from_64_S (ctx.h[6]); tmps[gid].alt_result[13] = l32_from_64_S (ctx.h[6]); tmps[gid].alt_result[14] = h32_from_64_S (ctx.h[7]); tmps[gid].alt_result[15] = l32_from_64_S (ctx.h[7]); // p_bytes sha512_init (&ctx); for (u32 j = 0; j < pw_len; j++) { sha512_update (&ctx, w, pw_len); } sha512_final (&ctx); final[ 0] = h32_from_64_S (ctx.h[0]); final[ 1] = l32_from_64_S (ctx.h[0]); final[ 2] = h32_from_64_S (ctx.h[1]); final[ 3] = l32_from_64_S (ctx.h[1]); final[ 4] = h32_from_64_S (ctx.h[2]); final[ 5] = l32_from_64_S (ctx.h[2]); final[ 6] = h32_from_64_S (ctx.h[3]); final[ 7] = l32_from_64_S (ctx.h[3]); final[ 8] = h32_from_64_S (ctx.h[4]); final[ 9] = l32_from_64_S (ctx.h[4]); final[10] = h32_from_64_S (ctx.h[5]); final[11] = l32_from_64_S (ctx.h[5]); final[12] = h32_from_64_S (ctx.h[6]); final[13] = l32_from_64_S (ctx.h[6]); final[14] = h32_from_64_S (ctx.h[7]); final[15] = l32_from_64_S (ctx.h[7]); u32 p_final[64] = { 0 }; int idx; for (pl = pw_len, idx = 0; pl > 64; pl -= 64, idx += 16) { p_final[idx + 0] = final[ 0]; p_final[idx + 1] = final[ 1]; p_final[idx + 2] = final[ 2]; p_final[idx + 3] = final[ 3]; p_final[idx + 4] = final[ 4]; p_final[idx + 5] = final[ 5]; p_final[idx + 6] = final[ 6]; p_final[idx + 7] = final[ 7]; p_final[idx + 8] = final[ 8]; p_final[idx + 9] = final[ 9]; p_final[idx + 10] = final[10]; p_final[idx + 11] = final[11]; p_final[idx + 12] = final[12]; p_final[idx + 13] = final[13]; p_final[idx + 14] = final[14]; p_final[idx + 15] = final[15]; } truncate_block_16x4_be_S (final + 0, final + 4, final + 8, final + 12, pl); p_final[idx + 0] = final[ 0]; p_final[idx + 1] = final[ 1]; p_final[idx + 2] = final[ 2]; p_final[idx + 3] = final[ 3]; p_final[idx + 4] = final[ 4]; p_final[idx + 5] = final[ 5]; p_final[idx + 6] = final[ 6]; p_final[idx + 7] = final[ 7]; p_final[idx + 8] = final[ 8]; p_final[idx + 9] = final[ 9]; p_final[idx + 10] = final[10]; p_final[idx + 11] = final[11]; p_final[idx + 12] = final[12]; p_final[idx + 13] = final[13]; p_final[idx + 14] = final[14]; p_final[idx + 15] = final[15]; #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 64; i++) tmps[gid].p_bytes[i] = p_final[i]; // s_bytes sha512_init (&ctx); for (u32 j = 0; j < 16 + (tmps[gid].alt_result[0] >> 24); j++) { sha512_update (&ctx, s, salt_len); } sha512_final (&ctx); final[ 0] = h32_from_64_S (ctx.h[0]); final[ 1] = l32_from_64_S (ctx.h[0]); final[ 2] = h32_from_64_S (ctx.h[1]); final[ 3] = l32_from_64_S (ctx.h[1]); final[ 4] = h32_from_64_S (ctx.h[2]); final[ 5] = l32_from_64_S (ctx.h[2]); final[ 6] = h32_from_64_S (ctx.h[3]); final[ 7] = l32_from_64_S (ctx.h[3]); final[ 8] = h32_from_64_S (ctx.h[4]); final[ 9] = l32_from_64_S (ctx.h[4]); final[10] = h32_from_64_S (ctx.h[5]); final[11] = l32_from_64_S (ctx.h[5]); final[12] = h32_from_64_S (ctx.h[6]); final[13] = l32_from_64_S (ctx.h[6]); final[14] = h32_from_64_S (ctx.h[7]); final[15] = l32_from_64_S (ctx.h[7]); u32 s_final[64] = { 0 }; for (pl = salt_len, idx = 0; pl > 64; pl -= 64, idx += 16) { s_final[idx + 0] = final[ 0]; s_final[idx + 1] = final[ 1]; s_final[idx + 2] = final[ 2]; s_final[idx + 3] = final[ 3]; s_final[idx + 4] = final[ 4]; s_final[idx + 5] = final[ 5]; s_final[idx + 6] = final[ 6]; s_final[idx + 7] = final[ 7]; s_final[idx + 8] = final[ 8]; s_final[idx + 9] = final[ 9]; s_final[idx + 10] = final[10]; s_final[idx + 11] = final[11]; s_final[idx + 12] = final[12]; s_final[idx + 13] = final[13]; s_final[idx + 14] = final[14]; s_final[idx + 15] = final[15]; } truncate_block_16x4_be_S (final + 0, final + 4, final + 8, final + 12, pl); s_final[idx + 0] = final[ 0]; s_final[idx + 1] = final[ 1]; s_final[idx + 2] = final[ 2]; s_final[idx + 3] = final[ 3]; s_final[idx + 4] = final[ 4]; s_final[idx + 5] = final[ 5]; s_final[idx + 6] = final[ 6]; s_final[idx + 7] = final[ 7]; s_final[idx + 8] = final[ 8]; s_final[idx + 9] = final[ 9]; s_final[idx + 10] = final[10]; s_final[idx + 11] = final[11]; s_final[idx + 12] = final[12]; s_final[idx + 13] = final[13]; s_final[idx + 14] = final[14]; s_final[idx + 15] = final[15]; #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 64; i++) tmps[gid].s_bytes[i] = s_final[i]; } KERNEL_FQ void m01800_loop (KERN_ATTR_TMPS (sha512crypt_tmp_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; const u32 pw_len = pws[gid].pw_len; const u32 salt_len = salt_bufs[SALT_POS_HOST].salt_len; u32 alt_result[32] = { 0 }; #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 16; i++) alt_result[i] = tmps[gid].alt_result[i]; /* Repeatedly run the collected hash value through SHA512 to burn CPU cycles. */ for (u32 i = 0, j = LOOP_POS; i < LOOP_CNT; i++, j++) { sha512_ctx_t ctx; sha512_init (&ctx); if (j & 1) { sha512_update_global (&ctx, tmps[gid].p_bytes, pw_len); } else { sha512_update (&ctx, alt_result, 64); } if (j % 3) { sha512_update_global (&ctx, tmps[gid].s_bytes, salt_len); } if (j % 7) { sha512_update_global (&ctx, tmps[gid].p_bytes, pw_len); } if (j & 1) { sha512_update (&ctx, alt_result, 64); } else { sha512_update_global (&ctx, tmps[gid].p_bytes, pw_len); } sha512_final (&ctx); alt_result[ 0] = h32_from_64_S (ctx.h[0]); alt_result[ 1] = l32_from_64_S (ctx.h[0]); alt_result[ 2] = h32_from_64_S (ctx.h[1]); alt_result[ 3] = l32_from_64_S (ctx.h[1]); alt_result[ 4] = h32_from_64_S (ctx.h[2]); alt_result[ 5] = l32_from_64_S (ctx.h[2]); alt_result[ 6] = h32_from_64_S (ctx.h[3]); alt_result[ 7] = l32_from_64_S (ctx.h[3]); alt_result[ 8] = h32_from_64_S (ctx.h[4]); alt_result[ 9] = l32_from_64_S (ctx.h[4]); alt_result[10] = h32_from_64_S (ctx.h[5]); alt_result[11] = l32_from_64_S (ctx.h[5]); alt_result[12] = h32_from_64_S (ctx.h[6]); alt_result[13] = l32_from_64_S (ctx.h[6]); alt_result[14] = h32_from_64_S (ctx.h[7]); alt_result[15] = l32_from_64_S (ctx.h[7]); } #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 16; i++) tmps[gid].alt_result[i] = alt_result[i]; } KERNEL_FQ void m01800_comp (KERN_ATTR_TMPS (sha512crypt_tmp_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; const u64 lid = get_local_id (0); const u32 r0 = hc_swap32_S (tmps[gid].alt_result[0]); const u32 r1 = hc_swap32_S (tmps[gid].alt_result[1]); const u32 r2 = hc_swap32_S (tmps[gid].alt_result[2]); const u32 r3 = hc_swap32_S (tmps[gid].alt_result[3]); #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }