/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_hash_sha256.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" typedef struct { #ifndef SCRYPT_TMP_ELEM #define SCRYPT_TMP_ELEM 1 #endif uint4 P[SCRYPT_TMP_ELEM]; } scrypt_tmp_t; typedef struct ethereum_scrypt { u32 salt_buf[16]; u32 ciphertext[8]; } ethereum_scrypt_t; DECLSPEC uint4 hc_swap32_4 (uint4 v) { return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u)); } #define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p)) #define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N)) #define GET_STATE_CNT(r) (2 * (r) * 16) #define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P) #define SCRYPT_CNT4 (SCRYPT_CNT / 4) #define STATE_CNT GET_STATE_CNT (SCRYPT_R) #define STATE_CNT4 (STATE_CNT / 4) #define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s)); #define SALSA20_2R() \ { \ ADD_ROTATE_XOR (X1, X0, X3, 7); \ ADD_ROTATE_XOR (X2, X1, X0, 9); \ ADD_ROTATE_XOR (X3, X2, X1, 13); \ ADD_ROTATE_XOR (X0, X3, X2, 18); \ \ X1 = X1.s3012; \ X2 = X2.s2301; \ X3 = X3.s1230; \ \ ADD_ROTATE_XOR (X3, X0, X1, 7); \ ADD_ROTATE_XOR (X2, X3, X0, 9); \ ADD_ROTATE_XOR (X1, X2, X3, 13); \ ADD_ROTATE_XOR (X0, X1, X2, 18); \ \ X1 = X1.s1230; \ X2 = X2.s2301; \ X3 = X3.s3012; \ } #define SALSA20_8_XOR() \ { \ R0 = R0 ^ Y0; \ R1 = R1 ^ Y1; \ R2 = R2 ^ Y2; \ R3 = R3 ^ Y3; \ \ uint4 X0 = R0; \ uint4 X1 = R1; \ uint4 X2 = R2; \ uint4 X3 = R3; \ \ SALSA20_2R (); \ SALSA20_2R (); \ SALSA20_2R (); \ SALSA20_2R (); \ \ R0 = R0 + X0; \ R1 = R1 + X1; \ R2 = R2 + X2; \ R3 = R3 + X3; \ } DECLSPEC void salsa_r (uint4 *TI) { uint4 R0 = TI[STATE_CNT4 - 4]; uint4 R1 = TI[STATE_CNT4 - 3]; uint4 R2 = TI[STATE_CNT4 - 2]; uint4 R3 = TI[STATE_CNT4 - 1]; uint4 TO[STATE_CNT4]; int idx_y = 0; int idx_r1 = 0; int idx_r2 = SCRYPT_R * 4; for (int i = 0; i < SCRYPT_R; i++) { uint4 Y0; uint4 Y1; uint4 Y2; uint4 Y3; Y0 = TI[idx_y++]; Y1 = TI[idx_y++]; Y2 = TI[idx_y++]; Y3 = TI[idx_y++]; SALSA20_8_XOR (); TO[idx_r1++] = R0; TO[idx_r1++] = R1; TO[idx_r1++] = R2; TO[idx_r1++] = R3; Y0 = TI[idx_y++]; Y1 = TI[idx_y++]; Y2 = TI[idx_y++]; Y3 = TI[idx_y++]; SALSA20_8_XOR (); TO[idx_r2++] = R0; TO[idx_r2++] = R1; TO[idx_r2++] = R2; TO[idx_r2++] = R3; } #pragma unroll for (int i = 0; i < STATE_CNT4; i++) { TI[i] = TO[i]; } } DECLSPEC void scrypt_smix (uint4 *X, uint4 *T, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3) { #define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z)) #define CO Coord(xd4,y,z) const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO; const u32 zSIZE = STATE_CNT4; const u32 x = get_global_id (0); const u32 xd4 = x / 4; const u32 xm4 = x & 3; GLOBAL_AS uint4 *V; switch (xm4) { case 0: V = V0; break; case 1: V = V1; break; case 2: V = V2; break; case 3: V = V3; break; } #ifdef _unroll #pragma unroll #endif for (u32 i = 0; i < STATE_CNT4; i += 4) { T[0] = (uint4) (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w); T[1] = (uint4) (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w); T[2] = (uint4) (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w); T[3] = (uint4) (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w); X[i + 0] = T[0]; X[i + 1] = T[1]; X[i + 2] = T[2]; X[i + 3] = T[3]; } for (u32 y = 0; y < ySIZE; y++) { for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z]; for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X); } for (u32 i = 0; i < SCRYPT_N; i++) { const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1); const u32 y = k / SCRYPT_TMTO; const u32 km = k - (y * SCRYPT_TMTO); for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO]; for (u32 i = 0; i < km; i++) salsa_r (T); for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z]; salsa_r (X); } #ifdef _unroll #pragma unroll #endif for (u32 i = 0; i < STATE_CNT4; i += 4) { T[0] = (uint4) (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w); T[1] = (uint4) (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w); T[2] = (uint4) (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w); T[3] = (uint4) (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w); X[i + 0] = T[0]; X[i + 1] = T[1]; X[i + 2] = T[2]; X[i + 3] = T[3]; } } #ifndef KECCAK_ROUNDS #define KECCAK_ROUNDS 24 #endif #define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s]) #define Theta2(s) \ { \ st[ 0 + s] ^= t; \ st[ 5 + s] ^= t; \ st[10 + s] ^= t; \ st[15 + s] ^= t; \ st[20 + s] ^= t; \ } #define Rho_Pi(s) \ { \ u32 j = keccakf_piln[s]; \ u32 k = keccakf_rotc[s]; \ bc0 = st[j]; \ st[j] = hc_rotl64_S (t, k); \ t = bc0; \ } #define Chi(s) \ { \ bc0 = st[0 + s]; \ bc1 = st[1 + s]; \ bc2 = st[2 + s]; \ bc3 = st[3 + s]; \ bc4 = st[4 + s]; \ st[0 + s] ^= ~bc1 & bc2; \ st[1 + s] ^= ~bc2 & bc3; \ st[2 + s] ^= ~bc3 & bc4; \ st[3 + s] ^= ~bc4 & bc0; \ st[4 + s] ^= ~bc0 & bc1; \ } CONSTANT_AS u64a keccakf_rndc[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; DECLSPEC void keccak_transform_S (u64 *st) { const u8 keccakf_rotc[24] = { 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44 }; const u8 keccakf_piln[24] = { 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1 }; /** * Keccak */ int round; for (round = 0; round < KECCAK_ROUNDS; round++) { // Theta u64 bc0 = Theta1 (0); u64 bc1 = Theta1 (1); u64 bc2 = Theta1 (2); u64 bc3 = Theta1 (3); u64 bc4 = Theta1 (4); u64 t; t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0); t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1); t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2); t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3); t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4); // Rho Pi t = st[1]; Rho_Pi (0); Rho_Pi (1); Rho_Pi (2); Rho_Pi (3); Rho_Pi (4); Rho_Pi (5); Rho_Pi (6); Rho_Pi (7); Rho_Pi (8); Rho_Pi (9); Rho_Pi (10); Rho_Pi (11); Rho_Pi (12); Rho_Pi (13); Rho_Pi (14); Rho_Pi (15); Rho_Pi (16); Rho_Pi (17); Rho_Pi (18); Rho_Pi (19); Rho_Pi (20); Rho_Pi (21); Rho_Pi (22); Rho_Pi (23); // Chi Chi (0); Chi (5); Chi (10); Chi (15); Chi (20); // Iota st[0] ^= keccakf_rndc[round]; } } KERNEL_FQ void m15700_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; sha256_hmac_ctx_t sha256_hmac_ctx; sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len); sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[salt_pos].salt_buf, salt_bufs[salt_pos].salt_len); for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2) { sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4); sha256_hmac_final (&sha256_hmac_ctx2); u32 digest[8]; digest[0] = sha256_hmac_ctx2.opad.h[0]; digest[1] = sha256_hmac_ctx2.opad.h[1]; digest[2] = sha256_hmac_ctx2.opad.h[2]; digest[3] = sha256_hmac_ctx2.opad.h[3]; digest[4] = sha256_hmac_ctx2.opad.h[4]; digest[5] = sha256_hmac_ctx2.opad.h[5]; digest[6] = sha256_hmac_ctx2.opad.h[6]; digest[7] = sha256_hmac_ctx2.opad.h[7]; const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]); const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]); tmps[gid].P[k + 0] = tmp0; tmps[gid].P[k + 1] = tmp1; } } KERNEL_FQ void m15700_loop (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t)) { const u64 gid = get_global_id (0); if (gid >= gid_max) return; GLOBAL_AS uint4 *d_scrypt0_buf = d_extra0_buf; GLOBAL_AS uint4 *d_scrypt1_buf = d_extra1_buf; GLOBAL_AS uint4 *d_scrypt2_buf = d_extra2_buf; GLOBAL_AS uint4 *d_scrypt3_buf = d_extra3_buf; uint4 X[STATE_CNT4]; uint4 T[STATE_CNT4]; #ifdef _unroll #pragma unroll #endif for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[z]); scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf); #ifdef _unroll #pragma unroll #endif for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[z] = hc_swap32_4 (X[z]); #if SCRYPT_P >= 1 for (int i = STATE_CNT4; i < SCRYPT_CNT4; i += STATE_CNT4) { for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[i + z]); scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf); for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[i + z] = hc_swap32_4 (X[z]); } #endif } KERNEL_FQ void m15700_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t)) { /** * base */ const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); if (gid >= gid_max) return; /** * 2nd pbkdf2, creates B */ u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; sha256_hmac_ctx_t ctx; sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len); for (u32 l = 0; l < SCRYPT_CNT4; l += 4) { uint4 tmp; tmp = tmps[gid].P[l + 0]; w0[0] = tmp.s0; w0[1] = tmp.s1; w0[2] = tmp.s2; w0[3] = tmp.s3; tmp = tmps[gid].P[l + 1]; w1[0] = tmp.s0; w1[1] = tmp.s1; w1[2] = tmp.s2; w1[3] = tmp.s3; tmp = tmps[gid].P[l + 2]; w2[0] = tmp.s0; w2[1] = tmp.s1; w2[2] = tmp.s2; w2[3] = tmp.s3; tmp = tmps[gid].P[l + 3]; w3[0] = tmp.s0; w3[1] = tmp.s1; w3[2] = tmp.s2; w3[3] = tmp.s3; sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64); } w0[0] = 1; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4); sha256_hmac_final (&ctx); /** * keccak */ u32 ciphertext[8]; ciphertext[0] = esalt_bufs[digests_offset].ciphertext[0]; ciphertext[1] = esalt_bufs[digests_offset].ciphertext[1]; ciphertext[2] = esalt_bufs[digests_offset].ciphertext[2]; ciphertext[3] = esalt_bufs[digests_offset].ciphertext[3]; ciphertext[4] = esalt_bufs[digests_offset].ciphertext[4]; ciphertext[5] = esalt_bufs[digests_offset].ciphertext[5]; ciphertext[6] = esalt_bufs[digests_offset].ciphertext[6]; ciphertext[7] = esalt_bufs[digests_offset].ciphertext[7]; u32 key[4]; key[0] = hc_swap32_S (ctx.opad.h[4]); key[1] = hc_swap32_S (ctx.opad.h[5]); key[2] = hc_swap32_S (ctx.opad.h[6]); key[3] = hc_swap32_S (ctx.opad.h[7]); u64 st[25]; st[ 0] = hl32_to_64_S (key[1], key[0]); st[ 1] = hl32_to_64_S (key[3], key[2]); st[ 2] = hl32_to_64_S (ciphertext[1], ciphertext[0]); st[ 3] = hl32_to_64_S (ciphertext[3], ciphertext[2]); st[ 4] = hl32_to_64_S (ciphertext[5], ciphertext[4]); st[ 5] = hl32_to_64_S (ciphertext[7], ciphertext[6]); st[ 6] = 0x01; st[ 7] = 0; st[ 8] = 0; st[ 9] = 0; st[10] = 0; st[11] = 0; st[12] = 0; st[13] = 0; st[14] = 0; st[15] = 0; st[16] = 0; st[17] = 0; st[18] = 0; st[19] = 0; st[20] = 0; st[21] = 0; st[22] = 0; st[23] = 0; st[24] = 0; const u32 mdlen = 32; const u32 rsiz = 200 - (2 * mdlen); const u32 add80w = (rsiz - 1) / 8; st[add80w] |= 0x8000000000000000; keccak_transform_S (st); const u32 r0 = l32_from_64_S (st[0]); const u32 r1 = h32_from_64_S (st[0]); const u32 r2 = l32_from_64_S (st[1]); const u32 r3 = h32_from_64_S (st[1]); #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }