/* * * This is an OpenCL implementation of the encryption algorithm: * * * * GOST R 34.12-2015 Kuznyechik by A.S.Kuzmin and A.A.Nechaev * * * * Author of the original C implementation: * * * * Markku-Juhani O. Saarinen * * https://github.com/mjosaarinen/kuznechik * * * * Adapted for GPU use with hashcat by Ruslan Yushaev. * * * */ #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.h" #include "inc_common.h" #include "inc_cipher_kuznyechik.h" CONSTANT_AS u32a k_sbox[256] = { 0xfc, 0xee, 0xdd, 0x11, 0xcf, 0x6e, 0x31, 0x16, 0xfb, 0xc4, 0xfa, 0xda, 0x23, 0xc5, 0x04, 0x4d, 0xe9, 0x77, 0xf0, 0xdb, 0x93, 0x2e, 0x99, 0xba, 0x17, 0x36, 0xf1, 0xbb, 0x14, 0xcd, 0x5f, 0xc1, 0xf9, 0x18, 0x65, 0x5a, 0xe2, 0x5c, 0xef, 0x21, 0x81, 0x1c, 0x3c, 0x42, 0x8b, 0x01, 0x8e, 0x4f, 0x05, 0x84, 0x02, 0xae, 0xe3, 0x6a, 0x8f, 0xa0, 0x06, 0x0b, 0xed, 0x98, 0x7f, 0xd4, 0xd3, 0x1f, 0xeb, 0x34, 0x2c, 0x51, 0xea, 0xc8, 0x48, 0xab, 0xf2, 0x2a, 0x68, 0xa2, 0xfd, 0x3a, 0xce, 0xcc, 0xb5, 0x70, 0x0e, 0x56, 0x08, 0x0c, 0x76, 0x12, 0xbf, 0x72, 0x13, 0x47, 0x9c, 0xb7, 0x5d, 0x87, 0x15, 0xa1, 0x96, 0x29, 0x10, 0x7b, 0x9a, 0xc7, 0xf3, 0x91, 0x78, 0x6f, 0x9d, 0x9e, 0xb2, 0xb1, 0x32, 0x75, 0x19, 0x3d, 0xff, 0x35, 0x8a, 0x7e, 0x6d, 0x54, 0xc6, 0x80, 0xc3, 0xbd, 0x0d, 0x57, 0xdf, 0xf5, 0x24, 0xa9, 0x3e, 0xa8, 0x43, 0xc9, 0xd7, 0x79, 0xd6, 0xf6, 0x7c, 0x22, 0xb9, 0x03, 0xe0, 0x0f, 0xec, 0xde, 0x7a, 0x94, 0xb0, 0xbc, 0xdc, 0xe8, 0x28, 0x50, 0x4e, 0x33, 0x0a, 0x4a, 0xa7, 0x97, 0x60, 0x73, 0x1e, 0x00, 0x62, 0x44, 0x1a, 0xb8, 0x38, 0x82, 0x64, 0x9f, 0x26, 0x41, 0xad, 0x45, 0x46, 0x92, 0x27, 0x5e, 0x55, 0x2f, 0x8c, 0xa3, 0xa5, 0x7d, 0x69, 0xd5, 0x95, 0x3b, 0x07, 0x58, 0xb3, 0x40, 0x86, 0xac, 0x1d, 0xf7, 0x30, 0x37, 0x6b, 0xe4, 0x88, 0xd9, 0xe7, 0x89, 0xe1, 0x1b, 0x83, 0x49, 0x4c, 0x3f, 0xf8, 0xfe, 0x8d, 0x53, 0xaa, 0x90, 0xca, 0xd8, 0x85, 0x61, 0x20, 0x71, 0x67, 0xa4, 0x2d, 0x2b, 0x09, 0x5b, 0xcb, 0x9b, 0x25, 0xd0, 0xbe, 0xe5, 0x6c, 0x52, 0x59, 0xa6, 0x74, 0xd2, 0xe6, 0xf4, 0xb4, 0xc0, 0xd1, 0x66, 0xaf, 0xc2, 0x39, 0x4b, 0x63, 0xb6 }; CONSTANT_AS u32a k_sbox_inv[256] = { 0xa5, 0x2d, 0x32, 0x8f, 0x0e, 0x30, 0x38, 0xc0, 0x54, 0xe6, 0x9e, 0x39, 0x55, 0x7e, 0x52, 0x91, 0x64, 0x03, 0x57, 0x5a, 0x1c, 0x60, 0x07, 0x18, 0x21, 0x72, 0xa8, 0xd1, 0x29, 0xc6, 0xa4, 0x3f, 0xe0, 0x27, 0x8d, 0x0c, 0x82, 0xea, 0xae, 0xb4, 0x9a, 0x63, 0x49, 0xe5, 0x42, 0xe4, 0x15, 0xb7, 0xc8, 0x06, 0x70, 0x9d, 0x41, 0x75, 0x19, 0xc9, 0xaa, 0xfc, 0x4d, 0xbf, 0x2a, 0x73, 0x84, 0xd5, 0xc3, 0xaf, 0x2b, 0x86, 0xa7, 0xb1, 0xb2, 0x5b, 0x46, 0xd3, 0x9f, 0xfd, 0xd4, 0x0f, 0x9c, 0x2f, 0x9b, 0x43, 0xef, 0xd9, 0x79, 0xb6, 0x53, 0x7f, 0xc1, 0xf0, 0x23, 0xe7, 0x25, 0x5e, 0xb5, 0x1e, 0xa2, 0xdf, 0xa6, 0xfe, 0xac, 0x22, 0xf9, 0xe2, 0x4a, 0xbc, 0x35, 0xca, 0xee, 0x78, 0x05, 0x6b, 0x51, 0xe1, 0x59, 0xa3, 0xf2, 0x71, 0x56, 0x11, 0x6a, 0x89, 0x94, 0x65, 0x8c, 0xbb, 0x77, 0x3c, 0x7b, 0x28, 0xab, 0xd2, 0x31, 0xde, 0xc4, 0x5f, 0xcc, 0xcf, 0x76, 0x2c, 0xb8, 0xd8, 0x2e, 0x36, 0xdb, 0x69, 0xb3, 0x14, 0x95, 0xbe, 0x62, 0xa1, 0x3b, 0x16, 0x66, 0xe9, 0x5c, 0x6c, 0x6d, 0xad, 0x37, 0x61, 0x4b, 0xb9, 0xe3, 0xba, 0xf1, 0xa0, 0x85, 0x83, 0xda, 0x47, 0xc5, 0xb0, 0x33, 0xfa, 0x96, 0x6f, 0x6e, 0xc2, 0xf6, 0x50, 0xff, 0x5d, 0xa9, 0x8e, 0x17, 0x1b, 0x97, 0x7d, 0xec, 0x58, 0xf7, 0x1f, 0xfb, 0x7c, 0x09, 0x0d, 0x7a, 0x67, 0x45, 0x87, 0xdc, 0xe8, 0x4f, 0x1d, 0x4e, 0x04, 0xeb, 0xf8, 0xf3, 0x3e, 0x3d, 0xbd, 0x8a, 0x88, 0xdd, 0xcd, 0x0b, 0x13, 0x98, 0x02, 0x93, 0x80, 0x90, 0xd0, 0x24, 0x34, 0xcb, 0xed, 0xf4, 0xce, 0x99, 0x10, 0x44, 0x40, 0x92, 0x3a, 0x01, 0x26, 0x12, 0x1a, 0x48, 0x68, 0xf5, 0x81, 0x8b, 0xc7, 0xd6, 0x20, 0x0a, 0x08, 0x00, 0x4c, 0xd7, 0x74 }; #define extract_byte(x,n) (((x) >> (8 * (n))) & 0xff) #define k_lookup(w,sbox) \ for (int i = 0; i < 4; i++) \ w[i] = sbox[extract_byte (w[i], 0)] << 0 \ | sbox[extract_byte (w[i], 1)] << 8 \ | sbox[extract_byte (w[i], 2)] << 16 \ | sbox[extract_byte (w[i], 3)] << 24 #define k_xor(n) \ for (int i = (n); i > 0; i /= 2) \ { \ z ^= x * (i % 2); \ x = (x << 1) ^ ((x >> 7) * 0xc3); \ x &= 0xff; \ } DECLSPEC void kuznyechik_linear (u32 *w) { // used in k_xor macro u32 x; u32 z; for (int i = 0; i < 16; i++) { z = 0; // k_xor (1) yields the same result as a simple xor x = extract_byte (w[3], 3); z ^= x; x = extract_byte (w[3], 2); k_xor (148); x = extract_byte (w[3], 1); k_xor (32); x = extract_byte (w[3], 0); k_xor (133); x = extract_byte (w[2], 3); k_xor (16); x = extract_byte (w[2], 2); k_xor (194); x = extract_byte (w[2], 1); k_xor (192); x = extract_byte (w[2], 0); z ^= x; x = extract_byte (w[1], 3); k_xor (251); x = extract_byte (w[1], 2); z ^= x; x = extract_byte (w[1], 1); k_xor (192); x = extract_byte (w[1], 0); k_xor (194); x = extract_byte (w[0], 3); k_xor (16); x = extract_byte (w[0], 2); k_xor (133); x = extract_byte (w[0], 1); k_xor (32); x = extract_byte (w[0], 0); k_xor (148); // right-shift data block, prepend calculated byte w[3] = (w[3] << 8) | (w[2] >> 24); w[2] = (w[2] << 8) | (w[1] >> 24); w[1] = (w[1] << 8) | (w[0] >> 24); w[0] = (w[0] << 8) | z; } } DECLSPEC void kuznyechik_linear_inv (u32 *w) { // used in k_xor macro u32 x; u32 z; for (int i = 0; i < 16; i++) { z = extract_byte (w[0], 0); //left-shift data block w[0] = (w[0] >> 8) | (w[1] << 24); w[1] = (w[1] >> 8) | (w[2] << 24); w[2] = (w[2] >> 8) | (w[3] << 24); w[3] = (w[3] >> 8); x = extract_byte (w[0], 0); k_xor (148); x = extract_byte (w[0], 1); k_xor (32); x = extract_byte (w[0], 2); k_xor (133); x = extract_byte (w[0], 3); k_xor (16); x = extract_byte (w[1], 0); k_xor (194); x = extract_byte (w[1], 1); k_xor (192); x = extract_byte (w[1], 2); z ^= x; x = extract_byte (w[1], 3); k_xor (251); x = extract_byte (w[2], 0); z ^= x; x = extract_byte (w[2], 1); k_xor (192); x = extract_byte (w[2], 2); k_xor (194); x = extract_byte (w[2], 3); k_xor (16); x = extract_byte (w[3], 0); k_xor (133); x = extract_byte (w[3], 1); k_xor (32); x = extract_byte (w[3], 2); k_xor (148); //append calculated byte w[3] |= (z << 24); } } DECLSPEC void kuznyechik_set_key (u32 *ks, const u32 *ukey) { u32 counter[4]; u32 x[4]; u32 y[4]; u32 z[4]; x[0] = ukey[0]; x[1] = ukey[1]; x[2] = ukey[2]; x[3] = ukey[3]; y[0] = ukey[4]; y[1] = ukey[5]; y[2] = ukey[6]; y[3] = ukey[7]; ks[0] = ukey[0]; ks[1] = ukey[1]; ks[2] = ukey[2]; ks[3] = ukey[3]; ks[4] = ukey[4]; ks[5] = ukey[5]; ks[6] = ukey[6]; ks[7] = ukey[7]; for (int i = 1; i <= 32; i++) { counter[0] = 0; counter[1] = 0; counter[2] = 0; counter[3] = (i << 24); kuznyechik_linear (counter); z[0] = x[0] ^ counter[0]; z[1] = x[1] ^ counter[1]; z[2] = x[2] ^ counter[2]; z[3] = x[3] ^ counter[3]; k_lookup (z, k_sbox); kuznyechik_linear (z); z[0] ^= y[0]; z[1] ^= y[1]; z[2] ^= y[2]; z[3] ^= y[3]; y[0] = x[0]; y[1] = x[1]; y[2] = x[2]; y[3] = x[3]; x[0] = z[0]; x[1] = z[1]; x[2] = z[2]; x[3] = z[3]; if ((i & 7) == 0) { ks[i + 0] = x[0]; ks[i + 1] = x[1]; ks[i + 2] = x[2]; ks[i + 3] = x[3]; ks[i + 4] = y[0]; ks[i + 5] = y[1]; ks[i + 6] = y[2]; ks[i + 7] = y[3]; } } } DECLSPEC void kuznyechik_encrypt (const u32 *ks, const u32 *in, u32 *out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; for (int i = 0; i < 9; i++) { out[0] ^= ks[4 * i + 0]; out[1] ^= ks[4 * i + 1]; out[2] ^= ks[4 * i + 2]; out[3] ^= ks[4 * i + 3]; k_lookup (out, k_sbox); kuznyechik_linear (out); } out[0] ^= ks[4 * 9 + 0]; out[1] ^= ks[4 * 9 + 1]; out[2] ^= ks[4 * 9 + 2]; out[3] ^= ks[4 * 9 + 3]; } DECLSPEC void kuznyechik_decrypt (const u32 *ks, const u32 *in, u32 *out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[0] ^= ks[4 * 9 + 0]; out[1] ^= ks[4 * 9 + 1]; out[2] ^= ks[4 * 9 + 2]; out[3] ^= ks[4 * 9 + 3]; for (int i = 8; i >= 0; i--) { kuznyechik_linear_inv (out); k_lookup (out, k_sbox_inv); out[0] ^= ks[4 * i + 0]; out[1] ^= ks[4 * i + 1]; out[2] ^= ks[4 * i + 2]; out[3] ^= ks[4 * i + 3]; } } #undef k_xor #undef k_lookup #undef extract_byte