/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.h) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_rp.h) #include M2S(INCLUDE_PATH/inc_rp.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_scalar.cl) #include M2S(INCLUDE_PATH/inc_hash_sha256.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.h) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #endif typedef struct scrtv2 { u32 ct_buf[64]; int ct_len; } scrtv2_t; DECLSPEC void shift_buffer_by_offset (PRIVATE_AS u32 *w0, const u32 offset) { const int offset_switch = offset / 4; #if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC switch (offset_switch) { case 0: w0[3] = hc_bytealign_be_S (w0[2], w0[3], offset); w0[2] = hc_bytealign_be_S (w0[1], w0[2], offset); w0[1] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[0] = hc_bytealign_be_S ( 0, w0[0], offset); break; case 1: w0[3] = hc_bytealign_be_S (w0[1], w0[2], offset); w0[2] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[1] = hc_bytealign_be_S ( 0, w0[0], offset); w0[0] = 0; break; case 2: w0[3] = hc_bytealign_be_S (w0[0], w0[1], offset); w0[2] = hc_bytealign_be_S ( 0, w0[0], offset); w0[1] = 0; w0[0] = 0; break; case 3: w0[3] = hc_bytealign_be_S ( 0, w0[0], offset); w0[2] = 0; w0[1] = 0; w0[0] = 0; break; default: w0[3] = 0; w0[2] = 0; w0[1] = 0; w0[0] = 0; break; } #endif #if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV #if defined IS_NV const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff; #endif #if (defined IS_AMD || defined IS_HIP) const int selector = l32_from_64_S(0x0706050403020100UL >> ((offset & 3) * 8)); #endif switch (offset_switch) { case 0: w0[3] = hc_byte_perm_S (w0[3], w0[2], selector); w0[2] = hc_byte_perm_S (w0[2], w0[1], selector); w0[1] = hc_byte_perm_S (w0[1], w0[0], selector); w0[0] = hc_byte_perm_S (w0[0], 0, selector); break; case 1: w0[3] = hc_byte_perm_S (w0[2], w0[1], selector); w0[2] = hc_byte_perm_S (w0[1], w0[0], selector); w0[1] = hc_byte_perm_S (w0[0], 0, selector); w0[0] = 0; break; case 2: w0[3] = hc_byte_perm_S (w0[1], w0[0], selector); w0[2] = hc_byte_perm_S (w0[0], 0, selector); w0[1] = 0; w0[0] = 0; break; case 3: w0[3] = hc_byte_perm_S (w0[0], 0, selector); w0[2] = 0; w0[1] = 0; w0[0] = 0; break; default: w0[3] = 0; w0[2] = 0; w0[1] = 0; w0[0] = 0; break; } #endif } DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const u32 pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4) { AES256_set_encrypt_key (aes_ks, hash, s_te0, s_te1, s_te2, s_te3); shift_buffer_by_offset (hash, pw_len + 4); hash[0] = hc_swap32_S (pw_len); hash[1] |= hc_swap32_S (pw[0]); hash[2] |= hc_swap32_S (pw[1]); hash[3] |= hc_swap32_S (pw[2]); AES256_encrypt (aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4); } DECLSPEC void aes256_scrt_format_VV (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32x *w, const u32 pw_len, PRIVATE_AS u32x *h, PRIVATE_AS u32x *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4) { #if VECT_SIZE == 1 aes256_scrt_format (aes_ks, w, pw_len, h, out, s_te0, s_te1, s_te2, s_te3, s_te4); #endif #if VECT_SIZE >= 2 u32 tmp_w[64]; u32 tmp_h[8]; u32 tmp_out[4]; //s0 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s0; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s0; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s0 = tmp_out[i]; //s1 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s1; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s1; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s1 = tmp_out[i]; #endif #if VECT_SIZE >= 4 //s2 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s2; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s2; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s2 = tmp_out[i]; //s3 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s3; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s3; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s3 = tmp_out[i]; #endif #if VECT_SIZE >= 8 //s4 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s4; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s4; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s4 = tmp_out[i]; //s5 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s5; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s5; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s5 = tmp_out[i]; //s6 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s6; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s6; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s6 = tmp_out[i]; //s7 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s7; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s7; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s7 = tmp_out[i]; #endif #if VECT_SIZE >= 16 //s8 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s8; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s8; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s8 = tmp_out[i]; //s9 for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s9; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s9; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].s9 = tmp_out[i]; //sa for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sa; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sa; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].sa = tmp_out[i]; //sb for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sb; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sb; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].sb = tmp_out[i]; //sc for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sc; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sc; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].sc = tmp_out[i]; //sd for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sd; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sd; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].sd = tmp_out[i]; //se for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].se; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].se; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].se = tmp_out[i]; //sf for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sf; for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sf; aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4); for (u32 i = 0; i < 4; i++) out[i].sf = tmp_out[i]; #endif } KERNEL_FQ void m31400_mxx (KERN_ATTR_VECTOR_ESALT (scrtv2_t)) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS(); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * base */ const u32 pw_len = pws[gid].pw_len; u32x w[64] = {0}; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; sha256_ctx_vector_t ctx; sha256_init_vector (&ctx); sha256_update_vector_swap (&ctx, w, pw_len); sha256_final_vector (&ctx); u32x out[4] = {0}; u32 aes_ks[60]; aes256_scrt_format_VV (aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4); const u32x r0 = out[DGST_R0]; const u32x r1 = out[DGST_R1]; const u32x r2 = out[DGST_R2]; const u32x r3 = out[DGST_R3]; COMPARE_M_SIMD (r0, r1, r2, r3); } } KERNEL_FQ void m31400_sxx (KERN_ATTR_VECTOR_ESALT (scrtv2_t)) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS(); #else CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * digest */ const u32 search[4] = { digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3] }; /** * base */ const u32 pw_len = pws[gid].pw_len; u32x w[64] = {0}; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = pws[gid].i[idx]; } /** * loop */ u32x w0l = w[0]; for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE) { const u32x w0r = words_buf_r[il_pos / VECT_SIZE]; const u32x w0 = w0l | w0r; w[0] = w0; sha256_ctx_vector_t ctx; sha256_init_vector (&ctx); sha256_update_vector_swap (&ctx, w, pw_len); sha256_final_vector (&ctx); u32x out[4] = {0}; u32 aes_ks[60]; aes256_scrt_format_VV (aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4); const u32x r0 = out[DGST_R0]; const u32x r1 = out[DGST_R1]; const u32x r2 = out[DGST_R2]; const u32x r3 = out[DGST_R3]; COMPARE_S_SIMD (r0, r1, r2, r3); } }