/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include M2S(INCLUDE_PATH/inc_vendor.h) #include M2S(INCLUDE_PATH/inc_types.h) #include M2S(INCLUDE_PATH/inc_platform.cl) #include M2S(INCLUDE_PATH/inc_common.cl) #include M2S(INCLUDE_PATH/inc_rp_optimized.h) #include M2S(INCLUDE_PATH/inc_rp_optimized.cl) #include M2S(INCLUDE_PATH/inc_simd.cl) #include M2S(INCLUDE_PATH/inc_cipher_aes.cl) #endif KERNEL_FQ void m26403_m04 (KERN_ATTR_RULES ()) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * modifier */ u32 pw_buf0[4]; u32 pw_buf1[4]; pw_buf0[0] = pws[gid].i[0]; pw_buf0[1] = pws[gid].i[1]; pw_buf0[2] = pws[gid].i[2]; pw_buf0[3] = pws[gid].i[3]; pw_buf1[0] = pws[gid].i[4]; pw_buf1[1] = pws[gid].i[5]; pw_buf1[2] = pws[gid].i[6]; pw_buf1[3] = pws[gid].i[7]; const u32 pw_len = pws[gid].pw_len & 63; /** * Salt prep */ u32 pt[4]; pt[0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; pt[1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; pt[2] = salt_bufs[SALT_POS_HOST].salt_buf[2]; pt[3] = salt_bufs[SALT_POS_HOST].salt_buf[3]; /** * loop */ for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE) { u32 w0[4] = { 0 }; u32 w1[4] = { 0 }; // ignore output length apply_rules_vect_optimized (pw_buf0, pw_buf1, pw_len, rules_buf, il_pos, w0, w1); u32 ukey[8]; ukey[0] = w0[0]; ukey[1] = w0[1]; ukey[2] = w0[2]; ukey[3] = w0[3]; ukey[4] = w1[0]; ukey[5] = w1[1]; ukey[6] = w1[2]; ukey[7] = w1[3]; #define KEYLEN 60 u32 ks[KEYLEN]; aes256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); u32 ct[4]; aes256_encrypt (ks, pt, ct, s_te0, s_te1, s_te2, s_te3, s_te4); const u32x r0 = ct[0]; const u32x r1 = ct[1]; const u32x r2 = ct[2]; const u32x r3 = ct[3]; COMPARE_M_SIMD (r0, r1, r2, r3); } } KERNEL_FQ void m26403_m08 (KERN_ATTR_RULES ()) { } KERNEL_FQ void m26403_m16 (KERN_ATTR_RULES ()) { } KERNEL_FQ void m26403_s04 (KERN_ATTR_RULES ()) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } SYNC_THREADS (); #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif if (gid >= GID_CNT) return; /** * modifier */ u32 pw_buf0[4]; u32 pw_buf1[4]; pw_buf0[0] = pws[gid].i[0]; pw_buf0[1] = pws[gid].i[1]; pw_buf0[2] = pws[gid].i[2]; pw_buf0[3] = pws[gid].i[3]; pw_buf1[0] = pws[gid].i[4]; pw_buf1[1] = pws[gid].i[5]; pw_buf1[2] = pws[gid].i[6]; pw_buf1[3] = pws[gid].i[7]; const u32 pw_len = pws[gid].pw_len & 63; /** * Salt prep */ u32 pt[4]; pt[0] = salt_bufs[SALT_POS_HOST].salt_buf[0]; pt[1] = salt_bufs[SALT_POS_HOST].salt_buf[1]; pt[2] = salt_bufs[SALT_POS_HOST].salt_buf[2]; pt[3] = salt_bufs[SALT_POS_HOST].salt_buf[3]; /** * digest */ const u32 search[4] = { digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3] }; /** * loop */ for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE) { u32 w0[4] = { 0 }; u32 w1[4] = { 0 }; // ignore output length apply_rules_vect_optimized (pw_buf0, pw_buf1, pw_len, rules_buf, il_pos, w0, w1); u32 ukey[8]; ukey[0] = w0[0]; ukey[1] = w0[1]; ukey[2] = w0[2]; ukey[3] = w0[3]; ukey[4] = w1[0]; ukey[5] = w1[1]; ukey[6] = w1[2]; ukey[7] = w1[3]; #define KEYLEN 60 u32 ks[KEYLEN]; aes256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3); u32 ct[4]; aes256_encrypt (ks, pt, ct, s_te0, s_te1, s_te2, s_te3, s_te4); const u32x r0 = ct[0]; const u32x r1 = ct[1]; const u32x r2 = ct[2]; const u32x r3 = ct[3]; COMPARE_S_SIMD (r0, r1, r2, r3); } } KERNEL_FQ void m26403_s08 (KERN_ATTR_RULES ()) { } KERNEL_FQ void m26403_s16 (KERN_ATTR_RULES ()) { }