1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-25 09:28:20 +00:00

based m17040 of m17010

This commit is contained in:
Your Name 2023-06-26 11:50:53 +02:00
parent b5fb169ded
commit fae1994588
2 changed files with 910 additions and 0 deletions

504
OpenCL/m17040-pure.cl Normal file
View File

@ -0,0 +1,504 @@
/**
* Author......: Netherlands Forensic Institute
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
typedef struct gpg
{
u32 cipher_algo;
u32 iv[4];
u32 modulus_size;
u32 encrypted_data[384];
u32 encrypted_data_size;
} gpg_t;
typedef struct gpg_tmp
{
// buffer for a maximum of 256 + 8 characters, we extend it to 320 characters so it's always 64 byte aligned
u32 salted_pw_block[80];
// actual number of bytes in 'salted_pwd' that are used since salt and password are copied multiple times into the buffer
u32 salted_pw_block_len;
u32 h[10];
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 len;
} gpg_tmp_t;
DECLSPEC u32 hc_bytealign_le_S (const u32 a, const u32 b, const int c)
{
const int c_mod_4 = c & 3;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
const u32 r = l32_from_64_S ((v64_from_v32ab_S (b, a) >> (c_mod_4 * 8)));
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> (c_mod_4 * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S (0x0706050403020100UL >> (c_mod_4 * 8));
#endif
const u32 r = hc_byte_perm (b, a, selector);
#endif
return r;
}
DECLSPEC void memcat_le_S (PRIVATE_AS u32 *block, const u32 offset, PRIVATE_AS const u32 *append, u32 len)
{
const u32 start_index = (offset - 1) >> 2;
const u32 count = ((offset + len + 3) >> 2) - start_index;
const int off_mod_4 = offset & 3;
const int off_minus_4 = 4 - off_mod_4;
block[start_index] |= hc_bytealign_le_S (append[0], 0, off_minus_4);
for (u32 idx = 1; idx < count; idx++)
{
block[start_index + idx] = hc_bytealign_le_S (append[idx], append[idx - 1], off_minus_4);
}
}
DECLSPEC void memzero_le_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff << ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void memzero_be_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff >> ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void aes128_decrypt_cfb (GLOBAL_AS const u32 *encrypted_data, int data_len, PRIVATE_AS const u32 *iv, PRIVATE_AS const u32 *key, PRIVATE_AS u32 *decrypted_data,
SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 ks[44];
u32 essiv[4];
// Copy the IV, since this will be modified
essiv[0] = iv[0];
essiv[1] = iv[1];
essiv[2] = iv[2];
essiv[3] = iv[3];
aes128_set_encrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3);
// Decrypt an AES-128 encrypted block
for (u32 i = 0; i < (data_len + 3) / 4; i += 4)
{
aes128_encrypt (ks, essiv, decrypted_data + i, s_te0, s_te1, s_te2, s_te3, s_te4);
decrypted_data[i + 0] ^= encrypted_data[i + 0];
decrypted_data[i + 1] ^= encrypted_data[i + 1];
decrypted_data[i + 2] ^= encrypted_data[i + 2];
decrypted_data[i + 3] ^= encrypted_data[i + 3];
// Note: Not necessary if you are only decrypting a single block!
essiv[0] = encrypted_data[i + 0];
essiv[1] = encrypted_data[i + 1];
essiv[2] = encrypted_data[i + 2];
essiv[3] = encrypted_data[i + 3];
}
}
DECLSPEC void aes256_decrypt_cfb (GLOBAL_AS const u32 *encrypted_data, int data_len, PRIVATE_AS const u32 *iv, PRIVATE_AS const u32 *key, PRIVATE_AS u32 *decrypted_data,
SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 ks[60];
u32 essiv[4];
// Copy the IV, since this will be modified
essiv[0] = iv[0];
essiv[1] = iv[1];
essiv[2] = iv[2];
essiv[3] = iv[3];
aes256_set_encrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3);
// Decrypt an AES-256 encrypted block
for (u32 i = 0; i < (data_len + 3) / 4; i += 4)
{
aes256_encrypt (ks, essiv, decrypted_data + i, s_te0, s_te1, s_te2, s_te3, s_te4);
decrypted_data[i + 0] ^= encrypted_data[i + 0];
decrypted_data[i + 1] ^= encrypted_data[i + 1];
decrypted_data[i + 2] ^= encrypted_data[i + 2];
decrypted_data[i + 3] ^= encrypted_data[i + 3];
// Note: Not necessary if you are only decrypting a single block!
essiv[0] = encrypted_data[i + 0];
essiv[1] = encrypted_data[i + 1];
essiv[2] = encrypted_data[i + 2];
essiv[3] = encrypted_data[i + 3];
}
}
DECLSPEC int check_decoded_data (PRIVATE_AS u32 *decoded_data, const u32 decoded_data_size)
{
// Check the SHA-1 of the decrypted data which is stored at the end of the decrypted data
const u32 sha1_byte_off = (decoded_data_size - 20);
const u32 sha1_u32_off = sha1_byte_off / 4;
u32 expected_sha1[5];
expected_sha1[0] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 1], decoded_data[sha1_u32_off + 0], sha1_byte_off);
expected_sha1[1] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 2], decoded_data[sha1_u32_off + 1], sha1_byte_off);
expected_sha1[2] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 3], decoded_data[sha1_u32_off + 2], sha1_byte_off);
expected_sha1[3] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 4], decoded_data[sha1_u32_off + 3], sha1_byte_off);
expected_sha1[4] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 5], decoded_data[sha1_u32_off + 4], sha1_byte_off);
memzero_le_S (decoded_data, sha1_byte_off, 384 * sizeof(u32));
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_swap (&ctx, decoded_data, sha1_byte_off);
sha1_final (&ctx);
return (expected_sha1[0] == hc_swap32_S (ctx.h[0]))
&& (expected_sha1[1] == hc_swap32_S (ctx.h[1]))
&& (expected_sha1[2] == hc_swap32_S (ctx.h[2]))
&& (expected_sha1[3] == hc_swap32_S (ctx.h[3]))
&& (expected_sha1[4] == hc_swap32_S (ctx.h[4]));
}
KERNEL_FQ void m17010_init (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
const u32 pw_len = pws[gid].pw_len;
const u32 salted_pw_len = (salt_bufs[SALT_POS_HOST].salt_len + pw_len);
u32 salted_pw_block[80];
// concatenate salt and password -- the salt is always 8 bytes
salted_pw_block[0] = salt_bufs[SALT_POS_HOST].salt_buf[0];
salted_pw_block[1] = salt_bufs[SALT_POS_HOST].salt_buf[1];
for (u32 idx = 0; idx < 64; idx++) salted_pw_block[idx + 2] = pws[gid].i[idx];
// zero remainder of buffer
for (u32 idx = 66; idx < 80; idx++) salted_pw_block[idx] = 0;
// create a number of copies for efficiency
const u32 copies = 80 * sizeof(u32) / salted_pw_len;
for (u32 idx = 1; idx < copies; idx++)
{
memcat_le_S (salted_pw_block, idx * salted_pw_len, salted_pw_block, salted_pw_len);
}
for (u32 idx = 0; idx < 80; idx++)
{
tmps[gid].salted_pw_block[idx] = hc_swap32_S (salted_pw_block[idx]);
}
tmps[gid].salted_pw_block_len = (copies * salted_pw_len);
tmps[gid].h[0] = SHA1M_A;
tmps[gid].h[1] = SHA1M_B;
tmps[gid].h[2] = SHA1M_C;
tmps[gid].h[3] = SHA1M_D;
tmps[gid].h[4] = SHA1M_E;
tmps[gid].h[5] = SHA1M_A;
tmps[gid].h[6] = SHA1M_B;
tmps[gid].h[7] = SHA1M_C;
tmps[gid].h[8] = SHA1M_D;
tmps[gid].h[9] = SHA1M_E;
tmps[gid].len = 0;
}
KERNEL_FQ void m17010_loop_prepare (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
tmps[gid].w0[0] = 0;
tmps[gid].w0[1] = 0;
tmps[gid].w0[2] = 0;
tmps[gid].w0[3] = 0;
tmps[gid].w1[0] = 0;
tmps[gid].w1[1] = 0;
tmps[gid].w1[2] = 0;
tmps[gid].w1[3] = 0;
tmps[gid].w2[0] = 0;
tmps[gid].w2[1] = 0;
tmps[gid].w2[2] = 0;
tmps[gid].w2[3] = 0;
tmps[gid].w3[0] = 0;
tmps[gid].w3[1] = 0;
tmps[gid].w3[2] = 0;
tmps[gid].w3[3] = 0;
tmps[gid].len = SALT_REPEAT;
}
KERNEL_FQ void m17010_loop (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
// get the prepared buffer from the gpg_tmp_t struct into a local buffer
u32 salted_pw_block[80];
for (int i = 0; i < 80; i++) salted_pw_block[i] = tmps[gid].salted_pw_block[i];
const u32 salted_pw_block_len = tmps[gid].salted_pw_block_len;
// do we really need this, since the salt is always length 8?
if (salted_pw_block_len == 0) return;
/**
* context load
*/
sha1_ctx_t ctx;
const u32 sha_offset = SALT_REPEAT * 5;
for (int i = 0; i < 5; i++) ctx.h[i] = tmps[gid].h[sha_offset + i];
for (int i = 0; i < 4; i++) ctx.w0[i] = tmps[gid].w0[i];
for (int i = 0; i < 4; i++) ctx.w1[i] = tmps[gid].w1[i];
for (int i = 0; i < 4; i++) ctx.w2[i] = tmps[gid].w2[i];
for (int i = 0; i < 4; i++) ctx.w3[i] = tmps[gid].w3[i];
ctx.len = tmps[gid].len;
// sha-1 of salt and password, up to 'salt_iter' bytes
const u32 salt_iter = salt_bufs[SALT_POS_HOST].salt_iter;
const u32 salted_pw_block_pos = LOOP_POS % salted_pw_block_len;
const u32 rounds = (LOOP_CNT + salted_pw_block_pos) / salted_pw_block_len;
for (u32 i = 0; i < rounds; i++)
{
sha1_update (&ctx, salted_pw_block, salted_pw_block_len);
}
if ((LOOP_POS + LOOP_CNT) == salt_iter)
{
const u32 remaining_bytes = salt_iter % salted_pw_block_len;
if (remaining_bytes)
{
memzero_be_S (salted_pw_block, remaining_bytes, salted_pw_block_len);
sha1_update (&ctx, salted_pw_block, remaining_bytes);
}
sha1_final (&ctx);
}
/**
* context save
*/
for (int i = 0; i < 5; i++) tmps[gid].h[sha_offset + i] = ctx.h[i];
for (int i = 0; i < 4; i++) tmps[gid].w0[i] = ctx.w0[i];
for (int i = 0; i < 4; i++) tmps[gid].w1[i] = ctx.w1[i];
for (int i = 0; i < 4; i++) tmps[gid].w2[i] = ctx.w2[i];
for (int i = 0; i < 4; i++) tmps[gid].w3[i] = ctx.w3[i];
tmps[gid].len = ctx.len;
}
KERNEL_FQ void m17010_comp (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
// not in use here, special case...
}
KERNEL_FQ void m17010_aux1 (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
// retrieve and use the SHA-1 as the key for AES
u32 aes_key[4];
for (int i = 0; i < 4; i++) aes_key[i] = hc_swap32_S (tmps[gid].h[i]);
u32 iv[4] = {0};
for (int idx = 0; idx < 4; idx++) iv[idx] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[idx];
u32 decoded_data[384];
const u32 enc_data_size = esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data_size;
aes128_decrypt_cfb (esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data, enc_data_size, iv, aes_key, decoded_data, s_te0, s_te1, s_te2, s_te3, s_te4);
if (check_decoded_data (decoded_data, enc_data_size))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
}
}
KERNEL_FQ void m17010_aux2 (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
// retrieve and use the SHA-1 as the key for AES
u32 aes_key[8];
for (int i = 0; i < 8; i++) aes_key[i] = hc_swap32_S (tmps[gid].h[i]);
u32 iv[4] = {0};
for (int idx = 0; idx < 4; idx++) iv[idx] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[idx];
u32 decoded_data[384];
const u32 enc_data_size = esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data_size;
aes256_decrypt_cfb (esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data, enc_data_size, iv, aes_key, decoded_data, s_te0, s_te1, s_te2, s_te3, s_te4);
if (check_decoded_data (decoded_data, enc_data_size))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
}
}

406
src/modules/module_17040.c Normal file
View File

@ -0,0 +1,406 @@
/**
* Author......: Netherlands Forensic Institute
* License.....: MIT
*/
#include "common.h"
#include "types.h"
#include "modules.h"
#include "bitops.h"
#include "convert.h"
#include "shared.h"
static const u32 ATTACK_EXEC = ATTACK_EXEC_OUTSIDE_KERNEL;
static const u32 DGST_POS0 = 0;
static const u32 DGST_POS1 = 1;
static const u32 DGST_POS2 = 2;
static const u32 DGST_POS3 = 3;
static const u32 DGST_SIZE = DGST_SIZE_4_4;
static const u32 HASH_CATEGORY = HASH_CATEGORY_PRIVATE_KEY;
static const char *HASH_NAME = "GPG (AES-128/AES-256 (SHA-1($pass)))";
static const u64 KERN_TYPE = 17010;
static const u32 OPTI_TYPE = OPTI_TYPE_ZERO_BYTE;
static const u64 OPTS_TYPE = OPTS_TYPE_STOCK_MODULE
| OPTS_TYPE_PT_GENERATE_LE
| OPTS_TYPE_LOOP_PREPARE
| OPTS_TYPE_AUX1
| OPTS_TYPE_AUX2
| OPTS_TYPE_DEEP_COMP_KERNEL;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "$gpg$*1*348*1024*8833fa3812b5500aa9eb7e46febfa31a0584b7e4a5b13c198f5c9b0814243895cce45ac3714e79692fb5a130a1c943b9130315ce303cb7e6831be68ce427892858f313fc29f533434dbe0ef26573f2071bbcc1499dc49bda90648221ef3823757e2fba6099a18c0c83386b21d8c9b522ec935ecd540210dbf0f21c859429fd4d35fa056415d8087f27b3e66b16081ea18c544d8b2ea414484f17097bc83b773d92743f76eb2ccb4df8ba5f5ff84a5474a5e8a8e5179a5b0908503c55e428de04b40628325739874e1b4aa004c4cbdf09b0b620990a8479f1c9b4187e33e63fe48a565bc1264bbf4062559631bef9e346a7217f1cabe101a38ac4be9fa94f6dafe6b0301e67792ed51bca04140cddd5cb6e80ac6e95e9a09378c9651588fe360954b622c258a3897f11246c944a588822cc6daf1cb81ccc95098c3bea8432f1ee0c663b193a7c7f1cdfeb91eee0195296bf4783025655cbebd7c70236*3*254*2*7*16*a47ef38987beab0a0b9bfe74b72822e8*65536*1f5c90d9820997db";
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
u32 module_dgst_pos1 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS1; }
u32 module_dgst_pos2 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS2; }
u32 module_dgst_pos3 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS3; }
u32 module_dgst_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_SIZE; }
u32 module_hash_category (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_CATEGORY; }
const char *module_hash_name (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_NAME; }
u64 module_kern_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return KERN_TYPE; }
u32 module_opti_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTI_TYPE; }
u64 module_opts_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTS_TYPE; }
u32 module_salt_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return SALT_TYPE; }
const char *module_st_hash (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_HASH; }
const char *module_st_pass (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_PASS; }
typedef struct gpg
{
u32 cipher_algo;
u32 iv[4];
u32 modulus_size;
u32 encrypted_data[384];
u32 encrypted_data_size;
} gpg_t;
typedef struct gpg_tmp
{
u32 salted_pw_block[80];
u32 salted_pw_block_len;
u32 h[10];
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 len;
} gpg_tmp_t;
static const char *SIGNATURE_GPG = "$gpg$";
u64 module_esalt_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 esalt_size = (const u64) sizeof (gpg_t);
return esalt_size;
}
u64 module_tmp_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 tmp_size = (const u64) sizeof (gpg_tmp_t);
return tmp_size;
}
bool module_hlfmt_disable (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const bool hlfmt_disable = true;
return hlfmt_disable;
}
u32 module_kernel_loops_min (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u32 kernel_loops_min = 1024;
return kernel_loops_min;
}
u32 module_kernel_loops_max (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u32 kernel_loops_max = 65536;
return kernel_loops_max;
}
u32 module_deep_comp_kernel (MAYBE_UNUSED const hashes_t *hashes, MAYBE_UNUSED const u32 salt_pos, MAYBE_UNUSED const u32 digest_pos)
{
const u32 digests_offset = hashes->salts_buf[salt_pos].digests_offset;
gpg_t *gpgs = (gpg_t *) hashes->esalts_buf;
gpg_t *gpg = &gpgs[digests_offset + digest_pos];
if (gpg->cipher_algo == 7)
{
return KERN_RUN_AUX1;
}
else if (gpg->cipher_algo == 9)
{
return KERN_RUN_AUX2;
}
return 0;
}
int module_hash_decode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED void *digest_buf, MAYBE_UNUSED salt_t *salt, MAYBE_UNUSED void *esalt_buf, MAYBE_UNUSED void *hook_salt_buf, MAYBE_UNUSED hashinfo_t *hash_info, const char *line_buf, MAYBE_UNUSED const int line_len)
{
u32 *digest = (u32 *) digest_buf;
gpg_t *gpg = (gpg_t *) esalt_buf;
hc_token_t token;
memset (&token, 0, sizeof (hc_token_t));
token.token_cnt = 13;
// signature $gpg$
token.signatures_cnt = 1;
token.signatures_buf[0] = SIGNATURE_GPG;
// signature $gpg$
token.sep[0] = '*';
token.len[0] = 5;
token.attr[0] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_SIGNATURE;
// "1" -- unknown option
token.sep[1] = '*';
token.len[1] = 1;
token.attr[1] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// size of the encrypted data in bytes
token.sep[2] = '*';
token.len_min[2] = 3;
token.len_max[2] = 4;
token.attr[2] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// size of the key: 1024, 2048, 4096, etc.
token.sep[3] = '*';
token.len_min[3] = 3;
token.len_max[3] = 4;
token.attr[3] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// encrypted key -- twice the amount of byte because its interpreted as characters
token.sep[4] = '*';
token.len_min[4] = 256;
token.len_max[4] = 3072;
token.attr[4] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
// "3" - String2Key parameter
token.sep[5] = '*';
token.len[5] = 1;
token.attr[5] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// "254" - String2Key parameters
token.sep[6] = '*';
token.len[6] = 3;
token.attr[6] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// "2" - String2Key parameters
token.sep[7] = '*';
token.len[7] = 1;
token.attr[7] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// cipher mode: 7 or 9
token.sep[8] = '*';
token.len[8] = 1;
token.attr[8] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// size of initial vector in bytes: 16
token.sep[9] = '*';
token.len[9] = 2;
token.attr[9] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// initial vector - twice the amount of bytes because its interpreted as characters
token.sep[10] = '*';
token.len[10] = 32;
token.attr[10] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
// iteration count
token.sep[11] = '*';
token.len_min[11] = 1;
token.len_max[11] = 8;
token.attr[11] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// salt - 8 bytes / 16 characters
token.len[12] = 16;
token.attr[12] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
if (rc_tokenizer != PARSER_OK) return (rc_tokenizer);
// Modulus size
const int modulus_size = hc_strtoul ((const char *) token.buf[3], NULL, 10);
if ((modulus_size < 256) || (modulus_size > 16384)) return (PARSER_SALT_LENGTH);
gpg->modulus_size = modulus_size;
// Encrypted data
const int enc_data_size = hc_strtoul ((const char *) token.buf[2], NULL, 10);
const int encrypted_data_size = hex_decode ((const u8 *) token.buf[4], token.len[4], (u8 *) gpg->encrypted_data);
if (enc_data_size != encrypted_data_size) return (PARSER_CT_LENGTH);
gpg->encrypted_data_size = encrypted_data_size;
// Check String2Key parameters
if (hc_strtoul ((const char *) token.buf[5], NULL, 10) != 3) return (PARSER_HASH_VALUE);
if (hc_strtoul ((const char *) token.buf[6], NULL, 10) != 254) return (PARSER_HASH_VALUE);
if (hc_strtoul ((const char *) token.buf[7], NULL, 10) != 2) return (PARSER_HASH_VALUE);
// Cipher algo
const int cipher_algo = hc_strtoul ((const char *) token.buf[8], NULL, 10);
if ((cipher_algo != 7) && (cipher_algo != 9)) return (PARSER_CIPHER);
gpg->cipher_algo = cipher_algo;
// IV (size)
if (hc_strtoul ((const char *) token.buf[9], NULL, 10) != sizeof (gpg->iv)) return (PARSER_IV_LENGTH);
const int iv_size = hex_decode ((const u8 *) token.buf[10], token.len[10], (u8 *) gpg->iv);
if (iv_size != sizeof (gpg->iv)) return (PARSER_IV_LENGTH);
// Salt Iter
const u32 salt_iter = hc_strtoul ((const char *) token.buf[11], NULL, 10);
if (salt_iter < 8 || salt_iter > 65011712) return (PARSER_SALT_ITERATION);
salt->salt_iter = salt_iter;
// Salt Value
salt->salt_repeats = gpg->cipher_algo == 7 ? 0 : 1; // "minus one"
salt->salt_len = hex_decode ((const u8 *) token.buf[12], token.len[12], (u8 *) salt->salt_buf);
if (salt->salt_len != 8) return (PARSER_SALT_LENGTH);
// hash fake
digest[0] = gpg->iv[0];
digest[1] = gpg->iv[1];
digest[2] = gpg->iv[2];
digest[3] = gpg->iv[3];
return (PARSER_OK);
}
int module_hash_encode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t *salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t *hash_info, char *line_buf, MAYBE_UNUSED const int line_size)
{
const gpg_t *gpg = (const gpg_t *) esalt_buf;
u8 encrypted_data[(384 * 8) + 1];
hex_encode ((const u8 *) gpg->encrypted_data, gpg->encrypted_data_size, (u8 *) encrypted_data);
const int line_len = snprintf (line_buf, line_size, "%s*%d*%d*%d*%s*%d*%d*%d*%d*%d*%08x%08x%08x%08x*%d*%08x%08x",
SIGNATURE_GPG,
1, /* unknown field */
gpg->encrypted_data_size,
gpg->modulus_size,
encrypted_data,
3, /* version (major?) */
254, /* version (minor?) */
2, /* key cipher (sha-1) */
gpg->cipher_algo,
16, /*iv_size*/
byte_swap_32 (gpg->iv[0]),
byte_swap_32 (gpg->iv[1]),
byte_swap_32 (gpg->iv[2]),
byte_swap_32 (gpg->iv[3]),
salt->salt_iter,
byte_swap_32 (salt->salt_buf[0]),
byte_swap_32 (salt->salt_buf[1]));
return line_len;
}
void module_init (module_ctx_t *module_ctx)
{
module_ctx->module_context_size = MODULE_CONTEXT_SIZE_CURRENT;
module_ctx->module_interface_version = MODULE_INTERFACE_VERSION_CURRENT;
module_ctx->module_attack_exec = module_attack_exec;
module_ctx->module_benchmark_esalt = MODULE_DEFAULT;
module_ctx->module_benchmark_hook_salt = MODULE_DEFAULT;
module_ctx->module_benchmark_mask = MODULE_DEFAULT;
module_ctx->module_benchmark_charset = MODULE_DEFAULT;
module_ctx->module_benchmark_salt = MODULE_DEFAULT;
module_ctx->module_build_plain_postprocess = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = module_deep_comp_kernel;
module_ctx->module_deprecated_notice = MODULE_DEFAULT;
module_ctx->module_dgst_pos0 = module_dgst_pos0;
module_ctx->module_dgst_pos1 = module_dgst_pos1;
module_ctx->module_dgst_pos2 = module_dgst_pos2;
module_ctx->module_dgst_pos3 = module_dgst_pos3;
module_ctx->module_dgst_size = module_dgst_size;
module_ctx->module_dictstat_disable = MODULE_DEFAULT;
module_ctx->module_esalt_size = module_esalt_size;
module_ctx->module_extra_buffer_size = MODULE_DEFAULT;
module_ctx->module_extra_tmp_size = MODULE_DEFAULT;
module_ctx->module_extra_tuningdb_block = MODULE_DEFAULT;
module_ctx->module_forced_outfile_format = MODULE_DEFAULT;
module_ctx->module_hash_binary_count = MODULE_DEFAULT;
module_ctx->module_hash_binary_parse = MODULE_DEFAULT;
module_ctx->module_hash_binary_save = MODULE_DEFAULT;
module_ctx->module_hash_decode_postprocess = MODULE_DEFAULT;
module_ctx->module_hash_decode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_decode_zero_hash = MODULE_DEFAULT;
module_ctx->module_hash_decode = module_hash_decode;
module_ctx->module_hash_encode_status = MODULE_DEFAULT;
module_ctx->module_hash_encode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_encode = module_hash_encode;
module_ctx->module_hash_init_selftest = MODULE_DEFAULT;
module_ctx->module_hash_mode = MODULE_DEFAULT;
module_ctx->module_hash_category = module_hash_category;
module_ctx->module_hash_name = module_hash_name;
module_ctx->module_hashes_count_min = MODULE_DEFAULT;
module_ctx->module_hashes_count_max = MODULE_DEFAULT;
module_ctx->module_hlfmt_disable = module_hlfmt_disable;
module_ctx->module_hook_extra_param_size = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_init = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_term = MODULE_DEFAULT;
module_ctx->module_hook12 = MODULE_DEFAULT;
module_ctx->module_hook23 = MODULE_DEFAULT;
module_ctx->module_hook_salt_size = MODULE_DEFAULT;
module_ctx->module_hook_size = MODULE_DEFAULT;
module_ctx->module_jit_build_options = MODULE_DEFAULT;
module_ctx->module_jit_cache_disable = MODULE_DEFAULT;
module_ctx->module_kernel_accel_max = MODULE_DEFAULT;
module_ctx->module_kernel_accel_min = MODULE_DEFAULT;
module_ctx->module_kernel_loops_max = module_kernel_loops_max;
module_ctx->module_kernel_loops_min = module_kernel_loops_min;
module_ctx->module_kernel_threads_max = MODULE_DEFAULT;
module_ctx->module_kernel_threads_min = MODULE_DEFAULT;
module_ctx->module_kern_type = module_kern_type;
module_ctx->module_kern_type_dynamic = MODULE_DEFAULT;
module_ctx->module_opti_type = module_opti_type;
module_ctx->module_opts_type = module_opts_type;
module_ctx->module_outfile_check_disable = MODULE_DEFAULT;
module_ctx->module_outfile_check_nocomp = MODULE_DEFAULT;
module_ctx->module_potfile_custom_check = MODULE_DEFAULT;
module_ctx->module_potfile_disable = MODULE_DEFAULT;
module_ctx->module_potfile_keep_all_hashes = MODULE_DEFAULT;
module_ctx->module_pwdump_column = MODULE_DEFAULT;
module_ctx->module_pw_max = MODULE_DEFAULT;
module_ctx->module_pw_min = MODULE_DEFAULT;
module_ctx->module_salt_max = MODULE_DEFAULT;
module_ctx->module_salt_min = MODULE_DEFAULT;
module_ctx->module_salt_type = module_salt_type;
module_ctx->module_separator = MODULE_DEFAULT;
module_ctx->module_st_hash = module_st_hash;
module_ctx->module_st_pass = module_st_pass;
module_ctx->module_tmp_size = module_tmp_size;
module_ctx->module_unstable_warning = MODULE_DEFAULT;
module_ctx->module_warmup_disable = MODULE_DEFAULT;
}