Merge pull request #3645 from YSaxon/31400-securecrt

SecureCRT master passphrase v2 module
pull/3647/head
Jens Steube 1 year ago committed by GitHub
commit d820cfa48e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,311 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.h)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_rp.h)
#include M2S(INCLUDE_PATH/inc_rp.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.h)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
DECLSPEC void shift_buffer_by_offset (PRIVATE_AS u32 *w0, const u32 offset)
{
const int offset_switch = offset / 4;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
switch (offset_switch)
{
case 0:
w0[3] = hc_bytealign_be_S (w0[2], w0[3], offset);
w0[2] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[1] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[0] = hc_bytealign_be_S ( 0, w0[0], offset);
break;
case 1:
w0[3] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[2] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[1] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[0] = 0;
break;
case 2:
w0[3] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[2] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S (0x0706050403020100UL >> ((offset & 3) * 8));
#endif
switch (offset_switch)
{
case 0:
w0[3] = hc_byte_perm_S (w0[3], w0[2], selector);
w0[2] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[1] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[0] = hc_byte_perm_S (w0[0], 0, selector);
break;
case 1:
w0[3] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[2] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[1] = hc_byte_perm_S (w0[0], 0, selector);
w0[0] = 0;
break;
case 2:
w0[3] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[2] = hc_byte_perm_S (w0[0], 0, selector);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_byte_perm_S (w0[0], 0, selector);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
}
DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const int pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
AES256_set_encrypt_key(aes_ks, hash, s_te0, s_te1, s_te2, s_te3);
shift_buffer_by_offset(hash,pw_len+4);
hash[0] = hc_swap32_S(pw_len);
hash[1] |= hc_swap32_S(pw[0]);
hash[2] |= hc_swap32_S(pw[1]);
hash[3] |= hc_swap32_S(pw[2]);
AES256_encrypt (aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4);
}
KERNEL_FQ void m31400_mxx (KERN_ATTR_RULES ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* base
*/
COPY_PW (pws[gid]);
/**
* loop
*/
u32 ks[60];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp.i, tmp.pw_len);
sha256_final (&ctx);
u32 out[4]={0};
aes256_scrt_format(ks,tmp.i,tmp.pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = out[DGST_R0];
const u32 r1 = out[DGST_R1];
const u32 r2 = out[DGST_R2];
const u32 r3 = out[DGST_R3];
COMPARE_M_SCALAR (r0, r1, r2, r3);
}
}
KERNEL_FQ void m31400_sxx (KERN_ATTR_RULES ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
};
/**
* base
*/
COPY_PW (pws[gid]);
u32 ks[60];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp.i, tmp.pw_len);
sha256_final (&ctx);
u32 out[4]={0};
aes256_scrt_format(ks,tmp.i,tmp.pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = out[DGST_R0];
const u32 r1 = out[DGST_R1];
const u32 r2 = out[DGST_R2];
const u32 r3 = out[DGST_R3];
COMPARE_S_SCALAR (r0, r1, r2, r3);
}
}

@ -0,0 +1,318 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.h)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_rp.h)
#include M2S(INCLUDE_PATH/inc_rp.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.h)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
DECLSPEC void shift_buffer_by_offset (PRIVATE_AS u32 *w0, const u32 offset)
{
const int offset_switch = offset / 4;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
switch (offset_switch)
{
case 0:
w0[3] = hc_bytealign_be_S (w0[2], w0[3], offset);
w0[2] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[1] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[0] = hc_bytealign_be_S ( 0, w0[0], offset);
break;
case 1:
w0[3] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[2] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[1] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[0] = 0;
break;
case 2:
w0[3] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[2] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S (0x0706050403020100UL >> ((offset & 3) * 8));
#endif
switch (offset_switch)
{
case 0:
w0[3] = hc_byte_perm_S (w0[3], w0[2], selector);
w0[2] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[1] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[0] = hc_byte_perm_S (w0[0], 0, selector);
break;
case 1:
w0[3] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[2] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[1] = hc_byte_perm_S (w0[0], 0, selector);
w0[0] = 0;
break;
case 2:
w0[3] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[2] = hc_byte_perm_S (w0[0], 0, selector);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_byte_perm_S (w0[0], 0, selector);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
}
DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const int pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
AES256_set_encrypt_key(aes_ks, hash, s_te0, s_te1, s_te2, s_te3);
shift_buffer_by_offset(hash,pw_len+4);
hash[0] = hc_swap32_S(pw_len);
hash[1] |= hc_swap32_S(pw[0]);
hash[2] |= hc_swap32_S(pw[1]);
hash[3] |= hc_swap32_S(pw[2]);
AES256_encrypt (aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4);
}
KERNEL_FQ void m31400_mxx (KERN_ATTR_BASIC ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* base
*/
sha256_ctx_t ctx0;
sha256_init (&ctx0);
sha256_update_global_swap (&ctx0, pws[gid].i, pws[gid].pw_len);
/**
* loop
*/
u32 ks[60];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
sha256_ctx_t ctx = ctx0;
sha256_update_global_swap (&ctx, combs_buf[il_pos].i, combs_buf[il_pos].pw_len);
u32 pw_candidate[3];
pw_candidate[0]= hc_swap32_S(ctx.w0[0]);
pw_candidate[1]= hc_swap32_S(ctx.w0[1]);
pw_candidate[2]= hc_swap32_S(ctx.w0[2]);
u32 pw_len=ctx.len;
sha256_final (&ctx);
u32 out[4]={0};
aes256_scrt_format(ks,pw_candidate,pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = out[DGST_R0];
const u32 r1 = out[DGST_R1];
const u32 r2 = out[DGST_R2];
const u32 r3 = out[DGST_R3];
COMPARE_M_SCALAR (r0, r1, r2, r3);
}
}
KERNEL_FQ void m31400_sxx (KERN_ATTR_BASIC ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
};
/**
* base
*/
sha256_ctx_t ctx0;
sha256_init (&ctx0);
sha256_update_global_swap (&ctx0, pws[gid].i, pws[gid].pw_len);
u32 ks[60];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
sha256_ctx_t ctx = ctx0;
sha256_update_global_swap (&ctx, combs_buf[il_pos].i, combs_buf[il_pos].pw_len);
u32 pw_candidate[3];
pw_candidate[0]=hc_swap32_S(ctx.w0[0]);
pw_candidate[1]=hc_swap32_S(ctx.w0[1]);
pw_candidate[2]=hc_swap32_S(ctx.w0[2]);
u32 pw_len=ctx.len;
sha256_final (&ctx);
u32 out[4]={0};
aes256_scrt_format(ks,pw_candidate,pw_len,ctx.h,out,s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = out[DGST_R0];
const u32 r1 = out[DGST_R1];
const u32 r2 = out[DGST_R2];
const u32 r3 = out[DGST_R3];
COMPARE_S_SCALAR (r0, r1, r2, r3);
}
}

@ -0,0 +1,661 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.h)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_rp.h)
#include M2S(INCLUDE_PATH/inc_rp.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.h)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
DECLSPEC void shift_buffer_by_offset(PRIVATE_AS u32 *w0, const u32 offset)
{
const int offset_switch = offset / 4;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
switch (offset_switch)
{
case 0:
w0[3] = hc_bytealign_be_S(w0[2], w0[3], offset);
w0[2] = hc_bytealign_be_S(w0[1], w0[2], offset);
w0[1] = hc_bytealign_be_S(w0[0], w0[1], offset);
w0[0] = hc_bytealign_be_S(0, w0[0], offset);
break;
case 1:
w0[3] = hc_bytealign_be_S(w0[1], w0[2], offset);
w0[2] = hc_bytealign_be_S(w0[0], w0[1], offset);
w0[1] = hc_bytealign_be_S(0, w0[0], offset);
w0[0] = 0;
break;
case 2:
w0[3] = hc_bytealign_be_S(w0[0], w0[1], offset);
w0[2] = hc_bytealign_be_S(0, w0[0], offset);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_bytealign_be_S(0, w0[0], offset);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S(0x0706050403020100UL >> ((offset & 3) * 8));
#endif
switch (offset_switch)
{
case 0:
w0[3] = hc_byte_perm_S(w0[3], w0[2], selector);
w0[2] = hc_byte_perm_S(w0[2], w0[1], selector);
w0[1] = hc_byte_perm_S(w0[1], w0[0], selector);
w0[0] = hc_byte_perm_S(w0[0], 0, selector);
break;
case 1:
w0[3] = hc_byte_perm_S(w0[2], w0[1], selector);
w0[2] = hc_byte_perm_S(w0[1], w0[0], selector);
w0[1] = hc_byte_perm_S(w0[0], 0, selector);
w0[0] = 0;
break;
case 2:
w0[3] = hc_byte_perm_S(w0[1], w0[0], selector);
w0[2] = hc_byte_perm_S(w0[0], 0, selector);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_byte_perm_S(w0[0], 0, selector);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
}
DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const u32 pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
AES256_set_encrypt_key(aes_ks, hash, s_te0, s_te1, s_te2, s_te3);
shift_buffer_by_offset(hash, pw_len + 4);
hash[0] = hc_swap32_S(pw_len);
hash[1] |= hc_swap32_S(pw[0]);
hash[2] |= hc_swap32_S(pw[1]);
hash[3] |= hc_swap32_S(pw[2]);
AES256_encrypt(aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4);
}
DECLSPEC void aes256_scrt_format_VV(PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32x *w, const u32 pw_len, PRIVATE_AS u32x *hash, PRIVATE_AS u32x *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
#if VECT_SIZE == 1
aes256_scrt_format(aes_ks, w, pw_len, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4);
#endif
#if VECT_SIZE >= 2
u32 tmp_w[4];
u32 tmp_hash[4];
u32 tmp_out[4];
//s0
tmp_w[0] = w[0].s0;
tmp_w[1] = w[1].s0;
tmp_w[2] = w[2].s0;
tmp_w[3] = w[3].s0;
tmp_hash[0] = hash[0].s0;
tmp_hash[1] = hash[1].s0;
tmp_hash[2] = hash[2].s0;
tmp_hash[3] = hash[3].s0;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s0 = tmp_out[0];
out[1].s0 = tmp_out[1];
out[2].s0 = tmp_out[2];
out[3].s0 = tmp_out[3];
//s1
tmp_w[0] = w[0].s1;
tmp_w[1] = w[1].s1;
tmp_w[2] = w[2].s1;
tmp_w[3] = w[3].s1;
tmp_hash[0] = hash[0].s1;
tmp_hash[1] = hash[1].s1;
tmp_hash[2] = hash[2].s1;
tmp_hash[3] = hash[3].s1;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s1 = tmp_out[0];
out[1].s1 = tmp_out[1];
out[2].s1 = tmp_out[2];
out[3].s1 = tmp_out[3];
#endif
#if VECT_SIZE >= 4
//s2
tmp_w[0] = w[0].s2;
tmp_w[1] = w[1].s2;
tmp_w[2] = w[2].s2;
tmp_w[3] = w[3].s2;
tmp_hash[0] = hash[0].s2;
tmp_hash[1] = hash[1].s2;
tmp_hash[2] = hash[2].s2;
tmp_hash[3] = hash[3].s2;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s2 = tmp_out[0];
out[1].s2 = tmp_out[1];
out[2].s2 = tmp_out[2];
out[3].s2 = tmp_out[3];
//s3
tmp_w[0] = w[0].s3;
tmp_w[1] = w[1].s3;
tmp_w[2] = w[2].s3;
tmp_w[3] = w[3].s3;
tmp_hash[0] = hash[0].s3;
tmp_hash[1] = hash[1].s3;
tmp_hash[2] = hash[2].s3;
tmp_hash[3] = hash[3].s3;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s3 = tmp_out[0];
out[1].s3 = tmp_out[1];
out[2].s3 = tmp_out[2];
out[3].s3 = tmp_out[3];
#endif
#if VECT_SIZE >= 8
//s4
tmp_w[0] = w[0].s4;
tmp_w[1] = w[1].s4;
tmp_w[2] = w[2].s4;
tmp_w[3] = w[3].s4;
tmp_hash[0] = hash[0].s4;
tmp_hash[1] = hash[1].s4;
tmp_hash[2] = hash[2].s4;
tmp_hash[3] = hash[3].s4;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s4 = tmp_out[0];
out[1].s4 = tmp_out[1];
out[2].s4 = tmp_out[2];
out[3].s4 = tmp_out[3];
//s5
tmp_w[0] = w[0].s5;
tmp_w[1] = w[1].s5;
tmp_w[2] = w[2].s5;
tmp_w[3] = w[3].s5;
tmp_hash[0] = hash[0].s5;
tmp_hash[1] = hash[1].s5;
tmp_hash[2] = hash[2].s5;
tmp_hash[3] = hash[3].s5;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s5 = tmp_out[0];
out[1].s5 = tmp_out[1];
out[2].s5 = tmp_out[2];
out[3].s5 = tmp_out[3];
//s6
tmp_w[0] = w[0].s6;
tmp_w[1] = w[1].s6;
tmp_w[2] = w[2].s6;
tmp_w[3] = w[3].s6;
tmp_hash[0] = hash[0].s6;
tmp_hash[1] = hash[1].s6;
tmp_hash[2] = hash[2].s6;
tmp_hash[3] = hash[3].s6;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s6 = tmp_out[0];
out[1].s6 = tmp_out[1];
out[2].s6 = tmp_out[2];
out[3].s6 = tmp_out[3];
//s7
tmp_w[0] = w[0].s7;
tmp_w[1] = w[1].s7;
tmp_w[2] = w[2].s7;
tmp_w[3] = w[3].s7;
tmp_hash[0] = hash[0].s7;
tmp_hash[1] = hash[1].s7;
tmp_hash[2] = hash[2].s7;
tmp_hash[3] = hash[3].s7;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s7 = tmp_out[0];
out[1].s7 = tmp_out[1];
out[2].s7 = tmp_out[2];
out[3].s7 = tmp_out[3];
#endif
#if VECT_SIZE >= 16
//s8
tmp_w[0] = w[0].s8;
tmp_w[1] = w[1].s8;
tmp_w[2] = w[2].s8;
tmp_w[3] = w[3].s8;
tmp_hash[0] = hash[0].s8;
tmp_hash[1] = hash[1].s8;
tmp_hash[2] = hash[2].s8;
tmp_hash[3] = hash[3].s8;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s8 = tmp_out[0];
out[1].s8 = tmp_out[1];
out[2].s8 = tmp_out[2];
out[3].s8 = tmp_out[3];
//s9
tmp_w[0] = w[0].s9;
tmp_w[1] = w[1].s9;
tmp_w[2] = w[2].s9;
tmp_w[3] = w[3].s9;
tmp_hash[0] = hash[0].s9;
tmp_hash[1] = hash[1].s9;
tmp_hash[2] = hash[2].s9;
tmp_hash[3] = hash[3].s9;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].s9 = tmp_out[0];
out[1].s9 = tmp_out[1];
out[2].s9 = tmp_out[2];
out[3].s9 = tmp_out[3];
//s10
tmp_w[0] = w[0].sa;
tmp_w[1] = w[1].sa;
tmp_w[2] = w[2].sa;
tmp_w[3] = w[3].sa;
tmp_hash[0] = hash[0].sa;
tmp_hash[1] = hash[1].sa;
tmp_hash[2] = hash[2].sa;
tmp_hash[3] = hash[3].sa;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].sa = tmp_out[0];
out[1].sa = tmp_out[1];
out[2].sa = tmp_out[2];
out[3].sa = tmp_out[3];
//s11
tmp_w[0] = w[0].sb;
tmp_w[1] = w[1].sb;
tmp_w[2] = w[2].sb;
tmp_w[3] = w[3].sb;
tmp_hash[0] = hash[0].sb;
tmp_hash[1] = hash[1].sb;
tmp_hash[2] = hash[2].sb;
tmp_hash[3] = hash[3].sb;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].sb = tmp_out[0];
out[1].sb = tmp_out[1];
out[2].sb = tmp_out[2];
out[3].sb = tmp_out[3];
//s12
tmp_w[0] = w[0].sc;
tmp_w[1] = w[1].sc;
tmp_w[2] = w[2].sc;
tmp_w[3] = w[3].sc;
tmp_hash[0] = hash[0].sc;
tmp_hash[1] = hash[1].sc;
tmp_hash[2] = hash[2].sc;
tmp_hash[3] = hash[3].sc;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].sc = tmp_out[0];
out[1].sc = tmp_out[1];
out[2].sc = tmp_out[2];
out[3].sc = tmp_out[3];
//s13
tmp_w[0] = w[0].sd;
tmp_w[1] = w[1].sd;
tmp_w[2] = w[2].sd;
tmp_w[3] = w[3].sd;
tmp_hash[0] = hash[0].sd;
tmp_hash[1] = hash[1].sd;
tmp_hash[2] = hash[2].sd;
tmp_hash[3] = hash[3].sd;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].sd = tmp_out[0];
out[1].sd = tmp_out[1];
out[2].sd = tmp_out[2];
out[3].sd = tmp_out[3];
//s14
tmp_w[0] = w[0].se;
tmp_w[1] = w[1].se;
tmp_w[2] = w[2].se;
tmp_w[3] = w[3].se;
tmp_hash[0] = hash[0].se;
tmp_hash[1] = hash[1].se;
tmp_hash[2] = hash[2].se;
tmp_hash[3] = hash[3].se;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].se = tmp_out[0];
out[1].se = tmp_out[1];
out[2].se = tmp_out[2];
out[3].se = tmp_out[3];
//s15
tmp_w[0] = w[0].sf;
tmp_w[1] = w[1].sf;
tmp_w[2] = w[2].sf;
tmp_w[3] = w[3].sf;
tmp_hash[0] = hash[0].sf;
tmp_hash[1] = hash[1].sf;
tmp_hash[2] = hash[2].sf;
tmp_hash[3] = hash[3].sf;
aes256_scrt_format(aes_ks, tmp_w, pw_len, tmp_hash, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
out[0].sf = tmp_out[0];
out[1].sf = tmp_out[1];
out[2].sf = tmp_out[2];
out[3].sf = tmp_out[3];
#endif
}
KERNEL_FQ void m31400_mxx(KERN_ATTR_VECTOR())
{
/**
* modifier
*/
const u64 lid = get_local_id(0);
const u64 gid = get_global_id(0);
const u64 lsz = get_local_size(0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT)
return;
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = {0};
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
u32 aes_ks[60];
/**
* loop
*/
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha256_ctx_vector_t ctx;
sha256_init_vector(&ctx);
sha256_update_vector_swap(&ctx, w, pw_len);
sha256_final_vector(&ctx);
u32x out[4] = {0};
aes256_scrt_format_VV(aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32x r0 = out[DGST_R0];
const u32x r1 = out[DGST_R1];
const u32x r2 = out[DGST_R2];
const u32x r3 = out[DGST_R3];
COMPARE_M_SIMD(r0, r1, r2, r3);
}
}
KERNEL_FQ void m31400_sxx(KERN_ATTR_VECTOR())
{
/**
* modifier
*/
const u64 lid = get_local_id(0);
const u64 gid = get_global_id(0);
const u64 lsz = get_local_size(0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT)
return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]};
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = {0};
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
u32 aes_ks[60];
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha256_ctx_vector_t ctx;
sha256_init_vector(&ctx);
sha256_update_vector_swap(&ctx, w, pw_len);
sha256_final_vector(&ctx);
u32x out[4] = {0};
aes256_scrt_format_VV(aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32x r0 = out[DGST_R0];
const u32x r1 = out[DGST_R1];
const u32x r2 = out[DGST_R2];
const u32x r3 = out[DGST_R3];
COMPARE_S_SIMD(r0, r1, r2, r3);
}
}

@ -0,0 +1,181 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*
* Note that this module is intended to crack only the master passphrase of a SecureCRT config stored in the 2: format (versions < 9.3)
* See https://github.com/HyperSine/how-does-SecureCRT-encrypt-password for decrypting passwords after you've cracked the master passphrase (or if there is no master passphrase)
*/
#include "common.h"
#include "types.h"
#include "modules.h"
#include "bitops.h"
#include "convert.h"
#include "shared.h"
static const u32 ATTACK_EXEC = ATTACK_EXEC_INSIDE_KERNEL;
static const u32 DGST_POS0 = 0;
static const u32 DGST_POS1 = 1;
static const u32 DGST_POS2 = 2;
static const u32 DGST_POS3 = 3;
static const u32 DGST_SIZE = DGST_SIZE_4_8;
static const u32 HASH_CATEGORY = HASH_CATEGORY_RAW_HASH;
static const char *HASH_NAME = "SecureCRT MasterPassphrase v2";
static const u64 KERN_TYPE = 31400;
static const u32 OPTI_TYPE = OPTI_TYPE_ZERO_BYTE
| OPTI_TYPE_PRECOMPUTE_INIT
| OPTI_TYPE_EARLY_SKIP
| OPTI_TYPE_NOT_ITERATED
| OPTI_TYPE_NOT_SALTED
| OPTI_TYPE_RAW_HASH;
static const u64 OPTS_TYPE = OPTS_TYPE_STOCK_MODULE
| OPTS_TYPE_HASH_COPY
| OPTS_TYPE_PT_ADD80
| OPTS_TYPE_PT_ADDBITS15;
static const u32 SALT_TYPE = SALT_TYPE_NONE;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "S:\"Config Passphrase\"=02:ded7137400e0a1004a12f1708453968ccc270908ba02ab0345c83690d1de3d9937587be66ad2a7fe8cc6cb16ecff02e61ac05e09d4f49f284efd24f6b16d6ae3";
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
u32 module_dgst_pos1 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS1; }
u32 module_dgst_pos2 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS2; }
u32 module_dgst_pos3 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS3; }
u32 module_dgst_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_SIZE; }
u32 module_hash_category (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_CATEGORY; }
const char *module_hash_name (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_NAME; }
u64 module_kern_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return KERN_TYPE; }
u32 module_opti_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTI_TYPE; }
u64 module_opts_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTS_TYPE; }
u32 module_salt_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return SALT_TYPE; }
const char *module_st_hash (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_HASH; }
const char *module_st_pass (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_PASS; }
int module_hash_decode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED void *digest_buf, MAYBE_UNUSED salt_t *salt, MAYBE_UNUSED void *esalt_buf, MAYBE_UNUSED void *hook_salt_buf, MAYBE_UNUSED hashinfo_t *hash_info, const char *line_buf, MAYBE_UNUSED const int line_len)
{
static const char *CONFIGPASSPHRASEV2_SIGNATURE = "S:\"Config Passphrase\"=02:"; //The whole line is part of the format to prevent confusion with other similiar tokens also prefixed with 02: in the config files
static const char *CONFIGPASSPHRASEV2_SIGNATURE_UNDERSCORE = "S:_Config_Passphrase_=02:"; //double quotes char messes up testing so we're also allowing underscore instead
u32 *digest = (u32 *) digest_buf;
hc_token_t token;
token.token_cnt = 2;
token.signatures_cnt = 2;
token.signatures_buf[0] = CONFIGPASSPHRASEV2_SIGNATURE;
token.signatures_buf[1] = CONFIGPASSPHRASEV2_SIGNATURE_UNDERSCORE;
token.len[0] = 25;
token.attr[0] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_SIGNATURE;
token.len_min[1] = 96;
token.len_max[1] = 160;
token.attr[1] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
if (rc_tokenizer != PARSER_OK) return (rc_tokenizer);
const u8 *hash_pos = token.buf[1];
digest[0] = hex_to_u32 (hash_pos + 0);
digest[1] = hex_to_u32 (hash_pos + 8);
digest[2] = hex_to_u32 (hash_pos + 16);
digest[3] = hex_to_u32 (hash_pos + 24);
digest[0] = byte_swap_32 (digest[0]);
digest[1] = byte_swap_32 (digest[1]);
digest[2] = byte_swap_32 (digest[2]);
digest[3] = byte_swap_32 (digest[3]);
return (PARSER_OK);
}
int module_hash_encode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t *salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t *hash_info, char *line_buf, MAYBE_UNUSED const int line_size)
{
const int line_len = snprintf (line_buf, line_size, "%s", hash_info->orighash);
return line_len;
}
void module_init (module_ctx_t *module_ctx)
{
module_ctx->module_context_size = MODULE_CONTEXT_SIZE_CURRENT;
module_ctx->module_interface_version = MODULE_INTERFACE_VERSION_CURRENT;
module_ctx->module_attack_exec = module_attack_exec;
module_ctx->module_benchmark_esalt = MODULE_DEFAULT;
module_ctx->module_benchmark_hook_salt = MODULE_DEFAULT;
module_ctx->module_benchmark_mask = MODULE_DEFAULT;
module_ctx->module_benchmark_charset = MODULE_DEFAULT;
module_ctx->module_benchmark_salt = MODULE_DEFAULT;
module_ctx->module_build_plain_postprocess = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = MODULE_DEFAULT;
module_ctx->module_deprecated_notice = MODULE_DEFAULT;
module_ctx->module_dgst_pos0 = module_dgst_pos0;
module_ctx->module_dgst_pos1 = module_dgst_pos1;
module_ctx->module_dgst_pos2 = module_dgst_pos2;
module_ctx->module_dgst_pos3 = module_dgst_pos3;
module_ctx->module_dgst_size = module_dgst_size;
module_ctx->module_dictstat_disable = MODULE_DEFAULT;
module_ctx->module_esalt_size = MODULE_DEFAULT;
module_ctx->module_extra_buffer_size = MODULE_DEFAULT;
module_ctx->module_extra_tmp_size = MODULE_DEFAULT;
module_ctx->module_extra_tuningdb_block = MODULE_DEFAULT;
module_ctx->module_forced_outfile_format = MODULE_DEFAULT;
module_ctx->module_hash_binary_count = MODULE_DEFAULT;
module_ctx->module_hash_binary_parse = MODULE_DEFAULT;
module_ctx->module_hash_binary_save = MODULE_DEFAULT;
module_ctx->module_hash_decode_postprocess = MODULE_DEFAULT;
module_ctx->module_hash_decode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_decode_zero_hash = MODULE_DEFAULT;
module_ctx->module_hash_decode = module_hash_decode;
module_ctx->module_hash_encode_status = MODULE_DEFAULT;
module_ctx->module_hash_encode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_encode = module_hash_encode;
module_ctx->module_hash_init_selftest = MODULE_DEFAULT;
module_ctx->module_hash_mode = MODULE_DEFAULT;
module_ctx->module_hash_category = module_hash_category;
module_ctx->module_hash_name = module_hash_name;
module_ctx->module_hashes_count_min = MODULE_DEFAULT;
module_ctx->module_hashes_count_max = MODULE_DEFAULT;
module_ctx->module_hlfmt_disable = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_size = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_init = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_term = MODULE_DEFAULT;
module_ctx->module_hook12 = MODULE_DEFAULT;
module_ctx->module_hook23 = MODULE_DEFAULT;
module_ctx->module_hook_salt_size = MODULE_DEFAULT;
module_ctx->module_hook_size = MODULE_DEFAULT;
module_ctx->module_jit_build_options = MODULE_DEFAULT;
module_ctx->module_jit_cache_disable = MODULE_DEFAULT;
module_ctx->module_kernel_accel_max = MODULE_DEFAULT;
module_ctx->module_kernel_accel_min = MODULE_DEFAULT;
module_ctx->module_kernel_loops_max = MODULE_DEFAULT;
module_ctx->module_kernel_loops_min = MODULE_DEFAULT;
module_ctx->module_kernel_threads_max = MODULE_DEFAULT;
module_ctx->module_kernel_threads_min = MODULE_DEFAULT;
module_ctx->module_kern_type = module_kern_type;
module_ctx->module_kern_type_dynamic = MODULE_DEFAULT;
module_ctx->module_opti_type = module_opti_type;
module_ctx->module_opts_type = module_opts_type;
module_ctx->module_outfile_check_disable = MODULE_DEFAULT;
module_ctx->module_outfile_check_nocomp = MODULE_DEFAULT;
module_ctx->module_potfile_custom_check = MODULE_DEFAULT;
module_ctx->module_potfile_disable = MODULE_DEFAULT;
module_ctx->module_potfile_keep_all_hashes = MODULE_DEFAULT;
module_ctx->module_pwdump_column = MODULE_DEFAULT;
module_ctx->module_pw_max = MODULE_DEFAULT;
module_ctx->module_pw_min = MODULE_DEFAULT;
module_ctx->module_salt_max = MODULE_DEFAULT;
module_ctx->module_salt_min = MODULE_DEFAULT;
module_ctx->module_salt_type = module_salt_type;
module_ctx->module_separator = MODULE_DEFAULT;
module_ctx->module_st_hash = module_st_hash;
module_ctx->module_st_pass = module_st_pass;
module_ctx->module_tmp_size = MODULE_DEFAULT;
module_ctx->module_unstable_warning = MODULE_DEFAULT;
module_ctx->module_warmup_disable = MODULE_DEFAULT;
}

@ -0,0 +1,101 @@
#!/usr/bin/env perl
##
## Author......: See docs/credits.txt
## License.....: MIT
##
use strict;
use warnings;
use Digest::SHA qw (sha256_hex);
use Crypt::CBC;
sub module_constraints { [[0, 256], [-1, -1], [0, 55], [-1, -1], [-1, -1]] }
sub calculate_padding
{
my $length = shift;
my $blocksize = shift // 32;
my $minpadding = shift // 16;
my $padded_len=$length+$minpadding;
my $finalpadded=( ( $padded_len - 1 ) | ( $blocksize - 1 ) ) + 1;
return $finalpadded - $length;
}
sub module_generate_hash
{
my $word = shift;
my $total_len = (length($word)*2) + 8 + 64;
my $padding = shift // random_hex_string (calculate_padding($total_len));
if (length $padding == 0){
$padding=random_hex_string (calculate_padding($total_len));
}
my $digest = sha256_hex ($word);
my $len = sprintf("%02d",length($word));
my $paddedlen = sprintf("%02x000000", $len);
my $hexofword=unpack "H*",$word;
my $plaintext = $paddedlen . $hexofword . $digest . $padding;
my $aes = Crypt::CBC->new ({
key => pack ("H*", $digest),
cipher => "Crypt::Rijndael",
iv => => "\x00" x 16,
literal_key => 1,
header => "none",
keysize => 32,
padding => "none",
});
my $ciphertext=$aes->encrypt(pack("H*",$plaintext));
my $hash = sprintf("S:_Config_Passphrase_=02:%s",unpack ("H*",$ciphertext));
return $hash
}
sub get_aes
{
my $word_packed=shift;
my $key = sha256_hex ($word_packed);
my $aes = Crypt::CBC->new ({
key => pack ("H*", $key),
cipher => "Crypt::Rijndael",
iv => => "\x00" x 16,
literal_key => 1,
header => "none",
keysize => 32,
padding => "none",
});
return $aes
}
sub module_verify_hash
{
my $line = shift;
my ($hash, $word) = $line=~ /S:.Config.Passphrase.=02:(.*):(.*)/;
return unless defined $hash;
return unless defined $word;
my $word_packed = pack_if_HEX_notation ($word);
my $decrypted = get_aes($word_packed)->decrypt(pack"H*", $hash);
my $plaintext_hex=unpack "H*",$decrypted;
my $passlen=hex(substr($plaintext_hex,0,2));
my $padding = substr($plaintext_hex,8+2*$passlen+64);
my $new_hash = module_generate_hash ($word_packed,$padding);
return ($new_hash, $word);
}
1;
Loading…
Cancel
Save