1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-03-06 18:16:12 +00:00

Added support for multiple TOTP codes

This commit is contained in:
sc00bz 2025-02-03 10:35:05 -06:00
parent 6716447dfc
commit ab77b8f5ba
4 changed files with 953 additions and 446 deletions

View File

@ -16,6 +16,47 @@
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#endif
DECLSPEC void _totp_calculate (PRIVATE_AS u32 *code, PRIVATE_AS const u32 *w, const u32 pw_len, PRIVATE_AS const u32 *s, const u32 salt_len)
{
sha1_hmac_ctx_t ctx;
sha1_hmac_init_swap (&ctx, w, pw_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
}
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
*code = otp_code % 1000000;
}
KERNEL_FQ void m18100_mxx (KERN_ATTR_RULES ())
{
/**
@ -33,63 +74,85 @@ KERNEL_FQ void m18100_mxx (KERN_ATTR_RULES ())
COPY_PW (pws[gid]);
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32 s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
if (count == 1)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
sha1_hmac_ctx_t ctx;
sha1_hmac_init_swap (&ctx, tmp.i, tmp.pw_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s, 8);
COMPARE_M_SCALAR (otp_code0, 0, 0, 0);
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
COMPARE_M_SCALAR (otp_code, 0, 0, 0);
u32 otp_code0, otp_code1;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s + 0, 8);
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, 0, 0);
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s + 0, 8);
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
_totp_calculate (&otp_code2, tmp.i, tmp.pw_len, s + 32, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, otp_code2, 0);
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s + 0, 8);
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
_totp_calculate (&otp_code2, tmp.i, tmp.pw_len, s + 32, 8);
_totp_calculate (&otp_code3, tmp.i, tmp.pw_len, s + 48, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
@ -122,62 +185,108 @@ KERNEL_FQ void m18100_sxx (KERN_ATTR_RULES ())
COPY_PW (pws[gid]);
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32 s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
if (count == 1)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
sha1_hmac_ctx_t ctx;
sha1_hmac_init_swap (&ctx, tmp.i, tmp.pw_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s, 8);
COMPARE_S_SCALAR (otp_code0, 0, 0, 0);
}
}
else if (count == 2)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
COMPARE_S_SCALAR (otp_code, 0, 0, 0);
u32 otp_code0, otp_code1;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, 0, 0);
}
}
}
else if (count == 3)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
if (otp_code1 == search[1])
{
_totp_calculate (&otp_code2, tmp.i, tmp.pw_len, s + 32, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, otp_code2, 0);
}
}
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
u32 otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, tmp.i, tmp.pw_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, tmp.i, tmp.pw_len, s + 16, 8);
if (otp_code1 == search[1])
{
_totp_calculate (&otp_code2, tmp.i, tmp.pw_len, s + 32, 8);
if (otp_code2 == search[2])
{
_totp_calculate (&otp_code3, tmp.i, tmp.pw_len, s + 48, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
}
}
}

View File

@ -14,6 +14,47 @@
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#endif
DECLSPEC void _totp_calculate (PRIVATE_AS u32 *code, PRIVATE_AS const u32 *w, const u32 pw_len, PRIVATE_AS const u32 *s, const u32 salt_len)
{
sha1_hmac_ctx_t ctx;
sha1_hmac_init (&ctx, w, pw_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
}
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
*code = otp_code % 1000000;
}
KERNEL_FQ void m18100_mxx (KERN_ATTR_BASIC ())
{
/**
@ -38,81 +79,157 @@ KERNEL_FQ void m18100_mxx (KERN_ATTR_BASIC ())
w[idx] = hc_swap32_S (pws[gid].i[idx]);
}
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32 s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
if (count == 1)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s, 8);
COMPARE_M_SCALAR (otp_code0, 0, 0, 0);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
}
else if (count == 2)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
c[i] |= w[i];
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s + 0, 8);
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, 0, 0);
}
sha1_hmac_ctx_t ctx;
sha1_hmac_init (&ctx, c, pw_len + comb_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
}
else if (count == 3)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s + 0, 8);
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
_totp_calculate (&otp_code2, c, pw_len + comb_len, s + 32, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, otp_code2, 0);
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
u32 c[64];
COMPARE_M_SCALAR (otp_code, 0, 0, 0);
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s + 0, 8);
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
_totp_calculate (&otp_code2, c, pw_len + comb_len, s + 32, 8);
_totp_calculate (&otp_code3, c, pw_len + comb_len, s + 48, 8);
COMPARE_M_SCALAR (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
@ -152,80 +269,180 @@ KERNEL_FQ void m18100_sxx (KERN_ATTR_BASIC ())
w[idx] = hc_swap32_S (pws[gid].i[idx]);
}
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32 s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
if (count == 1)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s, 8);
COMPARE_S_SCALAR (otp_code0, 0, 0, 0);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
}
else if (count == 2)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
c[i] |= w[i];
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, 0, 0);
}
}
sha1_hmac_ctx_t ctx;
sha1_hmac_init (&ctx, c, pw_len + comb_len);
sha1_hmac_update (&ctx, s, salt_len);
sha1_hmac_final (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
}
else if (count == 3)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
if (otp_code1 == search[1])
{
_totp_calculate (&otp_code2, c, pw_len + comb_len, s + 32, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, otp_code2, 0);
}
}
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
u32 c[64];
COMPARE_S_SCALAR (otp_code, 0, 0, 0);
#ifdef _unroll
#pragma unroll
#endif
for (int idx = 0; idx < 64; idx++)
{
c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]);
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++)
{
c[i] |= w[i];
}
u32 otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, c, pw_len + comb_len, s, 8);
if (otp_code0 == search[0])
{
_totp_calculate (&otp_code1, c, pw_len + comb_len, s + 16, 8);
if (otp_code1 == search[1])
{
_totp_calculate (&otp_code2, c, pw_len + comb_len, s + 32, 8);
if (otp_code2 == search[2])
{
_totp_calculate (&otp_code3, c, pw_len + comb_len, s + 48, 8);
COMPARE_S_SCALAR (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
}
}
}

View File

@ -14,6 +14,47 @@
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#endif
DECLSPEC void _totp_calculate (PRIVATE_AS u32x *code, PRIVATE_AS const u32x *w, const u32 pw_len, PRIVATE_AS const u32x *s, const u32 salt_len)
{
sha1_hmac_ctx_vector_t ctx;
sha1_hmac_init_vector (&ctx, w, pw_len);
sha1_hmac_update_vector (&ctx, s, salt_len);
sha1_hmac_final_vector (&ctx);
// initialize a buffer for the otp code
u32x otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
}
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
*code = otp_code % 1000000;
}
KERNEL_FQ void m18100_mxx (KERN_ATTR_VECTOR ())
{
/**
@ -38,13 +79,14 @@ KERNEL_FQ void m18100_mxx (KERN_ATTR_VECTOR ())
w[idx] = pws[gid].i[idx];
}
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32x s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
@ -53,53 +95,79 @@ KERNEL_FQ void m18100_mxx (KERN_ATTR_VECTOR ())
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
if (count == 1)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha1_hmac_ctx_vector_t ctx;
sha1_hmac_init_vector (&ctx, w, pw_len);
sha1_hmac_update_vector (&ctx, s, salt_len);
sha1_hmac_final_vector (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0;
_totp_calculate (&otp_code0, w, pw_len, s, 8);
COMPARE_M_SIMD (otp_code0, 0, 0, 0);
}
}
else if (count == 2)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
// take only the lower 31 bits
otp_code &= 0x7fffffff;
const u32x w0 = w0l | w0r;
// we want to generate only 6 digits of code
otp_code %= 1000000;
w[0] = w0;
COMPARE_M_SIMD (otp_code, 0, 0, 0);
u32x otp_code0, otp_code1;
_totp_calculate (&otp_code0, w, pw_len, s + 0, 8);
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
COMPARE_M_SIMD (otp_code0, otp_code1, 0, 0);
}
}
else if (count == 3)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, w, pw_len, s + 0, 8);
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
_totp_calculate (&otp_code2, w, pw_len, s + 32, 8);
COMPARE_M_SIMD (otp_code0, otp_code1, otp_code2, 0);
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, w, pw_len, s + 0, 8);
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
_totp_calculate (&otp_code2, w, pw_len, s + 32, 8);
_totp_calculate (&otp_code3, w, pw_len, s + 48, 8);
COMPARE_M_SIMD (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
@ -139,13 +207,14 @@ KERNEL_FQ void m18100_sxx (KERN_ATTR_VECTOR ())
w[idx] = pws[gid].i[idx];
}
const u32 salt_len = 8;
const u32 count = salt_bufs[SALT_POS_HOST].salt_len / 16;
u32x s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
for (u32 i = 0; i < count; i += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
s[16 * i + 0] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 0]);
s[16 * i + 1] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[4 * i + 1]);
}
/**
@ -154,52 +223,102 @@ KERNEL_FQ void m18100_sxx (KERN_ATTR_VECTOR ())
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
if (count == 1)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha1_hmac_ctx_vector_t ctx;
sha1_hmac_init_vector (&ctx, w, pw_len);
sha1_hmac_update_vector (&ctx, s, salt_len);
sha1_hmac_final_vector (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0;
_totp_calculate (&otp_code0, w, pw_len, s, 8);
COMPARE_S_SIMD (otp_code0, 0, 0, 0);
}
}
else if (count == 2)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
// take only the lower 31 bits
otp_code &= 0x7fffffff;
const u32x w0 = w0l | w0r;
// we want to generate only 6 digits of code
otp_code %= 1000000;
w[0] = w0;
COMPARE_S_SIMD (otp_code, 0, 0, 0);
u32x otp_code0, otp_code1;
_totp_calculate (&otp_code0, w, pw_len, s, 8);
if (MATCHES_ONE_VS(otp_code0, search[0]))
{
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
COMPARE_S_SIMD (otp_code0, otp_code1, 0, 0);
}
}
}
else if (count == 3)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0, otp_code1, otp_code2;
_totp_calculate (&otp_code0, w, pw_len, s, 8);
if (MATCHES_ONE_VS(otp_code0, search[0]))
{
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
if (MATCHES_ONE_VS(otp_code1, search[1]))
{
_totp_calculate (&otp_code2, w, pw_len, s + 32, 8);
COMPARE_S_SIMD (otp_code0, otp_code1, otp_code2, 0);
}
}
}
}
else if (count == 4)
{
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x otp_code0, otp_code1, otp_code2, otp_code3;
_totp_calculate (&otp_code0, w, pw_len, s, 8);
if (MATCHES_ONE_VS(otp_code0, search[0]))
{
_totp_calculate (&otp_code1, w, pw_len, s + 16, 8);
if (MATCHES_ONE_VS(otp_code1, search[1]))
{
_totp_calculate (&otp_code2, w, pw_len, s + 32, 8);
if (MATCHES_ONE_VS(otp_code2, search[2]))
{
_totp_calculate (&otp_code3, w, pw_len, s + 48, 8);
COMPARE_S_SIMD (otp_code0, otp_code1, otp_code2, otp_code3);
}
}
}
}
}
}

View File

@ -29,7 +29,7 @@ static const u64 OPTS_TYPE = OPTS_TYPE_STOCK_MODULE
| OPTS_TYPE_SUGGEST_KG;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "597056:3600";
static const char *ST_HASH = "597056:3600:613004:1234567890:322664:9876543210";
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
@ -57,54 +57,92 @@ int module_hash_decode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSE
hc_token_t token;
memset (&token, 0, sizeof (hc_token_t));
token.token_cnt = 2;
token.sep[0] = hashconfig->separator;
token.len[0] = 6;
token.attr[0] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
token.len_min[1] = SALT_MIN;
token.len_max[1] = SALT_MAX;
token.attr[1] = TOKEN_ATTR_VERIFY_LENGTH;
if (hashconfig->opts_type & OPTS_TYPE_ST_HEX)
// 1 to 4 TOTP codes
// 597056:3600
// 597056:3600:613004:1234567890
// 597056:3600:613004:1234567890:322664:9876543210
// 597056:3600:613004:1234567890:322664:9876543210:068798:111222333
int count;
for (count = 8; count > 0; count -= 2)
{
token.len_min[1] *= 2;
token.len_max[1] *= 2;
memset (&token, 0, sizeof (hc_token_t));
token.attr[1] |= TOKEN_ATTR_VERIFY_DIGIT;
token.token_cnt = count;
for (int i = 0; i < count; i += 2)
{
token.sep[i + 0] = hashconfig->separator;
token.len[i + 0] = 6;
token.attr[i + 0] = TOKEN_ATTR_FIXED_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
// 0 to 18446744073709551616
token.sep[i + 1] = hashconfig->separator;
token.len_min[i + 1] = 1;
token.len_max[i + 1] = 20;
token.attr[i + 1] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
if (hashconfig->opts_type & OPTS_TYPE_ST_HEX)
{
token.len_min[i + 1] *= 2;
token.len_max[i + 1] *= 2;
token.attr[i + 1] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
}
}
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
if (rc_tokenizer == PARSER_OK) break;
// failed all tokenizers
if (count == 2) return (rc_tokenizer);
}
count /= 2;
for (int i = 0; i < count; i += 1)
{
// now we need to reduce our hash into a token
int otp_code = hc_strtoul ((const char *) token.buf[2 * i + 0], NULL, 10);
digest[i] = otp_code;
const u8 *salt_pos = token.buf[2 * i + 1];
// convert ascii timestamp to ulong timestamp
u64 timestamp = hc_strtoull ((const char *) salt_pos, NULL, 10);
// store the original salt value. Step division will destroy granularity for output
salt->salt_buf[4 * i + 3] = ((u32) (timestamp >> 0));
salt->salt_buf[4 * i + 2] = ((u32) (timestamp >> 32));
// divide our timestamp by our step. We will use the RFC 6238 default of 30 for now
timestamp /= 30;
// convert counter to 8-byte salt
salt->salt_buf[4 * i + 1] = byte_swap_32 ((u32) (timestamp >> 0));
salt->salt_buf[4 * i + 0] = byte_swap_32 ((u32) (timestamp >> 32));
}
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
// verify unique salts
for (int i = 0; i < count; i += 1)
{
u32 s0 = salt->salt_buf[4 * i + 0];
u32 s1 = salt->salt_buf[4 * i + 1];
if (rc_tokenizer != PARSER_OK) return (rc_tokenizer);
// now we need to reduce our hash into a token
int otp_code = hc_strtoul (line_buf, NULL, 10);
digest[0] = otp_code;
const u8 *salt_pos = token.buf[1];
// convert ascii timestamp to ulong timestamp
u64 timestamp = hc_strtoull ((const char *) salt_pos, NULL, 10);
// store the original salt value. Step division will destroy granularity for output
salt->salt_buf[3] = ((u32) (timestamp >> 0));
salt->salt_buf[2] = ((u32) (timestamp >> 32));
// divide our timestamp by our step. We will use the RFC 6238 default of 30 for now
timestamp /= 30;
// convert counter to 8-byte salt
salt->salt_buf[1] = byte_swap_32 ((u32) (timestamp >> 0));
salt->salt_buf[0] = byte_swap_32 ((u32) (timestamp >> 32));
for (int j = i + 1; j < count; j += 1)
{
if (salt->salt_buf[4 * j + 0] == s0 &&
salt->salt_buf[4 * j + 1] == s1)
{
return (PARSER_SALT_VALUE);
}
}
}
// our salt will always be 8 bytes, but we are going to cheat and store it twice, so...
salt->salt_len = 16;
salt->salt_len = 16 * count;
return (PARSER_OK);
}
@ -113,13 +151,37 @@ int module_hash_encode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSE
{
const u32 *digest = (const u32 *) digest_buf;
// salt_buf[1] holds our 32 bit value. salt_buf[0] and salt_buf[1] would be 64 bits.
// salt_buf[4 * i + 1] holds our 32 bit value. salt_buf[4 * i + 0] and salt_buf[4 * i + 1] would be 64 bits.
// we also need to multiply salt by our step to see the floor of our original timestamp range.
// again, we will use the default RFC 6238 step of 30.
const u64 tmp_salt_buf = (((u64) (salt->salt_buf[2])) << 32) | ((u64) (salt->salt_buf[3]));
int count = salt->salt_len / 16;
const int line_len = snprintf (line_buf, line_size, "%06d%c%" PRIu64, digest[0], hashconfig->separator, tmp_salt_buf);
// all but the last TOTP code
int i = 0, line_len = 0;
for (; i < count - 1; i += 1)
{
const u64 tmp_salt_buf = (((u64) (salt->salt_buf[4 * i + 2])) << 32) | ((u64) (salt->salt_buf[4 * i + 3]));
const int ret = snprintf (line_buf + line_len, line_size - line_len, "%06d%c%" PRIu64 "%c", digest[i], hashconfig->separator, tmp_salt_buf, hashconfig->separator);
line_len += ret;
// error
if (ret < 0)
{
return ret;
}
}
// the last TOTP code
const u64 tmp_salt_buf = (((u64) (salt->salt_buf[4 * i + 2])) << 32) | ((u64) (salt->salt_buf[4 * i + 3]));
const int ret = snprintf (line_buf + line_len, line_size - line_len, "%06d%c%" PRIu64, digest[i], hashconfig->separator, tmp_salt_buf);
line_len += ret;
// error
if (ret < 0)
{
return ret;
}
return line_len;
}