1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-22 21:51:07 +00:00

Ajout d'un jeu de tests

This commit is contained in:
Louka 2023-02-01 14:48:51 +01:00
parent 03e5260e3a
commit 8a6f920dac
3 changed files with 1030 additions and 0 deletions

View File

@ -0,0 +1,499 @@
123456
password
12345678
1234
pussy
12345
dragon
qwerty
696969
mustang
letmein
baseball
master
michael
football
shadow
monkey
abc123
pass
fuckme
6969
jordan
harley
ranger
iwantu
jennifer
hunter
fuck
2000
test
batman
trustno1
thomas
tigger
robert
access
love
buster
1234567
soccer
hockey
killer
george
sexy
andrew
charlie
superman
asshole
fuckyou
dallas
jessica
panties
pepper
1111
austin
william
daniel
golfer
summer
heather
hammer
yankees
joshua
maggie
biteme
enter
ashley
thunder
cowboy
silver
richard
fucker
orange
merlin
michelle
corvette
bigdog
cheese
matthew
121212
patrick
martin
freedom
ginger
blowjob
nicole
sparky
yellow
camaro
secret
dick
falcon
taylor
111111
131313
123123
bitch
hello
scooter
please
porsche
guitar
chelsea
black
diamond
nascar
jackson
cameron
654321
computer
amanda
wizard
xxxxxxxx
money
phoenix
mickey
bailey
knight
iceman
tigers
purple
andrea
horny
dakota
aaaaaa
player
sunshine
morgan
starwars
boomer
cowboys
edward
charles
girls
booboo
coffee
xxxxxx
bulldog
ncc1701
rabbit
peanut
john
johnny
gandalf
spanky
winter
brandy
compaq
carlos
tennis
james
mike
brandon
fender
anthony
blowme
ferrari
cookie
chicken
maverick
chicago
joseph
diablo
sexsex
hardcore
666666
willie
welcome
chris
panther
yamaha
justin
banana
driver
marine
angels
fishing
david
maddog
hooters
wilson
butthead
dennis
fucking
captain
bigdick
chester
smokey
xavier
steven
viking
snoopy
blue
eagles
winner
samantha
house
miller
flower
jack
firebird
butter
united
turtle
steelers
tiffany
zxcvbn
tomcat
golf
bond007
bear
tiger
doctor
gateway
gators
angel
junior
thx1138
porno
badboy
debbie
spider
melissa
booger
1212
flyers
fish
porn
matrix
teens
scooby
jason
walter
cumshot
boston
braves
yankee
lover
barney
victor
tucker
princess
mercedes
5150
doggie
zzzzzz
gunner
horney
bubba
2112
fred
johnson
xxxxx
tits
member
boobs
donald
bigdaddy
bronco
penis
voyager
rangers
birdie
trouble
white
topgun
bigtits
bitches
green
super
qazwsx
magic
lakers
rachel
slayer
scott
2222
asdf
video
london
7777
marlboro
srinivas
internet
action
carter
jasper
monster
teresa
jeremy
11111111
bill
crystal
peter
pussies
cock
beer
rocket
theman
oliver
prince
beach
amateur
7777777
muffin
redsox
star
testing
shannon
murphy
frank
hannah
dave
eagle1
11111
mother
nathan
raiders
steve
forever
angela
viper
ou812
jake
lovers
suckit
gregory
buddy
whatever
young
nicholas
lucky
helpme
jackie
monica
midnight
college
baby
cunt
brian
mark
startrek
sierra
leather
232323
4444
beavis
bigcock
happy
sophie
ladies
naughty
giants
booty
blonde
fucked
golden
0
fire
sandra
pookie
packers
einstein
dolphins
chevy
winston
warrior
sammy
slut
8675309
zxcvbnm
nipples
power
victoria
asdfgh
vagina
toyota
travis
hotdog
paris
rock
xxxx
extreme
redskins
erotic
dirty
ford
freddy
arsenal
access14
wolf
nipple
iloveyou
alex
florida
eric
legend
movie
success
rosebud
jaguar
great
cool
cooper
1313
scorpio
mountain
madison
987654
brazil
lauren
japan
naked
squirt
stars
apple
alexis
aaaa
bonnie
peaches
jasmine
kevin
matt
qwertyui
danielle
beaver
4321
4128
runner
swimming
dolphin
gordon
casper
stupid
shit
saturn
gemini
apples
august
3333
canada
blazer
cumming
hunting
kitty
rainbow
112233
arthur
cream
calvin
shaved
surfer
samson
kelly
paul
mine
king
racing
5555
eagle
hentai
newyork
little
redwings
smith
sticky
cocacola
animal
broncos
private
skippy
marvin
blondes
enjoy
girl
apollo
parker
qwert
time
sydney
women
voodoo
magnum
juice
abgrtyu
777777
dreams
maxwell
music
rush2112
russia
scorpion
rebecca
tester
mistress
phantom
billy
6666
albert

32
tests/blake-test.py Executable file
View File

@ -0,0 +1,32 @@
#!/usr/bin/python3
import hashlib
import base64
# Python script to create dataset of passwords/hashes for testing
PASSWD_FILE = "500-worst-passwords.txt"
VALID_HASHES_FILE = "blake2s-valid-hashes.txt"
# Password source file : https://github.com/danielmiessler/SecLists/blob/master/Passwords/500-worst-passwords.txt
def createBlake2sDataset(inputFile, outputFile):
# open password and hashes file
passwd = open(inputFile, 'r')
hashes = open(outputFile, 'wb')
# for each password in file
for line in passwd.readlines():
# compute Blake2s hash
d = hashlib.blake2s()
d.update(line.encode())
# encode in base64 and write it
encodedHash = base64.b64encode(d.digest())
hashes.write(encodedHash + b'\n')
print("Done")
def main():
createBlake2sDataset(PASSWD_FILE, VALID_HASHES_FILE)
# entry
if __name__ == "__main__":
main()

View File

@ -0,0 +1,499 @@
ugjpsNMcWk7sPwuv0rHJ5jqG8Upu0dqJHldfFl7487s=
bPWEqShWee3KgiUkxM6Lm1DENkK9AAGq3Vs4KZvApXw=
Efp8EQM3T/F+XQ5Z5DOwdDKEF3vg7hT9Jjmt0QLE8CA=
hzYfwu4KAVXxR45AJQQ8YuQzVPEdaUoxjgJzvyuVwLo=
HD8ARELR4MX8LFCfqGw5cFKxw6k0MYE39hpKYohIZC8=
cJ3LptLbaM3G1NNnTPg4J1W29tZzxorS2BMtXqwKVMw=
2LWd9pdJ/dmn6a1qkVQ2fyjthM5t8Okb05gsFOmCeG0=
QYog7cUBgVaJGNeY6GLkvWomRx42Itgbo0mwmBKrQAY=
hWptd/ap+Tu250mOZzGx8E+1EYYQqs3Jr7kOrTsEL6w=
bZQGPMCuCZvQ4S+Ubz8tV3x5aeD/5AfV7n2ebO+mCII=
iPc2Bz5zt1PcYtc/GJjDBhFDLf43XaygUF0n9kEvRjA=
bONtqw/HWgjH3WgNjnnG/qBRIZwZJiyL8ok5QD8uStw=
2ktUNbDOO9Z7NHtoanpvlG2NOcPGauf1bhaoKXNY2hk=
d/xi1a3Ejgyt42QZq1GikMqnKO5ifXHsYzv9ogkPqD4=
G+RwSFsJQWv6M3j0okhYeHuAlDboMwV+YcJvCuv2xOw=
FQq+fqQp5cE+62csb2BBR9RZuGKeaVCA7wldtiRkPWI=
Jr1QdbWJ2Q69hX4LhOllg5dkr6Jh66QZUClrRA16HBQ=
iwy4udDC9Ch9HlsIKD/qaaBONrJGej3Mc+Sq2sqhLqY=
8HHr8Q11MF6LcMWdLok4UV5xrGEDmHMJnoA6AHv0xY8=
zIexLYod6WEA6MJL2qybV80tztlCaypEaPfd/JjUBk4=
KoW/TRU26X8xRmNQIrJ6/F/+yxJQwOvslb3Qn0QF/SU=
gjxYg6Sj8as0PNpXRlKcom0E1uiY8ZGyGl/CoWwzqK0=
u91hMetSSDSOO1X2WCHvIYd6X5uA+FnTabmw98AbaCA=
jPcglIYrNBTw7+mcWWkmhvNxjr853SnOhU7O3zFkaiA=
UWg1O/7wuLZ52HKfz55U/v4F7leqgoc7/VBkcOFyOdc=
d9Ch+wsHOPMiaEHGTV3X4pyCrrBC+K4dw1onAYdLmd8=
dqAF0VjsS7HieTT4zb3h5dDiKC+mX2lG26vYUk+XZBk=
rthaZ6WDTEotqJMr/ePXaBrdUqCZ1TeU03ej2HkRIjA=
awDjyoidpuZvu5MlUj2Kh+MxDlBAxOHzp0ioINn6L44=
l1xjE9PLT64/8S/szDSmi4cZ4nk3KDd7PzL6++Obin8=
1A46mnVRDviwcUiwWWT0PFcVey9tf9Tt211e6ywenWA=
iuBceczyQsyVT7NlhLIYHMkjYoagOC5ptRbyzvO6WQI=
7SZWEHFeUZHDcezk3migRToxiYoXyisfIcKFd9Mczgc=
HrmeX/Gx+VZ99Xkr++2RiAfDK7jSayx8hsl1scV9AUo=
brKESxet5Fa1PsIk9tR2Kos8sLjDSSALWLEf/n07GGc=
gfo/TkiY4H2IJSMl3pqGp8N7SS7hHEhTYQ0a9yQBMIc=
E1Pbgpy2v0uK2fFlP204UAkwbhnBn6b92UODuRJB5Zo=
LQgC56xjbxayPXcZiqm6D4n9YNdM0HvoyOpEi/niqx8=
Cw9BmGaUTtTXvMOPsrBm0CD3T0H6J2AOXZnkAd3JgIU=
6ai0m/Y9inS0jZfHMAgpkn0UMGqvIr73BWPTlbbLCm4=
fXxK5BTQ+Ku2T0XEmwyHj/iBZVaR7VEkysP6l/Jgoms=
V34dCz10cGScZ5xSgiEPY8G5FosrIcebcmhXYwSM9as=
zeNxXrSbMjEOPBoSLYtiQYYGZwsZFhk/S1ErAmFfpXo=
Yrrx4x6gqraLSarJIU9S2PB69top8/O+pjgQPV5eBn0=
Ip6JL5i/N0dqivx27ppv0W+jj31yu/d7QeQG3rTUY/4=
lOuXwSVoZStmUxC+4thgJuP9pv3T5AayPs5VEVucqBw=
dyKT5e7KTeWgSpJvl/DyXflt1eAvO/CXwGEhk3SyIMo=
qzEDzKjRzXXZJyjcPkeTNkCfZZQPdgyRgqSStMROlX4=
vblTK2VEFx7eLe2c54R+8wE11piWVm9cGIwn4Lj8mbA=
VqDdI2JdgrYxAraRXFYHOsIEgdd68O37hL9d1KmmFdQ=
ZHjNhOySflzgIZ1IeVchbBR+0oc6YwiV6P/WYBNltbg=
TLm5Y6qsXc/MKD7yTlyJ+WjD2+D34WQNmx0kbSkJL1c=
u1r5mupyLK1S5+10QT5WcduNhqj51Djv83zzql6WMjY=
9It2jk/J+FNUiyTXyoQR12W7kQcdgRQsjT3v3ZfcNyY=
QwmqnV4MSA0EQFGObZ05MZJirOu88elYwppR74ubs20=
oj2GCI56dSas8C8PXGIW2kOqG9t4knIccQrt+V+M8wQ=
FzAh+AKVkAsWdOpx8U1jNSrcb5T0sqFVhiIKrCXy0XA=
ooHRYS1AyZW4tX35RPbH5CwH7CCuqEuSDVjAC0IrMR4=
mBQ5E/Jz2JYlb6hi6ZERkuLxX2Zyj9v12PuDu/fU6eA=
OUTRiniNq1GxAAHjLCKoVZCuarCSoSpdOHfQwkD6C3U=
flKBgG79uJNanhgBhH/NZBcnzYP4uzNZSFixR/CG9wI=
PxYhyFd34Y8DZ7KR5e6hrOEHGi2kJPtHm2AY3dpCL5k=
KUztPzoU3wmKq7N8alM4KqsK+CEwRZXUbhec5CEbIM4=
YsUYgGpkO1LpfBTjklU13WTIs34V6l1CJPrhx9nIPGQ=
O2tfdQsdUOJ/6u42HKc8YHijHXCi7hmkF1t8pE1+KVk=
s0ZOFrdZgh5bPfK4ZsCSobBEEIxxUOvFd8JJHkHZ4lE=
CwsYwHJulxIXYNMq6kkEcBWVQaNKgY6dPXQD+S5reqw=
m1mJOinLYelp7nq+JsrvOGHWrhLLT8R/kGIjb+YTNJ0=
p057ayp96DCHfTtCTrgnK7NiWQR7vlbI9eYYi0AFDGQ=
kzNaseRmuL2HFM5D3sCO7aSxK/sv+XJuKg6NocfZgTc=
dqVqIazLS5FqnwlwKcui/WkV5fS2eHkUwr3rJaidehU=
imtZRY2B+PcicdR+zWd+CvtVjMXv8tJARngdV/z/Mp4=
FrYFmxCJtrWhvfS/rl+7IBpa+RnkvLHH5m5Dq0ChSfE=
oWT7MqtWycKVCSJNwxKE9uMMrUTqRf/y4NvG6cN3XFI=
KY4o+UgimWui8B71u6KCRR8TpPR0uyh9a8Sf+d7+5kM=
DnPwVYCMdoNCIgcTM9Ofy9HH3W8tx6++q+dgI7FgnXU=
vkQvFo8hbVwWJXhd7oPyMeJIFdF9MuuMLrMaChOW40s=
9EIeRh1D8acgJQzd8Jgn2p6MQee+Gfq8SoiWcX8PCHA=
zOdocuXZoRjBo8ePbthBSnRSrC85pBF+9ySUYKkI8Hk=
ogDbc4Vh5vk5ImdwF0M42S8ASuZter4PFThgJXRKeFE=
yIm/l2SJ8tXZg4rqQ2/725/6LS1XR9leSs4AyYDzUMo=
j0EY8M1JTHN1QkEXaCAKCUkcYks1w1DrYfKW4IVDnNA=
k5g147onCU8cKFGWHA3wazZD5Vg3/ZompvW5cqytBeA=
67q/gmJiszVlYn/5UTpUpGr6ecmbU3wD4RmzBOehH10=
AZIRedS8dhRNVWl7THXHkLw9xL0BgQ+r2wSh3uxsEAE=
js/hM5wkyCxiyL0Za2wgec0k/ZYC1Zyg9Q5jJfhG4lw=
ll3HSO1q/mAx05tpeNpu5cEspf2rB3P/cX5Ltx8ZSoA=
aIHAmD4lGWkkfw0OY1G7WwHU7vl4Ks3lrK8YqWAZW6w=
UXqMkiNFgXKMe4CvH1KXk0zliuxL82FzRtvL0BAEXKA=
hnwV8FTG3htvF9LGOr49oYHJT/Kiuqudg10uaYi52qE=
ILIxe05ojmlNm6luCXcyXRWA7PPuijhbJtxiIXJ7Igc=
1woA862RH/5zosgGWz5NreH7MCQjsg2+GyfIPAM01nw=
T7pGmMUNxz6C5eo5VKqM2uYmOC0NCGqPnkpy9CoH9iU=
gqxxyeKYX7uTYeT0N5oHuTTpu0uf7q3trWBylSME2As=
Yb/Td6FzUKVbsGvvj977vykX/tUlaOsCqtprP3vJ3f8=
aEjXYh+ClbNBlt4xr8R8Y2Jjp4ovJuirwlktdRFR0co=
dOMdSAKfVZi/oVHrLN/h14OKitDrsdiJu1aeGiEugRw=
OWmzkmZUBllmtvjZpleJsPdtVuHiq2fdlPqncJWRh8o=
sP9UotDczM5yAPCoABsCTv0KnpVQviNpAKEtINCSHoY=
UUVger+UC/O9knNVncVBTqs2DyJZgNeeFj0VerR+gvw=
DEyg5q3rpEnvnmonXYHXGGvXifQ8O568B/JZdUaB1Do=
zub+szCnqIwisFvHFn5yUvCE9br5GVXIq2tYF4jvZNE=
LJ7owgngPKdepIxo4icjhl2BY9ciIbVlMcyLDotixGA=
3ONfmtnjFz5tJGr181nOeC8pzxou55LiV9K5pM0TDDE=
LF3Pxos7TkocddTyAtSrquj/IaCryR4NwbFe4lvVCXo=
1aY7c92g76VF84rt9ICjqrwGDG3NuMKh5lQG+JBj4yE=
IIGwE2JIfxOoEqiGgZCdNwoW66bN9RVcI/7LB2UPDxc=
9qqRCQByGQBecev5qte16I5WzAS+5QEjymwEGUhNCgA=
M4DoWUtxrO2CUo4BZVSTXGZCbp0XvGHwg9XElJ0Rk0g=
G9CIdDSH84JllMF/ImCQa9BEaILdssatND3kpU1kcn8=
SLRwVRoTo6H89GShs8QjMZRE/TDNbil1u1WDvIlcshM=
3K6ddhHcMpmhDPr2TH8n4apgxhhLJwAzPPLMuGpbfJ4=
6ZRO/d2gwJidWIQiWvRKopmbYePbHdxKE4guOaEvLao=
WyLJhCzRIMhCUzAEFuGf9byEciR9RP1U+UMRd6YYnrg=
prqXDNl6XbTmQjhhgpRuhMIkfhsWS4JEA4MDZfTNQw0=
CJ8wKxj8SWl8WtclTmzb36s9AAVuIvdGaCEz5eqITlY=
2xHoxrQVZfAbuIoTSMy1Gn6+WZD0YMHSvAWJKgQBqwk=
qv1fkxAi9oI8DlxCLTIXcfiHxHKiL7xFHAgOGjVVU7w=
X7aAU4pNGEgkV4SJV234YUcE12oqMM/cjCJUW8igqo0=
TtofLz5auedvSeNoKdLWatz1ZCFsYUJKwVJvJM1i2MI=
GWc6Fa4nkYv8RglTUDrn76cvM+u9pwXuCjEzp6Sw6co=
idrSd86JnN4IYj8gbyltEbQhg4D9ZW38xzKbLVSKLE8=
8mSZzCxYziykBZgpA9wo4Gu4PerBGuX4LAPRawS4dso=
g7y0I6vo5O9fwW12buW9ORzIr7yTyZ5pEyeOWhwwSmY=
QzciKCEr8+7O2IU8AjJJ7N9Y7fdSnGpQUzJyTrDXMLY=
kkFshEg6ofF2sPy5JIKKiViwNIOZSB6lqusRFQC/+jM=
43huA4seyypEnwjDNzZ6aUKQ08wsW2Fge/IjJbAmKVM=
IxbfSeLS9TWELCGW53jGaalxXEG9n/xRtgfVpJK6Zwo=
wSAQnpj1NdQ4Dd5pUI+xRz7YqXfT7pjW0rEG+8HfIPs=
TnpwKKpG8BGvIP77vVbULDNjIsmyAwuCcQYYzX6xnbI=
lZYy5CFBHWuUMGHck7V8hmm12u4+o26locwMhejK+M0=
2KGJrO9YuWJbqUZ/MPNE+nhlAQCjKvJVdiq/xFWXkQM=
lB55Bd6XY3kgm2DrThgJ1AhmJ5Qw64W91dUdbxKpW6w=
u7g1rUWJWawJXH/Njkz2XzT9PdAGps+rLoVFHY2sr7k=
qtchikib4bpMv7kBeA5LBogCnQIDcZ5cayV0mZxuC9s=
6mgfWXQlj9lLUwQ9usUnX1YmJ5clJvpdjiTMtNmJcAk=
KQ1m8IsvJM7AwMz7p4airoQt6FmXJBc2vOZMqCGYMGo=
vfhjQ2v48snEGDuS7p/hbxIe4eDgJrjVls1kJP0kg+E=
7e+2kTAAaQ/O+2iFOOOmS0DOOSmksLAfJr3RT/MV7VI=
0Ja7ePUll0i9r0esHmoxCvywU4+5FH+DUPQbkkxDOX0=
LfQMptGPSGAecE3aK6+pxWJQ2Ww9XNpnY53thkF7Uw4=
Cst7T2Dy4EIzj8HruzfVY4OG7512DqRIO47sSGSou/4=
+UZcysj9dADvx0S/kg9jO0mWuz3pE7oObk7LfMs7VEY=
AObliwxracGls37FdPzocDiXo42lf0g+p4M+tjBqeh8=
1r4b8r9TW9dMO8pbTBXthIYgdhSIOMALfTCQD9GOT3E=
ZLjWatXWAAtl6LFOvW/WJkcFLHEuuoolgcOSYCHQgOw=
Kn3/hDPJluMD0GeXqA3weIGZzKb5LiVtW1JcBk0W3Lo=
/Ieob43s0PkFUplmA2j0Y0sY4wMqyAScQsGBW9XIM6g=
7//dXcwv3v5kLq4yje5NNOt2IEUgTS140etiXZ6/k9w=
pF+4hKxlzbRVmyuwsXAWu/6gFpHqqlMo1u9DF4WRP3E=
WCJcb7AUSchE5TNz7Xq/p2CZnNnKKw5P2cKWpZuh6mI=
OJophdYYu0/NM24/+7bYKojo+398DfZo7uXmbkZW7bc=
jRZpZan7IaO9iYENd0vuf0zf4cNz8ia5is6u1c2akeQ=
BL+f2UIEAOZbaA4TctdVq0zKd1PWTi8gnYc1ArspiU8=
2tzF9wLv+RvJpE9SYoHPwHhg9CxKEvfEt+kuzfm6SQw=
qDb5awmxpp5HUFdwFClFJS7jDgPIWWifFYp7VOKaVF8=
zVuQSIN+0Y9B1p/io4X0LgZGuguA31A5u1jflfERF5Y=
LOc+ZA9Xiy9FeuzWcqtjUQDqmnd9zjlHTYfVCRIRUn0=
v6hngBqfYf6J3c/0CBVjCTC8GTgdvkGJEfSnorHOIhs=
EZNKgZKMJfNqMWt+gr2AZTJXlCCiyYAq3U3bYe7w68w=
jqqt1VcHunQUExyeQTZuEBpsWQEutbgJ2si3+O7hmaQ=
lUKeAYvZ9GFtos4rRv8emHUrZQEzCWcs7LAZHQUObd8=
SkghXqiR2wjWk7qCYWn45Zw8OoWbLJKmj0LLsj4Uy/c=
i8R7jUMd/gUJFw/CY3MEmkzhKOPr+1kCLY9bsiAAAtE=
Aw+Tgpj7In0gVPCGSJ9TzT5Vf+EEViXT6JmLRKeutt4=
33L30WIKPxMA44E20Ca4hjeTic7oQPKvY1ZB3kZrwK0=
bl1Z3Zfk0lsEq6Nzas3oTtOIrHv1jpauFfV/RFIK2cA=
sD8aVordKyrkqncTrGjgtVxSbCLCqHtegaM8JxzvHnw=
rDsdh4AUQ285KlwIOEoKge1kx1nalF3YCO/PoxMOz9w=
2VdRk1L9ocmS5ryh9kHYIByjizeczfq0Mx63F6+4CQQ=
dddhe3ZGlykoq4r6Wj/gI+1ZT6FPCDUNi1qhBkkOpB4=
YjdVshvyZ4A6M8ChAQxm9Y9dS8oAFMNlXuxAQlfZB24=
TTk0evyGbFVWQf8/Ac32fFW/KUHC0wi9hVXq+aNhKuQ=
G7YKzM3c4i1vGuclnkX8aoOiRDktAWvYe2tr8arK5gw=
fTDa8jXgtubWfZMGi3IW52ufLHAjZDD4auFSfpDN7Qw=
6xqFS+Btdck19EUest9YQLZ98yjAjiqRvX6ZOUVLMjU=
a1MY45b80Pk/+LgiwA1p4JAulRBxNHAbbj1/K19yAbU=
y44E4uZwXKCx+yQSaOPTGqKOTllUerYVlXd94ucSTqo=
q+999FsWNWwWz7RYdFvAZF2jvqWDJjNnEWU4fxWX2cY=
f79lijOutkw+x7GgdUOfARFb62Du7ZpOWu60tW6UQY4=
EChxRIXBZjruyGAhtPUSRTDMv8H6Dhm+DZfi82O0anE=
1GD2zj9JCBRC2rca6VTssXdfVzcSuk68qD9EdR1byVg=
tO+KrFnyn23YdzEnVE/bMCKODRw4ypMa6pZRBrKEfwA=
2cELY+FHdWctc8aa3mobfPkAK+nFcqDUeQTA1XBEyl4=
s475i8tptt9B8UYYF86prqPh5v67BTqApOIncTANt/g=
OGnQ3dX9IRZHjuwEgaSR1p4mf59tW79jbiIogNsa6a4=
ARTFE/fiJkIMx1GGkAGMmIVg3jPiwS4nXeGMZk3FQvk=
z1cR41YgwWf3hxBYXpd/tTgAseW09yw/+Es36vtcNBM=
q2aLVM2Wd2G5SSgROXOAfWwCyZVcgiYPGJ80Y2gXeT8=
6ClpLR/EhU2uUMKY+zsW1d/wL5JqrYodNcggOyvLOt8=
x4u/TGBvp3MWHGaOBTbqZ0hgPmVv0UP1h5AFFkjzAxA=
6sOcauY3ZdLGqR0FTsY8Sm/TBaqzURPrdmMZ3E8Vd7o=
97r/b8hNx/4U1sdz7m7UDIfsJihZpz0Mvi8056Ux3TY=
gPgIA6bakiBo7K+byZpWkeCMd0AwiUwm9C/cZylGJ3w=
UwoUK/lC9Jm8/S0ykrKZOipsef992KhB7REEklxkw2M=
2z9UOR0tVkuPI/jcrLn4rBNWEGMjyrjwbK9TU1YQ5ls=
Xl5G/udIhf2Ds3eR/2tYyGWzq0QXfVF9RWY1QhjXSlI=
A4pHch8/DN2RAJqx7qN3/x096nz+Z9gERHdZd36StqM=
xS4LO8u+CIxtZsNUw7xHi5lePxl1zTVcfCVPPih4qwE=
ftCTpoWybE+cT5EXyaIkirtchPt/U9w/8120iNoFcw0=
8KLlUHdUZ7aCj3EBGCK55OAxUs75B3alw80eyofiYTQ=
pu25bOmqtSh1pnl2wb98DZs9O2jPurDKJkYfFrOLYms=
YCohtJ8+EsD6VuM1+bTFeDjarUYcKorH1331pP8R/U0=
YVJaRc2sxQ2AeB3841vexCScWTWlsM+3hQHi8MV0vbI=
+Zcb+f7T63vaNBLHUWAnRX0HkURbjvLjbHWSoF2uqcE=
0GRJVsN0xPZ3Vi75hgo7mLbR7AymZi1tyFkg072jRbo=
KzEsZH/pF5uVSeDOT+t8oJnbcgQuGSyugE6w95uUscs=
2ADFxUyVD7dbIBV07yU9fTZfyuWlh8TD1EGF/5CpEw0=
VtlyCbYKXZPuKDhlb7Ds3stdkEd7AzTEpzQRyuqqoQs=
2jkPdA51XcZxIaIo3t10dLyzvClzsjB6q/8fbrdG5Z0=
V8pniitun4MRalbw5AI0nqSouXor/1oRlVh4DK7P5QI=
jS0uHv9MIpEH3WCIKiStDB4gw9J7fB0hlAyMmJB0KzY=
Xgz1+oxfsuJO/QW8OCVBVVCC91sFbTVQ0AIrTUumLec=
uCOegWwbboMICW/zzGczjjmAnWLP6N9ZfJhcJCfvvM0=
yR/U5ZfYCU1HNCSKnYGN0IFqtgjEfHBVKgFqsEOgADA=
4s3dQydmA1YepHrQr6PIGJ7aD2HtmwD094z1dSDNplk=
7OEbek68uabQ4TJpAGzqtw80M6N6dQdXdW1tNuDIQ6g=
Ik1ABU6lhedNaKFLJ9Qqo659EbvIeDYqpvnliNPCZQk=
Qo8qx58gmXwcXkGeycJssEWfkVoWCKBTReopECEG1K0=
1U7yE51gj0ArkuPjHa+bOCeBOq5MmZKsEAS+EPoEv5I=
IcbawCxj3btZ44R57Manh4MlRa6ruI/jWmlnhRfh2Kc=
GmiSSYtY8m8V7Ht24/NXV0EzmGzK8nTWyq0eygHeuQc=
6VN20rSVAYLy80vJvvuwmBVtOglkdVxs9o3wD1j2Sl0=
Z4ii7r2U71bnC+eK9BJB7uOEAbMpZKMyl63oJKQlPpw=
yxGFuyvrGJoX5hof98Cclto21yZAtetr3ccfJDvPZrI=
YrawfRwsnQpFWi+RjZXYE4QixosJuYlmd//GpJY1Flw=
h35n5injGP+eSQdSHbMuYPPwFgohZwm+8MTEaAY13/I=
s+2ikNkddctCPrx0bwr7fmVpwAPCKYwGhQTu19A0PAk=
fQUgTO7hwiexgULkcQdkyc3Js+SkQWxkmU8qLJwn1xg=
9xvh4s6sjxDbmubgmCgpEnXcpEOulhdVaWIoAuzwoGg=
NJbHroYboZZ8OjfBeFV+UXEhr20ITTKeq77ohOjNs2w=
7L3NSFSNs4CAkVmiyu4NZAUw1blAY5XvGEJA+KWhBBk=
1Ze7F8PoqnDQMMtE8RnkDPx8MXc2+hGWqtEYbP+bKEE=
77Q8ishs1VJge5LKNn2ubMJsVRmSaYLrVXbrYAAA+fY=
5PzW1eZKXIw92y1VRMb2RT+Q9ZigS51GedV3nUFF90Q=
w11AbJujAoaDYPWBv6a3m28sR9XFaYQDL7efaP2Y5m8=
pbAB6rHDBI5uSbwZcKHVPomUHD6exAiTWvJo7HUm+0w=
VzYBwEyKs0z9/Ah3Lb3cjRHgW01SiICFvVwXshw3rKY=
hmW/6Zhlsvt2F3RaPKQRnsu+/0y2XEKD/yVQkUHx1Vc=
sbT/WGmAb6jAFB8P3IzQ4AIzINIDDzAx53qnz6I/Dno=
xpoY5psbaPJXo9GByzcdQQmtxDn9OD9enGpm/GwTueU=
yaS2BKajDq61tOn4dRcZVnUNVuXgQEqH2qEhm6foofI=
tPcDpHID9es6y3TcdUCswMYR/WVF1bU4+jMQPCN1DXg=
wo8NUue62oAXSvdvOXdwNRyz0C/Qvb/sgNjgrXgO5y4=
xyLvTAEZHkd8Q4tdqdhmqXbLb4WHxxmVskECv2x7+zY=
DnuIl9BlJcFwgfrtf8oPUvI+t2Sr5OHH39iRzInrC/g=
xjvARZDnJh5plkpbBWjMAhL6RrmsHR5QqIWY40rP1zo=
6MsxXLkPHMjIascFiTD5pFU7+f2Afrbw82BR4tUlizM=
KhrC4QCHK/u6a84fa+vW0jwN94SOHjk7wFDP/52/IQc=
qYahy4jezP5K3Db1bzATPe7shdh3lruDKp5ZjQOtJTU=
0YOiOIVBxXJ7jpIRatCYanyEv4tbApppLpfWjon4su8=
YEGAiLhJCU98wWIAwvbRSyOk2SbGROE3PXGVgzjntf8=
+b6Zkf/e4VWIf6aH4w7s/D6HpNfjgBIkqPj1vWkYmh4=
OR7t1UE2/dGoAOE5K62NnMFrrStT3optiPpC+AzB/yk=
3tSNxS3heKBt+ZPaps04gd5ThWVv3Hgk0kui7Hp5Dwo=
HbLmtevMHW6ltKFbCCHvlHP5YOikRF7xKxAboiqbLp4=
01+UoH4VcUWicjGobnQx1fxwiGC2LxaYkZh2puoOubY=
SiA5em63tqb9Vp8IW1AN6PlBF1HCRWhYClfuYkPdLrw=
ScXHrYlKfvt0P3JL/OTvauI75oTCM7RDiHdcr/CnGxE=
ap21NPQz9OXI11t7/MQESFEScte9rYnEzXll6zTqo1g=
72/fbQApaVxr18hIuh5FwN+IqeslPZoNEi+mBAzhQew=
P+r92lWADA0lDFRBp4ohKwUttGDGvXCJHLZFmjAnrUY=
Quyy0GDaFCQfMrhghKaTmF3ETzDiEtQT5Kfmoi5B4vU=
YCobzKFRvokLx59GhW+U8GhDJ6FOKZXUZd6H5PBzn00=
69l+bRYsJa0a38PMoB2F4OBQiVT5T/sXVPziWL2ZfAs=
XO+3oT0MyGbmjnX/mBRjozELB+21EVGSVBCLHbJ08jw=
FveemCku3Tps9KdF5RG/sLm27m55yPYhealO800NMV8=
4vQdheFqJCEdxUjcrurQdy38Ivk9Yd/oc6VdCI4uQLc=
DVg1NJWWSQwpXlONOcw+jvknqrO/6f5flNSiOMCaf2s=
2HA7wQMQWNUFQx833UnFXxhsEdEBpTJhJQZU/Akkiq0=
g9JjvLtqaNrhLbQlpZeYMKeAMvugNb7pSpx4p25JPwY=
dotiRgCcK6m3qTIsX7VvTSFWDd0yrxZA6yEOvXDjg/8=
EBNgxTd86yW4y8RCDimuB64dE0LoT/6HTIThAGVLfJs=
IUCSpwqfuQIh6RwoGDj0vB6qBjEIufPDvaWSDBcoTi0=
QGUjsSXc8bHsodRz2OzVDFP1JGRVOEwgpJAd9EbXOXw=
yIx5TTmdh902JIZQ/Y5NCSvNq1y5193M90uykYULY1M=
DCe4M2eEhCuhM2z/wz2dVoWj+GrA/Zfw96cTfo4lQlw=
PcMW+D+86OCA+owsJd6ac/wmoq0ncG/O43Xo9tlKi9w=
n7dy6t53/qR8WIb1HSvHnfVLFZ00ZMTK/amyhQWq2KI=
0Fozoq8rfWbb6jpSlLVoWaWsCtxunov/hTYpDg+tjjs=
jdcY/bvAyvNrnBZgnpM34BvnD2bFEFL5ruUp4F6ZZVw=
YRCOd9h0w2fEb85TCamTs+H9QDV9abRVlBFYQLfrTcA=
u49mKDfDCcXbUihEtHs5FN6FcSfTD1GaR3CFKgtLWHU=
sj1FEbv6A8bFD6riYfd1fIXo6m1cZSIA0WJ2HG6EYYQ=
CGS7vPA1goUpOCxT6PnT6ntlDs66LlpHwDIoGFNMRT4=
MdKfrHE3W68Qvuu/Qub85/gNpDRhZ7BNwuI5DZGOZWk=
pGFScIc07mq/OMBC9qcmFkxE+lGILCSnNrMSxTY4+ZA=
8kk9AIRhtIzQvjI70AulCTTG0YpWvf/SPfwX6XLhUfY=
5fmqnyLDVNzIl5E/qgsKD26ATgrwopbxiep2bTP2KTw=
HtbtOCJgEYLOUxSqqrl8C8P9vPFAnAmu1kff/LiVdZw=
YSeQ61PxyXhg+0TgEKsgBe/OaykndMMs1GZKXk25xPA=
0y2Dqn1fBS2F6NgGlpbYJ3D0aqa0WflA2Fqln71JVds=
8wQjv2acjdDyi98u7ehnvQ528li7kepJOZHc1oV/2w4=
E7L7pb8j6eSc/qtSMdL98CZfjoWIOHpDoERu2CvY0Mw=
ikzhwtQO2pjVbAn7+q5ovo8A2SCXOKYXFCIu7A8b994=
b+HqvHxuA/py0+yQPUxyhUy3C8HMbx8fMy2mjh221OI=
+0Z1D2uu2XADeNIvwKz/JLiIbYp3d+piqGPRNuCLXM4=
NuJVOPlnkiD0uIXb9arB7N2RIO3RhQEK1L8HWEDkr9M=
5G1DHWlZntPyxXO4PS+MQNP51BSK3f3jXcOLGd9K7A0=
u0dXGbS1ykF0+Wwe2s219yC5L9FEoD4IcVU3OFVMlrU=
+7hm7hAHChB8CLuAwGJ8T2VQsubeknkYDWO4U7XV88s=
M55Odb9j1x1l+mOMiPs6m6UT19BFC8C1PNkgWVDffkU=
up5XGB2ZhYJrq10wsCsbyPZFevPO3PyKzaB3tmP+n4Y=
V9ISvwiuvulQxu9KFplAOsFeVLQ6YLFJq5JBnjZjBs4=
uLPmYIzGX7NLacRVOgcI4Qwnu/H8bDoaqJoG2TODvkI=
umLs5mx82WyXZkFCjmHpd3FLqT4Blmgke2AufMm7Dso=
t8PAVe3hAtfzT5BXUrEcPX8hlvEQsrFud3lrGJD/ysE=
xXV6F7y1RJzo6b/wJp/dBwQvS2W5OxwG+Jses9fWMoc=
+kfheRy2qBMfuafbUe3fF3RrHnc039FWeYBjQxKDrK8=
dZEzeLV8YrpyXBo8wNWIVY/3T1c7+UfTXkSsYgjVnxg=
r52hf/wCnSjy4XTGZ+0y6oic679uVZah3DfB5EkU1qI=
2JC3kB4/nCtLsVwvrmd5G0Fl7Z5px7/mnroPE7Bif0g=
62fCoq3aOvgiAjp+XbiuSHTE7a352ahdlqpayGGMKWY=
mbXM/p4o9v9yz68t9SfOZOmm06ZlSki47BNqxZizjO4=
fsL5HrcphxVQF9AoVtvx12t77FhPE4joeB1iHUxGh8o=
fFMEgfDH2WoaXxV7BBJUK1s9HSDutTfDV/1ffroKLPM=
8L7nOs58eZ5DTVd5Abs3DlCrBICjC4Ooa5Aq//KbrgE=
9WRPQgtKShg177JvZ/EMglw9TNCLmPhfjeeofx3AyAQ=
dIBEvUiLX2SLsfjSWwO798Wlczb+5lPffTCCptVlWmg=
BVuvvwD++iltwebzapXREUYaUJ5uV4jbQdW1K8nfTh0=
zvVCrHvLHaITYnhpBLKmkUoC8wZD5fUxLvvRZmlM3fE=
r19PxTSdYPHJNHZSFzup0R9LE/iUE4UvL2D/fDx3cv0=
0HSC3sTslUyEnc+2h/jkgRmSpE7moRKHeOYqs1Eon5g=
oAGsJi/JLpaa3Osq+b1GIbgXJ1W8+1pAtyi8OOrDcJk=
wjAGVn++Z4AWYWLKX5JRKQMZaARupbbBUajc4Tt3tVY=
jAtbW2hpsUrOvjXM5hLYnyKCy/5nisODfv3HONVpZvU=
Q3GFs9FFYHJ3mIkSgX3A8tuaGwZGvZ+dugczjYlQ2eU=
NrojVzM3eirdCrmF3B9NGL6OVVt8Dzxwm19lqtEmuXg=
XShF5rMfrnatXWnaF0uDNyLhXnaA8EEJOXkGsKEbo8A=
HLbQyVIhjR/4KF0DpMfQe4yUaEKje7MtdR2laUnjzMc=
aIOvxQ5wNkNSf8U3APX6pVl/80AKbpD8TDkiZPujJbs=
ug2bJtifTJmOdtInISIstRqSh+jNCQAN3L6yL6iY63w=
RAiKwwWD926O7c3WGEVt3MlWuyRY2Tl6vjG8ojNay2Y=
PaNnTS8cP9nBYCF6psJ99bFDF/vD/vaNu71+sWBcZuM=
KLAnn6LukYAy57JMFhNPuca96PiN7UmEBw3EfXtWeNE=
J0ZRrnUY4OrIlbH0+GIvQaH/G9glo/L38ASSHg+E4ks=
DR23e+THKDIXLoIzLj0YR7+M+cdkCn2coYioV1IfzVo=
02+XYgmuVNER5G7nBn7qfb2xTJ+sGCDxeMle05Hb15Q=
OkNorapSlscRE9cTseryeWExzQMkrnqDgtDE2PZyKrk=
yQsNq4ZGa6YuqCXyiuiv0On/mLYpDQFO+hNiA3WuIJg=
keJPb3iEZ4gyNzjMLAaF4YM5zSOgkl51kAQwLFRWoQw=
7IVEDCSqldx9jiTPmvzTNPxkC8yBaxQTvF+zgDpRb+c=
nXCTPVL9sU7YnUW/sxZD6jASZDQahrtM7OuK00FQQ5A=
M5oieNKJmW4EIvz7Ql10ZDPXWxqDgOeHB3T4JJ8NqAU=
mbz75MZcwt/X6w1sy9w3FqiWmByh40wWZL7IKdXjxEo=
zpbJZiCS5t3uM6XAvWp/hGqwpVHWxxbM3PtWuPbDIB4=
l5vu7/plmFh3y+GrHYj45wC2Imv/YPxiLSMf7lUNwGc=
lIu8x3D58zPY85f2e4g7Gvu6EZtYfwcSm+op2GSDGuA=
ner0mKrVdpI4fajIjoL6/3RNnwtsHfC2Yq6stL4LRXk=
kFo5CamxPp6XzEZYqo9quvdK3kKVHz2p5aSLANSSp9U=
vpFkC4gjLWz4DkN/NXrNYbD4PeyJs3A2jNhrcg0ONuc=
PSCva4qaJVwXlpgJU9Tz+sj45ippHoTejSZGeA7grnI=
0OOpq5J7iu5AE+SiUbjK8fO4B0apURkIDLuebRGc11Q=
ezyo/pg6UK3rIcvJGXnRv5n8KoJopU3OPQqcGw/eXyM=
o4bcv4Z1/WM6DOQRyDaCBGGH9tViRWRuJTJCNtCkjbQ=
yWy0ltgFMZXFWq2w1WADV9T51SIshVsr09fMUTITQss=
1aUxpHpllC237bavxzD5vWRmQjSgbtbFnghDos0p5yM=
JHPYTmmMxOp3OPmcb3UhEwmjueurfTUavL1FLRrdqu8=
AGI5HQAOjx5TkXwT1JfH9drO/UK6tg8XoOZw3ahcDK0=
w05S4oTK0PL9oZ6LGako+RZkj7oD9vf8EVKSXJ4gUIM=
VNUKS2uXR4L1kciQzxv/vehjVP285q6S9tAVEnmjaJ4=
3gwRg4mkE+uGipxrQiL+s/aESmoR01P+8F20ea7C/e0=
5/tRWQHQmt+HPKIMueEzpqjTEopfx2FYKfap2E7Tl3E=
Ocbn8/6zSX0iMEYkI1og0N1m8U2SGHN755gzIDCPSV0=
ARRu/KqDdUSUy/qpqhWRJbQgG+CdvjV0QwjVTZqspo4=
gkpt9tbukV7+cbLuvRo30jYJLNl3Pq/DSM9ASLx+teQ=
4xKiiGvEpVcsGfNjozWqJUPstfMW/A6zJA245KQTM+Q=
JBxnq+kN60GNEYkW7qQCHx9RneCSiFQo6xMArs+VoLo=
rjPmzNBIFpJpE/XJaW7j+gzocGWAGZtUwB8j0vlYAJo=
DqVkpdDLuOMKqBWp8Ba9kN0X/fan3bezdta6wTY6p3w=
HOF79LJLQFOekPXb6hWIPhJ6m/i/GbHVBsZ2EdXt8gU=
ElUkRxtmL1ws24xgWj8L2r6+kl936AyKSvOKD9FupZU=
FNWd3zt/S8LGb7T2rq0yBQMsyKuA8yFG66CDZ1kqI80=
QtOWbnHt4X0YrK5y0QuQyZF03XDIkhNUdxEsDE5BSC0=
FWkS7+aOA0U2qQr0tw+2Q9xaH5To2l92O0BWxR/rNhM=
PQYtToD/OK8t8sFKcyeujziE2BRpTMeUnyaC574mS90=
aYgzJNnH2Xqe0smSn1QcjJYeQSRHr6fApiPLjL47S/Y=
MCCvRQeu6wPi0F1muNJjPJw9vScZj9/91W9qqDJHr44=
MixV+98IGsGyc+jecZ5ekrEVH5YvIYdmniE0AgMxydc=
JUPRZBXgzK5QepiS7phZbrX3mn67zKAjalwxd7AJyFo=
BqWahmRIktMFJgjtjNgCCDw3bZr3/TAa7lUhfgSF5wg=
6j+Ky0d4zL9rQupo87QZ/L/nm8KWJ6Y9zd44nUwaKIM=
b/B12vvR3rYYbSwBXnE75x7H2krJA+aF/7F5XfcOHd8=
piP/xGuL8sMeXwpSs5m3sCZsOX6O63D90dMKHqTl6kY=
QYL70eboAekb/jVluWWcnsgx+M2+CG5Xa3ZJm/1CkRw=
bNbwHv30cQ/TcdeOqP0uQJNN4HDDDWoRKwFfBVWtajI=
WwmRu3N5TG7jF1/WWXnBezU2bSYtMqd97EktIgq9Bp4=
1VqFhRx2/iGViM4FQQuEVO8Zyw2FH+Wqm8Qn9Q99oBE=
OlxoMtve+/wbIDis2V4XJzqJBhnECtn1eG0t3f3CYdw=
LOP4ArYSUgVC+e4Y/QEdGqsWfSDWAW3sSGI3NtqoieA=
1bQqyp+C+0rWfCAnPdl9whg0TrghLrlhVrQwcjoMpMs=
FGDzjV5EHVulklGC4Y1RbAjZcZ+4oLPoy8Fkjv768WM=
WBi9u1bwTQwX8taNX36AGSE8HuxlrgyQjDLZkp8hifU=
ZrWMv6rDwxZ2wR02OEFAEVr2c4eVlE5N1+7zNOZCAlI=
edC4/hOnGjQ9d3mveeUUBB+zaO7HuMG8HvCxiKq8aVc=
6NJQEkoO/4RuvmEMCILrWbEF55Aqc+W2WKDgIli5ECU=
r4TbqO+RXode6SoQLtNDpjp+rzPGfp4TJhFTZgiNgpM=
BURUEZJsExOcCtR1MYWlSD10XFFPJ2eigpkN2UkG0FQ=
qCNbVEPd2LcZlsW9PknAHffUbJjpwc+/9RFGJGgjV5k=
SqYpnvZ9wWd8B2k/TEEj7u7Vs0zq226j14GQKXMB7gA=
Hcl5Q90zrYI3lIEMnQ+8j68/174bwLShjEBRpE5/DtI=
0kSrk7YDC6wu1OKzM6B4rp9u6kJm41TZfvHuHNf92/o=
sKNnckJ6hv+MDtNQpP5P7iRdsmRU3dbDjmcFzh5Vb8U=
bRb7+V3zorR13S150edP5ByzmuNoEIhMrFJ7xm/p8Oc=
FEUdk9WIdSXhEziTptaJE/PQ7bYT4AFY7P/V2vCImsI=
LowTRy+0P018XuRd5ZG54W1k09jb84Yl+3wK/vAGGD8=
8q7Ecj8MLVbI/HzGbuOryRx8rg73HSFDwk2FN7gNkkg=
jwVZBeoSXnINtyW+WBDHxXhrdH7NdnIeIrecoC3G2oY=
laUrOZeJiMYmbDHZ4/66fXhoLQezy8Vb3bS76yPbdkU=
1O9KErAMUSq+H+VLKQj8yqzrUBtFqU9uO9qTnyMSohc=
AVyYqrIZrKECuFYKSI9cF2lcXN5MSnI+zvxZKyiGztE=
QtPATMFTognqmxH61TTzwd0SciSHgeGf/K46eNG9bo0=
IpGwl4PE2fNmPcjpw7asVGI3GzdFbY6+sb8MzglvqWM=
vD182xhWHUV3mO7TohS3lPxWrxJZ0CT6TrcCR7/2OG8=
X62l5UHIQO3LpF+xtVj8EkNWK7Rw0jAveh32SrBuG8M=
X1ng3ZGIgkbuwA2qLCSV7zNFYbAWEPwqmTXYBdOpShc=
0qSu5Rbhxe0WMvguDbJDxl8g9fhsw5sHrTVOIIarrlw=
z8DhVRzbgqLI+8n3dgTaWilCLPa0Q6FbEMAjxOicpbM=
WMGjk0lhjiIxQC+oDExfd9hqQK6BE/zrOt9kMDLAnjY=
6l7lGiNrFPe70+wV6nQ3jBf+CQmDDvawl+jng0m46jc=
5mwEOWMTTnZUIn3Pp0mOSqY6juKz+3UicGiv9ySIJLM=
vKIwrFWxEWWRF9gEug886gq7HTL9iI6rsc+lzqFJmz8=
CsZZt7c+m8UTq6AB98ObTOLYjazS80EVOwau6YAHfdM=
tlH625fDDwBIL0q81BtSktLVUzjD69/+jSXtxjstrLA=
HJBjrQgKu4gJR4c1M4Z+Hj2h6/NK5ClVGD8MRkJMJ10=
xvDGxTqT+onnL70j3bwVr+RuEUWXxzVLqsesPhIBRp0=
xVhFXiB6N3R+Q+qOpQ0puX1RQBFsdydmX98jFvU6RuA=
jbiT2psjJO69bqAE7kRHI2tMzTWykDfJDfAa+8YV9D0=
im0pu+KJqVt8OOyeRkXqob+ca4YL5IxzaRIMgpWoz3k=
RKPkYE73079mss077MNpuj7V9WshyoRBz6RPBx1Leng=
jcx/xDJ771XkxKmxEA03iKOQ5sHzFSnoXg1TkUSkPDU=
pIFtLUryLPdWoHAdpti4w2NngqhQ6PmGgzS++Pea/hw=
Wr1sR72I2OS0lV3WitOdpgt67tFFqfFyxrFxb7jCPDw=
QbcSn6TiFoblQ5ADeT44vmtTljEA8UkLM6c/GiDwmdo=
pNWU85KYslmKB9JHNnwQP7IgOGWPLKQNtC8A+ADfulc=
s6a+nA6RK/WXMOo6jwgPYlNyfK9MfxfEV3zvtckLGmQ=
hazr0/ulet1nW8HPTA+L+d68zG08gE02BhD2VfBX1OE=
KGUAsdd5Z8/qs09ISBbv/m4eI4E9169DY2pJio6mUQ8=
QHrS5QwgAwgKUFL9JFajdczFUPiPo2uAjNzzvvDfb44=
8/VEDpzrdGWlW8MxYXYLsAxMMKLg5Q8ofW81gCsnnWE=
84zGg0HS6PZi2yyq6wDh0PtJY1AGa7whYnjqbhDz3hQ=
nHC89EJurzXeqTRt56VUkmKe0FVrkgY2dd45+HE/NcI=
CuI8IrpHAxl5k1eqFmKitneZoKS8+2xz3zeKoM33grc=
N2OvcbC9HNVZJl2sTZFdkOj9pWqDptaun0ntLKWRMHg=
dTHh1oH9BKWRCBI8roxxohbt1JI4OP0zjtl1km7SlYM=
YpzX9sCHK6CsL/l3gpqRolKMpejKV5NUgIJ/yQyblvw=
QKWSt6cZWngq+EajRfKSW7ajJJYfd1qjESpDfZPxhyo=
3veNDBW0CxhtMzw+INwUUeVCjnPj6R35hihb3tszWv8=
Tw7K/B8pC1Knf3FNSEOKfbB3vyyVJCmhcIDXEVqzOtw=
oZQsviSrBTYllv5dCtvwQbbD/+6vgm+NCOxmobqz2oA=
wso70W5EA28/WFPIf3Uv7pDmD6gUKBMw0opO3owcv/s=
ZDFaYLj45vBgXx7H5c6NpT282stdwGkuEyewps5plsQ=
c7cVjMRXq/wfp63L5fWThhKsvUODCmpOmUxP2Ycum2M=
sCiRH9P+d1yZlPXY4Hgqqm9jysjSWjO07UPXds/kP08=
xK6oZYprPqia4ob4OkPGoGd0doI0DgxdYId5E6CeC4I=
es4H/pTMAVN5/AXp0+zRoFzL4PO1EUDI8H55caucQqw=
vO38A8k0QUGL88FfLTfiY6JuToNbnGoJzqr/KCIdU9E=
Q2YYe856Vm0e9pmiuL6sUmi3OHxv4JO8APucILKjpqQ=
Q5kpb0d9utvn1I88JZBKrZx+km/BkW8XZTDIM03kdhQ=
sOxB6UtNozoKPUnPQ4d3J7KUqX8K2P8fYAdDxq3tVgo=
0TnfHzpbv4k5oHbGg66yu23DzZH8Mv00fCZZVGGNzS4=
SA9O2cFjyuRYbEVt/NICx4/8Ba2oG5WE52/UV3XAHHw=
Gb4CyBH+TipEkhU5USr7d/z5KVSSRnx/G9Qz/TJ8dxg=
1Z+Nv3ol36hI3DWGayfe14F7YFXATjuPwWrIsQ4W3n4=
rc/0GHm0QUbAyA90wE7G8cHluKfZZgxfjxqWuzYuUcc=
gpOu4nwrZx4BpPcYMi41WnYq3d+iQfHlyQioPfZBe5E=
VEPbP9YHeyJcV8/YMPvwwnWHhE09uZpr9N2WIUMD4oY=
5XWi8aOacs8ffCRKWoL7QAdUTtfMDFhshQNx01eHzaI=
UfmVeT5KJ3OHtUh6o/5zPc3tC85Ur/HFxtqSecPpeQc=
cXWppZFRzg6BG4z8KaGu/hyjm5YsiXU45yq4yCTdx34=
DIyLqthqvtIqAjYJNhO5MFF6wXK+yyQdA+bnLWZHUbQ=
QUAHD5MWjKFY6/73bOBrPKmsljNRdIYFOTEejvfSuHM=
gGG3e+IzUestJB/OTpwto98auSFw0JkGuE/EXzLuMwo=
n2nL4sILpLBOBMaO1jvPgFJ5W1hDSIqhyzF26ekD8Z0=
BZ++RwWO0rgEGxF2i+ViLhTq5bpJLNUB5WKg5cR9F4c=
6qXk8pHSBPSts0rfiHRbL5irvfC8rsSN0OoFiElMN14=
TPAn3tVrzNcSJzb/P2F1L2h6Gl/i76UJuLzLfyQi0eI=
4+kfpB5UCN/XJ+AkXzOEQUUb2Lv+659QtRvJmgBAqBI=
d45yw0wTLjM5S0oorUZJzu61OtgV5shbeWFy8pi+2Oc=
lkOO3XqQUPOZ+kVj0XdygbTLzxR16KEIluR5FAfMXc4=
6WK1/Yoy0FkwE3qfPXQgodeHbqfe13AeyLy1xx/1EXA=
17c39U04IRwfLSfmifx1PDD9LgRWXBeA3mwgek3E4Rc=
7mSIFVk/3x4P5b+jXKbRmmb+mpKoG/Im1va2Gk6JAws=
/GWl3iy3EIPxdOM66BxOm4Dm/KvFuX+UMUPsvxZYWCU=
/M43PrwBjmtzbv/GWouB2OpLSvwaioJE2nX3CRYsqFM=
q282jsy2bohY9ijfVlBvb9pqUJPj4aDKa4huvJ1NtaQ=
T5yHdI9Tnd5ioR2WPY2/OGWfP7jhhcXVfiUoUUlplKU=
ML67ZU5iDlbhaAF39/QJnB67/5H7tCZZdSZZoe17JSg=
Nw0mrKMCytSn6kJrcjUu3Aw734X180nKnuyo41nBxOw=
anJEkNWn8VXilO/6QuMdEhaAMrtVBtxGWFrjeaoaDKg=
V9TzDkmBrnP0cf9plHFMkxO5iYqBRcdwdh6Cj2gWvic=
flcNAZEfspZwJss82G0eoaQrKV3R5xW2IUTIebxRr3w=
VCn0Zonza3c6eZoZL0E4cLqddF41N+/C3gJrY+PWwq8=
bafBm25sCLWbpMz8JZu57nSrnynFzCW5O/enHai1Gw8=
ZDCLO0QmBsfSRVuP+fZAPgbfQtZL4c5QSgGs4F9Frg0=
VbeiLoNPUAe1780zrFswGf7/1J2p5gGcIP7X5y/QcL0=
jC/oLEmnR4/BhE6mTO1E7aASTm6kuxuawyuxk1XQkb4=
Cyu9vJx83ZXB9fCKhbTxUa5+ujCPqJ6FwGfmp+Q7tCI=
yJHQLlyVnn/3ij2qrenjcPQvhEhsCFh7de82YyAjXlY=