1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-23 00:28:11 +00:00

Module to decrypt PEM-encoded encrypted private keys (#74)

Supports a variety of common PKCS#1 ciphers, with fast kernels in all
available colours, shapes, and sizes.
This commit is contained in:
Matt Palmer 2020-05-19 23:58:09 +10:00
parent f2c69ecfe5
commit 2d83149a54
19 changed files with 4013 additions and 0 deletions

View File

@ -771,6 +771,262 @@ DECLSPEC void md5_update_global_utf16le_swap (md5_ctx_t *ctx, GLOBAL_AS const u3
md5_update_64 (ctx, w0, w1, w2, w3, (len - pos1) * 2);
}
DECLSPEC void md5_update_local (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len)
{
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
int pos1;
int pos4;
for (pos1 = 0, pos4 = 0; pos1 < len - 64; pos1 += 64, pos4 += 16)
{
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
w2[0] = w[pos4 + 8];
w2[1] = w[pos4 + 9];
w2[2] = w[pos4 + 10];
w2[3] = w[pos4 + 11];
w3[0] = w[pos4 + 12];
w3[1] = w[pos4 + 13];
w3[2] = w[pos4 + 14];
w3[3] = w[pos4 + 15];
md5_update_64 (ctx, w0, w1, w2, w3, 64);
}
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
w2[0] = w[pos4 + 8];
w2[1] = w[pos4 + 9];
w2[2] = w[pos4 + 10];
w2[3] = w[pos4 + 11];
w3[0] = w[pos4 + 12];
w3[1] = w[pos4 + 13];
w3[2] = w[pos4 + 14];
w3[3] = w[pos4 + 15];
md5_update_64 (ctx, w0, w1, w2, w3, len - pos1);
}
DECLSPEC void md5_update_local_swap (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len)
{
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
int pos1;
int pos4;
for (pos1 = 0, pos4 = 0; pos1 < len - 64; pos1 += 64, pos4 += 16)
{
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
w2[0] = w[pos4 + 8];
w2[1] = w[pos4 + 9];
w2[2] = w[pos4 + 10];
w2[3] = w[pos4 + 11];
w3[0] = w[pos4 + 12];
w3[1] = w[pos4 + 13];
w3[2] = w[pos4 + 14];
w3[3] = w[pos4 + 15];
w0[0] = hc_swap32_S (w0[0]);
w0[1] = hc_swap32_S (w0[1]);
w0[2] = hc_swap32_S (w0[2]);
w0[3] = hc_swap32_S (w0[3]);
w1[0] = hc_swap32_S (w1[0]);
w1[1] = hc_swap32_S (w1[1]);
w1[2] = hc_swap32_S (w1[2]);
w1[3] = hc_swap32_S (w1[3]);
w2[0] = hc_swap32_S (w2[0]);
w2[1] = hc_swap32_S (w2[1]);
w2[2] = hc_swap32_S (w2[2]);
w2[3] = hc_swap32_S (w2[3]);
w3[0] = hc_swap32_S (w3[0]);
w3[1] = hc_swap32_S (w3[1]);
w3[2] = hc_swap32_S (w3[2]);
w3[3] = hc_swap32_S (w3[3]);
md5_update_64 (ctx, w0, w1, w2, w3, 64);
}
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
w2[0] = w[pos4 + 8];
w2[1] = w[pos4 + 9];
w2[2] = w[pos4 + 10];
w2[3] = w[pos4 + 11];
w3[0] = w[pos4 + 12];
w3[1] = w[pos4 + 13];
w3[2] = w[pos4 + 14];
w3[3] = w[pos4 + 15];
w0[0] = hc_swap32_S (w0[0]);
w0[1] = hc_swap32_S (w0[1]);
w0[2] = hc_swap32_S (w0[2]);
w0[3] = hc_swap32_S (w0[3]);
w1[0] = hc_swap32_S (w1[0]);
w1[1] = hc_swap32_S (w1[1]);
w1[2] = hc_swap32_S (w1[2]);
w1[3] = hc_swap32_S (w1[3]);
w2[0] = hc_swap32_S (w2[0]);
w2[1] = hc_swap32_S (w2[1]);
w2[2] = hc_swap32_S (w2[2]);
w2[3] = hc_swap32_S (w2[3]);
w3[0] = hc_swap32_S (w3[0]);
w3[1] = hc_swap32_S (w3[1]);
w3[2] = hc_swap32_S (w3[2]);
w3[3] = hc_swap32_S (w3[3]);
md5_update_64 (ctx, w0, w1, w2, w3, len - pos1);
}
DECLSPEC void md5_update_local_utf16le (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len)
{
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
int pos1;
int pos4;
for (pos1 = 0, pos4 = 0; pos1 < len - 32; pos1 += 32, pos4 += 8)
{
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
make_utf16le_S (w1, w2, w3);
make_utf16le_S (w0, w0, w1);
md5_update_64 (ctx, w0, w1, w2, w3, 32 * 2);
}
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
make_utf16le_S (w1, w2, w3);
make_utf16le_S (w0, w0, w1);
md5_update_64 (ctx, w0, w1, w2, w3, (len - pos1) * 2);
}
DECLSPEC void md5_update_local_utf16le_swap (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len)
{
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
int pos1;
int pos4;
for (pos1 = 0, pos4 = 0; pos1 < len - 32; pos1 += 32, pos4 += 8)
{
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
make_utf16le_S (w1, w2, w3);
make_utf16le_S (w0, w0, w1);
w0[0] = hc_swap32_S (w0[0]);
w0[1] = hc_swap32_S (w0[1]);
w0[2] = hc_swap32_S (w0[2]);
w0[3] = hc_swap32_S (w0[3]);
w1[0] = hc_swap32_S (w1[0]);
w1[1] = hc_swap32_S (w1[1]);
w1[2] = hc_swap32_S (w1[2]);
w1[3] = hc_swap32_S (w1[3]);
w2[0] = hc_swap32_S (w2[0]);
w2[1] = hc_swap32_S (w2[1]);
w2[2] = hc_swap32_S (w2[2]);
w2[3] = hc_swap32_S (w2[3]);
w3[0] = hc_swap32_S (w3[0]);
w3[1] = hc_swap32_S (w3[1]);
w3[2] = hc_swap32_S (w3[2]);
w3[3] = hc_swap32_S (w3[3]);
md5_update_64 (ctx, w0, w1, w2, w3, 32 * 2);
}
w0[0] = w[pos4 + 0];
w0[1] = w[pos4 + 1];
w0[2] = w[pos4 + 2];
w0[3] = w[pos4 + 3];
w1[0] = w[pos4 + 4];
w1[1] = w[pos4 + 5];
w1[2] = w[pos4 + 6];
w1[3] = w[pos4 + 7];
make_utf16le_S (w1, w2, w3);
make_utf16le_S (w0, w0, w1);
w0[0] = hc_swap32_S (w0[0]);
w0[1] = hc_swap32_S (w0[1]);
w0[2] = hc_swap32_S (w0[2]);
w0[3] = hc_swap32_S (w0[3]);
w1[0] = hc_swap32_S (w1[0]);
w1[1] = hc_swap32_S (w1[1]);
w1[2] = hc_swap32_S (w1[2]);
w1[3] = hc_swap32_S (w1[3]);
w2[0] = hc_swap32_S (w2[0]);
w2[1] = hc_swap32_S (w2[1]);
w2[2] = hc_swap32_S (w2[2]);
w2[3] = hc_swap32_S (w2[3]);
w3[0] = hc_swap32_S (w3[0]);
w3[1] = hc_swap32_S (w3[1]);
w3[2] = hc_swap32_S (w3[2]);
w3[3] = hc_swap32_S (w3[3]);
md5_update_64 (ctx, w0, w1, w2, w3, (len - pos1) * 2);
}
DECLSPEC void md5_final (md5_ctx_t *ctx)
{
MAYBE_VOLATILE const int pos = ctx->len & 63;

View File

@ -100,6 +100,10 @@ DECLSPEC void md5_update_global (md5_ctx_t *ctx, GLOBAL_AS const u32 *w, const i
DECLSPEC void md5_update_global_swap (md5_ctx_t *ctx, GLOBAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_global_utf16le (md5_ctx_t *ctx, GLOBAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_global_utf16le_swap (md5_ctx_t *ctx, GLOBAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_local (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_local_swap (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_local_utf16le (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len);
DECLSPEC void md5_update_local_utf16le_swap (md5_ctx_t *ctx, LOCAL_AS const u32 *w, const int len);
DECLSPEC void md5_final (md5_ctx_t *ctx);
DECLSPEC void md5_hmac_init_64 (md5_hmac_ctx_t *ctx, const u32 *w0, const u32 *w1, const u32 *w2, const u32 *w3);
DECLSPEC void md5_hmac_init (md5_hmac_ctx_t *ctx, const u32 *w, const int len);

190
OpenCL/inc_pkcs1_common.cl Normal file
View File

@ -0,0 +1,190 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "inc_types.h"
#include "inc_vendor.h"
#include "inc_pkcs1_common.h"
#ifdef KERNEL_STATIC
#include "inc_hash_md5.cl"
#endif
DECLSPEC void generate_key (u32 *salt_buf, u32 *pw, size_t pw_len, u32 *key)
{
#ifdef DEBUG
printf("salt_buf:");
for (u32 i = 0; i < 16; i++) printf(" 0x%08x", salt_buf[i]);
printf("\n");
printf("pw:");
for (u32 i = 0; i < 16; i++) printf(" 0x%08x", pw[i]);
printf("\n");
printf("pw_len: %lu\n", pw_len);
#endif
u32 md_buf[16] = { 0 };
md5_ctx_t md_ctx;
md5_init (&md_ctx);
md5_update (&md_ctx, pw, pw_len);
md5_update (&md_ctx, salt_buf, HC_PKCS1_SALT_LENGTH);
md5_final (&md_ctx);
key[0] = md_ctx.h[0];
#if KEY_LENGTH > 4
key[1] = md_ctx.h[1];
#endif
#if KEY_LENGTH > 8
key[2] = md_ctx.h[2];
#endif
#if KEY_LENGTH > 12
key[3] = md_ctx.h[3];
#endif
#if KEY_LENGTH > 16
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < HC_PKCS1_MD_LENGTH / 4; i++)
{
md_buf[i] = md_ctx.h[i];
}
md5_init (&md_ctx);
md5_update (&md_ctx, md_buf, HC_PKCS1_MD_LENGTH);
md5_update (&md_ctx, pw, pw_len);
md5_update (&md_ctx, salt_buf, HC_PKCS1_SALT_LENGTH);
md5_final (&md_ctx);
key[4] = md_ctx.h[0];
#endif // KEY_LENGTH > 16
#if KEY_LENGTH > 20
key[5] = md_ctx.h[1];
#endif
#if KEY_LENGTH > 24
key[6] = md_ctx.h[2];
#endif
#if KEY_LENGTH > 28
key[7] = md_ctx.h[3];
#endif
#if KEY_LENGTH > 32
#error Only supports up to KEY_LENGTH == 32 at present. Extend generate_key!
#endif
#ifdef DEBUG
printf("key:");
for (u32 i = 0; i < KEY_LENGTH / 4; i++) printf(" 0x%08x", key[i]);
printf("\n");
#endif // DEBUG
}
DECLSPEC void generate_key_vector (u32 *salt_buf, u32x *pw, size_t pw_len, u32x *key)
{
#ifdef DEBUG
printf("salt_buf:");
for (u32 i = 0; i < 16; i++) printf(" 0x%08x", salt_buf[i]);
printf("\n");
for (u32 v = 0; v < VECT_SIZE; v++)
{
printf("pw[%u]:", v);
for (u32 i = 0; i < 16; i++) printf(" 0x%08x", VECTOR_ELEMENT(pw[i], v));
printf("\n");
}
printf("pw_len: %lu\n", pw_len);
#endif
u32x md_buf[16] = { 0 };
md5_ctx_vector_t md_ctx;
md5_init_vector (&md_ctx);
md5_update_vector (&md_ctx, pw, pw_len);
md5_update_vector_from_scalar (&md_ctx, salt_buf, HC_PKCS1_SALT_LENGTH);
md5_final_vector (&md_ctx);
key[0] = md_ctx.h[0];
#if KEY_LENGTH > 4
key[1] = md_ctx.h[1];
#endif
#if KEY_LENGTH > 8
key[2] = md_ctx.h[2];
#endif
#if KEY_LENGTH > 12
key[3] = md_ctx.h[3];
#endif
#if KEY_LENGTH > 16
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < HC_PKCS1_MD_LENGTH / 4; i++)
{
md_buf[i] = md_ctx.h[i];
}
md5_init_vector (&md_ctx);
md5_update_vector (&md_ctx, md_buf, HC_PKCS1_MD_LENGTH);
md5_update_vector (&md_ctx, pw, pw_len);
md5_update_vector_from_scalar (&md_ctx, salt_buf, HC_PKCS1_SALT_LENGTH);
md5_final_vector (&md_ctx);
key[4] = md_ctx.h[0];
#endif // KEY_LENGTH > 16
#if KEY_LENGTH > 20
key[5] = md_ctx.h[1];
#endif
#if KEY_LENGTH > 24
key[6] = md_ctx.h[2];
#endif
#if KEY_LENGTH > 28
key[7] = md_ctx.h[3];
#endif
#if KEY_LENGTH > 32
#error Only supports up to KEY_LENGTH == 32 at present. Extend generate_key!
#endif
#ifdef DEBUG
for (u32 v = 0; v < VECT_SIZE; v++)
{
printf("key[%u]:", v);
for (u32 i = 0; i < KEY_LENGTH / 4; i++) printf(" 0x%08x", VECTOR_ELEMENT(key[i], v));
printf("\n");
}
#endif // DEBUG
}
DECLSPEC void prep_buffers(u32 *salt_buf, u32 *salt_iv, u32 *first_block, PSEUDO_SHM_TYPE u32 *data, GLOBAL_AS const pkcs1_t *esalt)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < HC_PKCS1_SALT_LENGTH / 4; i++)
{
salt_buf[i] = esalt->salt_iv[i];
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
salt_iv[i] = esalt->salt_iv[i];
first_block[i] = data[i];
}
}

35
OpenCL/inc_pkcs1_common.h Normal file
View File

@ -0,0 +1,35 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifndef _INC_PKCS1_COMMON_H
#define _INC_PKCS1_COMMON_H
#define HC_PKCS1_SALT_LENGTH 8
#define HC_PKCS1_MD_LENGTH 16
#define HC_PKCS1_MAX_BLOCK_SIZE 16
#define HC_PKCS1_MAX_KEY_LENGTH 32
#define HC_PKCS1_MAX_DATA_LENGTH 12288
typedef struct pkcs1
{
void *chosen_cipher;
u32 salt_iv[HC_PKCS1_MAX_BLOCK_SIZE / 4];
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
size_t data_len;
} pkcs1_t;
#ifdef REAL_SHM
#define PSEUDO_SHM_TYPE LOCAL_AS
#else
#define PSEUDO_SHM_TYPE
#endif
DECLSPEC void generate_key (u32 *salt_buf, u32 *pw, size_t pw_len, u32 *key);
DECLSPEC void generate_key_vector (u32 *salt_buf, u32x *pw, size_t pw_len, u32x *key);
DECLSPEC void prep_buffers (u32 *salt_buf, u32 *salt_iv, u32 *first_block, PSEUDO_SHM_TYPE u32 *data, GLOBAL_AS const pkcs1_t *esalt);
#endif // _INC_PKCS1_COMMON_H

238
OpenCL/m24111_a0-pure.cl Normal file
View File

@ -0,0 +1,238 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 8
#define KEY_LENGTH 24
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_rp.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24111_sxx (KERN_ATTR_RULES_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
COPY_PW (pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
generate_key (salt_buf, tmp.i, tmp.pw_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16], K2[16], K3[16], K4[16], K5[16];
_des_crypt_keysetup (key[0], key[1], K0, K1, s_skb);
_des_crypt_keysetup (key[2], key[3], K2, K3, s_skb);
_des_crypt_keysetup (key[4], key[5], K4, K5, s_skb);
u32 p1[BLOCK_SIZE / 4], p2[BLOCK_SIZE / 4];
_des_crypt_decrypt (p1, first_block, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (p1, ciphertext, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

261
OpenCL/m24111_a1-pure.cl Normal file
View File

@ -0,0 +1,261 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 8
#define KEY_LENGTH 24
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24111_sxx (KERN_ATTR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
const u32 pw_len = pws[gid].pw_len;
u32 w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] |= w[i];
}
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key (salt_buf, c, pw_len + comb_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16], K2[16], K3[16], K4[16], K5[16];
_des_crypt_keysetup (key[0], key[1], K0, K1, s_skb);
_des_crypt_keysetup (key[2], key[3], K2, K3, s_skb);
_des_crypt_keysetup (key[4], key[5], K4, K5, s_skb);
u32 p1[BLOCK_SIZE / 4], p2[BLOCK_SIZE / 4];
_des_crypt_decrypt (p1, first_block, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (p1, ciphertext, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

253
OpenCL/m24111_a3-pure.cl Normal file
View File

@ -0,0 +1,253 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#define BLOCK_SIZE 8
#define KEY_LENGTH 24
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24111_sxx (KERN_ATTR_VECTOR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
const u32 pw_len = pws[gid].pw_len;
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
u32x w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
u32x w0l = w[0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key_vector (salt_buf, w, pw_len, key);
for (u32 v_pos = 0; v_pos < VECT_SIZE; v_pos++)
{
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16], K2[16], K3[16], K4[16], K5[16];
_des_crypt_keysetup (VECTOR_ELEMENT(key[0], v_pos), VECTOR_ELEMENT(key[1], v_pos), K0, K1, s_skb);
_des_crypt_keysetup (VECTOR_ELEMENT(key[2], v_pos), VECTOR_ELEMENT(key[3], v_pos), K2, K3, s_skb);
_des_crypt_keysetup (VECTOR_ELEMENT(key[4], v_pos), VECTOR_ELEMENT(key[5], v_pos), K4, K5, s_skb);
u32 p1[BLOCK_SIZE / 4], p2[BLOCK_SIZE / 4];
_des_crypt_decrypt (p1, first_block, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (p1, ciphertext, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos + v_pos, 0, 0);
}
}
}
}
}

229
OpenCL/m24121_a0-pure.cl Normal file
View File

@ -0,0 +1,229 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 8
#define KEY_LENGTH 8
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_rp.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24121_sxx (KERN_ATTR_RULES_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
COPY_PW(pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
generate_key (salt_buf, tmp.i, tmp.pw_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16];
_des_crypt_keysetup (key[0], key[1], K0, K1, s_skb);
_des_crypt_decrypt (plaintext, first_block, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (plaintext, ciphertext, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

252
OpenCL/m24121_a1-pure.cl Normal file
View File

@ -0,0 +1,252 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 8
#define KEY_LENGTH 8
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24121_sxx (KERN_ATTR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
const u32 pw_len = pws[gid].pw_len;
u32 w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] |= w[i];
}
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key (salt_buf, c, pw_len + comb_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16];
_des_crypt_keysetup (key[0], key[1], K0, K1, s_skb);
_des_crypt_decrypt (plaintext, first_block, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (plaintext, ciphertext, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

244
OpenCL/m24121_a3-pure.cl Normal file
View File

@ -0,0 +1,244 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#define BLOCK_SIZE 8
#define KEY_LENGTH 8
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_cipher_des.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24121_sxx (KERN_ATTR_VECTOR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif // REAL_SHM
const u32 pw_len = pws[gid].pw_len;
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
u32x w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
u32x w0l = w[0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key_vector (salt_buf, w, pw_len, key);
for (u32 v_pos = 0; v_pos < VECT_SIZE; v_pos++)
{
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 K0[16], K1[16];
_des_crypt_keysetup (VECTOR_ELEMENT(key[0], v_pos), VECTOR_ELEMENT(key[1], v_pos), K0, K1, s_skb);
_des_crypt_decrypt (plaintext, first_block, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
_des_crypt_decrypt (plaintext, ciphertext, K0, K1, s_SPtrans);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos + v_pos, 0, 0);
}
}
}
}
}

241
OpenCL/m24131_a0-pure.cl Normal file
View File

@ -0,0 +1,241 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 16
#define KEY_LENGTH 16
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_rp.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24131_sxx (KERN_ATTR_RULES_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
COPY_PW (pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
generate_key (salt_buf, tmp.i, tmp.pw_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[44];
aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes128_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes128_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

264
OpenCL/m24131_a1-pure.cl Normal file
View File

@ -0,0 +1,264 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 16
#define KEY_LENGTH 16
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24131_sxx (KERN_ATTR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
const u32 pw_len = pws[gid].pw_len;
u32 w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] |= w[i];
}
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key (salt_buf, c, pw_len + comb_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[44];
aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes128_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes128_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

265
OpenCL/m24131_a3-pure.cl Normal file
View File

@ -0,0 +1,265 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#define BLOCK_SIZE 16
#define KEY_LENGTH 16
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24131_sxx (KERN_ATTR_VECTOR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
const u32 pw_len = pws[gid].pw_len;
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
u32x w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
u32x w0l = w[0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x keys[KEY_LENGTH / 4];
generate_key_vector (salt_buf, w, pw_len, keys);
#ifdef _unroll
#pragma unroll
#endif
for (u32 v_pos = 0; v_pos < VECT_SIZE; v_pos++)
{
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[44];
u32 key[KEY_LENGTH / 4];
for (u32 i = 0; i < KEY_LENGTH; i++)
{
key[i] = VECTOR_ELEMENT(keys[i], v_pos);
}
aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes128_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes128_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos + v_pos, 0, 0);
}
}
}
}
}

241
OpenCL/m24151_a0-pure.cl Normal file
View File

@ -0,0 +1,241 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 16
#define KEY_LENGTH 32
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_rp.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24151_sxx (KERN_ATTR_RULES_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
COPY_PW (pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
generate_key (salt_buf, tmp.i, tmp.pw_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[60];
aes256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes256_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes256_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

264
OpenCL/m24151_a1-pure.cl Normal file
View File

@ -0,0 +1,264 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define BLOCK_SIZE 16
#define KEY_LENGTH 32
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24151_sxx (KERN_ATTR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
const u32 pw_len = pws[gid].pw_len;
u32 w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
u32 c[64];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_be_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 16; i++)
{
c[i] |= w[i];
}
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key (salt_buf, c, pw_len + comb_len, key);
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[60];
aes256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes256_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes256_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos, 0, 0);
}
}
}
}

262
OpenCL/m24151_a3-pure.cl Normal file
View File

@ -0,0 +1,262 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#define BLOCK_SIZE 16
#define KEY_LENGTH 32
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_cipher_aes.cl"
#include "inc_pkcs1_common.cl"
#endif // KERNEL_STATIC
KERNEL_FQ void m24151_sxx (KERN_ATTR_VECTOR_ESALT (pkcs1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
if (gid >= gid_max) return;
#ifdef REAL_SHM
LOCAL_VK u32 data_len;
data_len = esalt_bufs[digests_offset].data_len;
LOCAL_VK u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
for (u32 i = lid; i <= data_len / 4; i += lsz)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
const size_t data_len = esalt_bufs[digests_offset].data_len;
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < data_len / 4; i++)
{
data[i] = esalt_bufs[digests_offset].data[i];
}
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif // REAL_SHM
const u32 pw_len = pws[gid].pw_len;
u32 salt_buf[16] = { 0 };
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
u32x w[16] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
u32x w0l = w[0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
u32x keys[HC_PKCS1_MAX_KEY_LENGTH / 4];
generate_key_vector (salt_buf, w, pw_len, keys);
for (u32 v_pos = 0; v_pos < VECT_SIZE; v_pos++)
{
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
u32 ks[60];
u32 key[KEY_LENGTH / 4];
for (u32 i = 0; i < KEY_LENGTH; i++)
{
key[i] = VECTOR_ELEMENT(keys[i], v_pos);
}
aes256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
aes256_decrypt (ks, first_block, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
plaintext[i] ^= salt_iv[i];
}
#ifdef DEBUG
printf("First plaintext block:");
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
printf("\n");
#endif // DEBUG
if (data_len < 128)
{
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
}
else if (data_len < 256)
{
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
}
else if (data_len < 65536)
{
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
}
#ifdef DEBUG
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
#endif // DEBUG
if (asn1_ok == 0)
{
continue;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
{
iv[i] = first_block[i];
}
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
ciphertext[j] = data[i + j];
}
aes256_decrypt (ks, ciphertext, plaintext, s_td0, s_td1, s_td2, s_td3, s_td4);
#ifdef _unroll
#pragma unroll
#endif
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
{
plaintext[j] ^= iv[j];
iv[j] = ciphertext[j];
}
#ifdef DEBUG
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
printf("\n");
#endif
}
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
u8 *pt_bytes = (u8 *) plaintext;
#ifdef DEBUG
printf("Padding byte: 0x%02x\n", padding_count);
#endif
if (padding_count > BLOCK_SIZE || padding_count == 0)
{
// That *can't* be right
padding_ok = 0;
} else {
padding_ok = 1;
}
for (u32 i = 0; i < padding_count; i++)
{
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
{
padding_ok = 0;
break;
}
plaintext_length++;
}
#ifdef DEBUG
if (padding_ok == 1) printf("Padding checks out\n");
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
#endif
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos + v_pos, 0, 0);
}
}
}
}
}

View File

@ -70,6 +70,7 @@
- Added hash-mode: Web2py pbkdf2-sha512
- Added hash-mode: WPA-PBKDF2-PMKID+EAPOL
- Added hash-mode: WPA-PMK-PMKID+EAPOL
- Added hash-mode: PKCS#1 key
##
## Bugs

View File

@ -322,6 +322,7 @@ NVIDIA GPUs require "NVIDIA Driver" (440.64 or later) and "CUDA Toolkit" (9.0 or
- Django (SHA-1)
- Web2py pbkdf2-sha512
- TOTP (HMAC-SHA1)
- PKCS#1 key
##
## Attack-Modes

512
src/modules/module_24100.c Normal file
View File

@ -0,0 +1,512 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "common.h"
#include "types.h"
#include "modules.h"
#include "bitops.h"
#include "convert.h"
#include "shared.h"
#include "memory.h"
#define HC_PKCS1_SALT_LENGTH 8
#define HC_PKCS1_MAX_BLOCK_SIZE 16
#define HC_PKCS1_MAX_KEY_LENGTH 32
#define HC_PKCS1_MAX_DATA_LENGTH 12288
// The longest OpenSSL cipher name I can find is 24 characters, so add on seven
// more characters for luck and one for the \0 gives us 32.
#define HC_PKCS1_MAX_CIPHER_NAME_LENGTH 32
static const u32 ATTACK_EXEC = ATTACK_EXEC_INSIDE_KERNEL;
static const u32 DGST_POS0 = 0;
static const u32 DGST_POS1 = 1;
static const u32 DGST_POS2 = 2;
static const u32 DGST_POS3 = 3;
static const u32 DGST_SIZE = DGST_SIZE_4_4;
static const u32 HASH_CATEGORY = HASH_CATEGORY_DOCUMENTS;
static const char *HASH_NAME = "PKCS#1 key";
static const u64 KERN_TYPE = 24100; // this gets overwritten later instead of in benchmark
static const u32 OPTI_TYPE = OPTI_TYPE_ZERO_BYTE;
static const u64 OPTS_TYPE = OPTS_TYPE_PT_GENERATE_LE
| OPTS_TYPE_BINARY_HASHFILE;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = NULL; // ST_HASH_24100 multi-hash-mode algorithm, unlikely to match self-test hash settings
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
u32 module_dgst_pos1 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS1; }
u32 module_dgst_pos2 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS2; }
u32 module_dgst_pos3 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS3; }
u32 module_dgst_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_SIZE; }
u32 module_hash_category (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_CATEGORY; }
const char *module_hash_name (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_NAME; }
u64 module_kern_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return KERN_TYPE; }
u32 module_opti_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTI_TYPE; }
u64 module_opts_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTS_TYPE; }
u32 module_salt_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return SALT_TYPE; }
const char *module_st_hash (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_HASH; }
const char *module_st_pass (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_PASS; }
typedef enum kern_type_pkcs1
{
KERN_TYPE_PKCS1_3DES_CBC = 24111,
KERN_TYPE_PKCS1_DES_CBC = 24121,
KERN_TYPE_PKCS1_AES128_CBC = 24131,
KERN_TYPE_PKCS1_AES192_CBC = 24141,
KERN_TYPE_PKCS1_AES256_CBC = 24151,
} kern_type_pkcs1_t;
typedef enum hc_pkcs1_cipher_type
{
HC_PKCS1_CIPHER_TYPE_3DES = 1,
HC_PKCS1_CIPHER_TYPE_DES = 2,
HC_PKCS1_CIPHER_TYPE_AES128 = 3,
HC_PKCS1_CIPHER_TYPE_AES192 = 4,
HC_PKCS1_CIPHER_TYPE_AES256 = 5,
} hc_pkcs1_cipher_type_t;
typedef enum hc_pkcs1_cipher_mode
{
HC_PKCS1_CIPHER_MODE_CBC = 1,
} hc_pkcs1_cipher_mode_t;
typedef struct pkcs1_cipher
{
char *name;
u32 block_size;
u32 key_length;
u32 cipher_type;
u32 cipher_mode;
} hc_pkcs1_cipher_t;
static hc_pkcs1_cipher_t pkcs1_ciphers[] = {
{"des-ede3-cbc", 8, 24, HC_PKCS1_CIPHER_TYPE_3DES, HC_PKCS1_CIPHER_MODE_CBC},
{"des-cbc", 8, 8, HC_PKCS1_CIPHER_TYPE_DES, HC_PKCS1_CIPHER_MODE_CBC},
{"aes-128-cbc", 16, 16, HC_PKCS1_CIPHER_TYPE_AES128, HC_PKCS1_CIPHER_MODE_CBC},
{"aes-192-cbc", 16, 24, HC_PKCS1_CIPHER_TYPE_AES192, HC_PKCS1_CIPHER_MODE_CBC},
{"aes-256-cbc", 16, 32, HC_PKCS1_CIPHER_TYPE_AES256, HC_PKCS1_CIPHER_MODE_CBC},
{NULL, 0, 0, 0, 0}
};
typedef struct pkcs1
{
hc_pkcs1_cipher_t *chosen_cipher;
u32 salt_iv[HC_PKCS1_MAX_BLOCK_SIZE / 4];
u32 data[HC_PKCS1_MAX_DATA_LENGTH / 4];
size_t data_len;
} pkcs1_t;
typedef struct pkcs1_tmp
{
u32 key[HC_PKCS1_MAX_KEY_LENGTH / 4];
} pkcs1_tmp_t;
u32 module_pw_max (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const user_options_t * user_options, MAYBE_UNUSED const user_options_extra_t * user_options_extra)
{
const u32 pw_max = 64;
return pw_max;
}
bool module_outfile_check_disable (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const user_options_t * user_options, MAYBE_UNUSED const user_options_extra_t * user_options_extra)
{
const bool outfile_check_disable = true;
return outfile_check_disable;
}
int module_hash_binary_count (MAYBE_UNUSED const hashes_t * hashes)
{
return 1;
}
int module_hash_binary_parse (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const user_options_t * user_options, MAYBE_UNUSED const user_options_extra_t * user_options_extra, hashes_t * hashes)
{
hash_t *hashes_buf = hashes->hashes_buf;
hash_t *hash = &hashes_buf[0];
memset (hash->salt, 0, sizeof (salt_t));
memset (hash->esalt, 0, sizeof (pkcs1_t));
return module_hash_decode (hashconfig, hash->digest, hash->salt, hash->esalt, hash->hook_salt, hash->hash_info, hashes->hashfile, strlen (hashes->hashfile));
}
static int peminator (char *buf, char *type, char **start, size_t * len)
{
char start_header[256], end_header[256];
snprintf (start_header, 256, "-----BEGIN %s-----", type);
snprintf (end_header, 256, "-----END %s-----", type);
char *start_point = buf;
while (start_point != NULL)
{
if ((start_point = strstr (start_point, start_header)) == NULL)
return -1;
if (start_point != buf && start_point[-1] != '\n')
continue;
if (start_point[strlen (start_header)] == '\n')
break;
}
char *end_point = start_point;
while (end_point != NULL)
{
if ((end_point = strstr (end_point, end_header)) == NULL)
return -1;
if (end_point[-1] == '\n' && (end_point[strlen (end_header)] == '\n' || end_point[strlen (end_header)] == '\0'))
{
break;
}
else
{
end_point++;
}
}
*start = start_point + strlen (start_header) + 1;
*len = end_point - *start;
return 0;
}
static int parse_dek_info (char *line, char *cipher_name, u8 * salt)
{
line += strlen ("DEK-Info: ");
u8 i = 0;
int salty = -1;
for (; *line != '\0'; line++)
{
if (salty >= 0)
{
if (i++ % 2 == 0)
{
if (line[1] == '\0')
{
return PARSER_SALT_LENGTH;
}
salt[salty++] = hex_to_u8 ((u8 *) line);
if (salty > HC_PKCS1_MAX_BLOCK_SIZE)
{
return PARSER_SALT_LENGTH;
}
}
else if (line[1] == '\0')
{
if (salty < HC_PKCS1_SALT_LENGTH)
{
// Malformed salt, not long enough for PKCS5's liking
return PARSER_SALT_LENGTH;
}
else
{
return 0;
}
}
}
else if (*line == ',')
{
cipher_name[i] = '\0';
salty = 0;
i = 0;
}
else
{
cipher_name[i++] = *line;
if (i >= HC_PKCS1_MAX_CIPHER_NAME_LENGTH)
{
return PARSER_CIPHER;
}
}
}
return PARSER_SALT_VALUE;
}
static int parse_pkcs1_key_data (char *buf, char *cipher_name, u8 * salt, u8 * data, size_t * data_len)
{
char *pemdata;
size_t pemdata_len;
if (peminator (buf, "RSA PRIVATE KEY", &pemdata, &pemdata_len) < 0)
{
if (peminator (buf, "DSA PRIVATE KEY", &pemdata, &pemdata_len) < 0)
{
if (peminator (buf, "EC PRIVATE KEY", &pemdata, &pemdata_len) < 0)
{
if (peminator (buf, "PRIVATE KEY", &pemdata, &pemdata_len) < 0)
{
return PARSER_HASH_FILE;
}
}
}
}
u8 in_header = 1, *b64data;
char line[256];
size_t pd_idx = 0, l_idx = 0, b64_idx = 0;
b64data = hcmalloc (pemdata_len);
for (pd_idx = 0; pd_idx < pemdata_len; pd_idx++)
{
if (in_header)
{
if (pemdata[pd_idx] == '\n')
{
if (l_idx == 0)
{
// Empty line!
in_header = 0;
continue;
}
line[l_idx] = '\0';
if (strstr (line, "DEK-Info: ") == line)
{
int err;
if ((err = parse_dek_info (line, cipher_name, salt)) < 0)
{
return err;
}
}
l_idx = 0;
}
else
{
line[l_idx++] = pemdata[pd_idx];
}
}
else
{
if (pemdata[pd_idx] != '\n')
b64data[b64_idx++] = pemdata[pd_idx];
}
}
if (b64_idx * 6 / 8 > HC_PKCS1_MAX_DATA_LENGTH)
{
return PARSER_TOKEN_LENGTH;
}
*data_len = base64_decode (base64_to_int, b64data, b64_idx, data);
return 0;
}
int module_hash_decode (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED void *digest_buf, salt_t * salt, void *esalt_buf, MAYBE_UNUSED void *hook_salt_buf, MAYBE_UNUSED hashinfo_t * hash_info, const char *line_buf, MAYBE_UNUSED const int line_len)
{
pkcs1_t *pkcs1 = (pkcs1_t *) esalt_buf;
HCFILE fp;
struct stat fileinfo;
u8 *filebuf;
if (stat (line_buf, &fileinfo) < 0)
return 0;
if (hc_fopen (&fp, line_buf, "rb") == false)
return 0;
filebuf = hcmalloc (fileinfo.st_size + 1);
if (hc_fread (filebuf, 1, fileinfo.st_size, &fp) < (size_t) fileinfo.st_size)
{
hc_fclose (&fp);
hcfree (filebuf);
return PARSER_FILE_SIZE;
}
hc_fclose (&fp);
filebuf[fileinfo.st_size] = '\0';
char cipher_name[HC_PKCS1_MAX_CIPHER_NAME_LENGTH] = { 0 };
u8 saltbytes[MAX(HC_PKCS1_SALT_LENGTH, HC_PKCS1_MAX_BLOCK_SIZE)];
int err;
if ((err = parse_pkcs1_key_data ((char *) filebuf, cipher_name, saltbytes, (u8 *) pkcs1->data, &pkcs1->data_len)) < 0)
{
hcfree (filebuf);
return err;
}
u32 *saltwords = (u32 *) saltbytes;
for (u32 i = 0; i < HC_PKCS1_SALT_LENGTH / 4; i++)
{
pkcs1->salt_iv[i] = saltwords[i];
}
hc_pkcs1_cipher_t *candidate_cipher = pkcs1_ciphers, *chosen_cipher = NULL;
while (candidate_cipher->name)
{
if (strcasecmp (cipher_name, candidate_cipher->name) == 0)
{
chosen_cipher = candidate_cipher;
break;
}
else
{
candidate_cipher++;
}
}
if (chosen_cipher == NULL)
{
hcfree (filebuf);
return PARSER_CIPHER;
}
if (chosen_cipher->block_size > HC_PKCS1_MAX_BLOCK_SIZE)
{
hcfree (filebuf);
return PARSER_BLOCK_SIZE;
}
if (pkcs1->data_len % chosen_cipher->block_size)
{
hcfree (filebuf);
return PARSER_HASH_LENGTH;
}
if (chosen_cipher->key_length > HC_PKCS1_MAX_KEY_LENGTH)
{
// Nope nope nopety nope
return PARSER_KEY_SIZE;
}
pkcs1->chosen_cipher = chosen_cipher;
memcpy (salt->salt_buf, pkcs1->salt_iv, MIN (HC_PKCS1_SALT_LENGTH, 64 * 4));
salt->salt_iter = 1;
return 1;
}
u64 module_kern_type_dynamic (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t * salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t * hash_info)
{
const pkcs1_t *pkcs1 = (const pkcs1_t *) esalt_buf;
u64 kern_type = 24100;
kern_type += pkcs1->chosen_cipher->cipher_type * 10;
kern_type += pkcs1->chosen_cipher->cipher_mode;
return kern_type;
}
u64 module_esalt_size (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const user_options_t * user_options, MAYBE_UNUSED const user_options_extra_t * user_options_extra)
{
const u64 esalt_size = (const u64) sizeof (pkcs1_t);
return esalt_size;
}
char *module_jit_build_options (MAYBE_UNUSED const hashconfig_t * hashconfig, MAYBE_UNUSED const user_options_t * user_options, MAYBE_UNUSED const user_options_extra_t * user_options_extra, MAYBE_UNUSED const hashes_t * hashes, MAYBE_UNUSED const hc_device_param_t * device_param)
{
char *jit_build_options = NULL;
hc_asprintf (&jit_build_options, "-D _unroll");
return jit_build_options;
}
void module_init (module_ctx_t * module_ctx)
{
module_ctx->module_context_size = MODULE_CONTEXT_SIZE_CURRENT;
module_ctx->module_interface_version = MODULE_INTERFACE_VERSION_CURRENT;
module_ctx->module_attack_exec = module_attack_exec;
module_ctx->module_benchmark_esalt = MODULE_DEFAULT;
module_ctx->module_benchmark_hook_salt = MODULE_DEFAULT;
module_ctx->module_benchmark_mask = MODULE_DEFAULT;
module_ctx->module_benchmark_salt = MODULE_DEFAULT;
module_ctx->module_build_plain_postprocess = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = MODULE_DEFAULT;
module_ctx->module_dgst_pos0 = module_dgst_pos0;
module_ctx->module_dgst_pos1 = module_dgst_pos1;
module_ctx->module_dgst_pos2 = module_dgst_pos2;
module_ctx->module_dgst_pos3 = module_dgst_pos3;
module_ctx->module_dgst_size = module_dgst_size;
module_ctx->module_dictstat_disable = MODULE_DEFAULT;
module_ctx->module_esalt_size = module_esalt_size;
module_ctx->module_extra_buffer_size = MODULE_DEFAULT;
module_ctx->module_extra_tmp_size = MODULE_DEFAULT;
module_ctx->module_forced_outfile_format = MODULE_DEFAULT;
module_ctx->module_hash_binary_count = module_hash_binary_count;
module_ctx->module_hash_binary_parse = module_hash_binary_parse;
module_ctx->module_hash_binary_save = MODULE_DEFAULT;
module_ctx->module_hash_decode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_decode_zero_hash = MODULE_DEFAULT;
module_ctx->module_hash_decode = module_hash_decode;
module_ctx->module_hash_encode_status = MODULE_DEFAULT;
module_ctx->module_hash_encode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_encode = MODULE_DEFAULT;
module_ctx->module_hash_init_selftest = MODULE_DEFAULT;
module_ctx->module_hash_mode = MODULE_DEFAULT;
module_ctx->module_hash_category = module_hash_category;
module_ctx->module_hash_name = module_hash_name;
module_ctx->module_hashes_count_min = MODULE_DEFAULT;
module_ctx->module_hashes_count_max = MODULE_DEFAULT;
module_ctx->module_hlfmt_disable = MODULE_DEFAULT;
module_ctx->module_hook12 = MODULE_DEFAULT;
module_ctx->module_hook23 = MODULE_DEFAULT;
module_ctx->module_hook_salt_size = MODULE_DEFAULT;
module_ctx->module_hook_size = MODULE_DEFAULT;
module_ctx->module_jit_build_options = module_jit_build_options;
module_ctx->module_jit_cache_disable = MODULE_DEFAULT;
module_ctx->module_kernel_accel_max = MODULE_DEFAULT;
module_ctx->module_kernel_accel_min = MODULE_DEFAULT;
module_ctx->module_kernel_loops_max = MODULE_DEFAULT;
module_ctx->module_kernel_loops_min = MODULE_DEFAULT;
module_ctx->module_kernel_threads_max = MODULE_DEFAULT;
module_ctx->module_kernel_threads_min = MODULE_DEFAULT;
module_ctx->module_kern_type = module_kern_type;
module_ctx->module_kern_type_dynamic = module_kern_type_dynamic;
module_ctx->module_opti_type = module_opti_type;
module_ctx->module_opts_type = module_opts_type;
module_ctx->module_outfile_check_disable = module_outfile_check_disable;
module_ctx->module_outfile_check_nocomp = MODULE_DEFAULT;
module_ctx->module_potfile_custom_check = MODULE_DEFAULT;
module_ctx->module_potfile_disable = MODULE_DEFAULT;
module_ctx->module_potfile_keep_all_hashes = MODULE_DEFAULT;
module_ctx->module_pwdump_column = MODULE_DEFAULT;
module_ctx->module_pw_max = module_pw_max;
module_ctx->module_pw_min = MODULE_DEFAULT;
module_ctx->module_salt_max = MODULE_DEFAULT;
module_ctx->module_salt_min = MODULE_DEFAULT;
module_ctx->module_salt_type = module_salt_type;
module_ctx->module_separator = MODULE_DEFAULT;
module_ctx->module_st_hash = module_st_hash;
module_ctx->module_st_pass = module_st_pass;
module_ctx->module_tmp_size = MODULE_DEFAULT;
module_ctx->module_unstable_warning = MODULE_DEFAULT;
module_ctx->module_warmup_disable = MODULE_DEFAULT;
}