1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-27 02:18:21 +00:00
hashcat/OpenCL/m22911_a0-pure.cl

440 lines
8.6 KiB
Common Lisp
Raw Normal View History

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_rp.h"
#include "inc_rp.cl"
#include "inc_scalar.cl"
#include "inc_hash_md5.cl"
#include "inc_cipher_des.cl"
#endif
typedef struct pem
{
u32 data_buf[16384];
int data_len;
int cipher;
} pem_t;
KERNEL_FQ void m22911_mxx (KERN_ATTR_RULES_ESALT (pem_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
#ifdef REAL_SHM
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif
if (gid >= gid_max) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET].digest_buf[0],
digests_buf[DIGESTS_OFFSET].digest_buf[1],
digests_buf[DIGESTS_OFFSET].digest_buf[2],
digests_buf[DIGESTS_OFFSET].digest_buf[3]
};
/**
* base
*/
COPY_PW (pws[gid]);
u32 s[2];
s[0] = salt_bufs[SALT_POS].salt_buf[0];
s[1] = salt_bufs[SALT_POS].salt_buf[1];
u32 first_data[2];
first_data[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
first_data[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
const int data_len = esalt_bufs[DIGESTS_OFFSET].data_len;
const int last_pad_pos = data_len - 1;
const int last_pad_elem = last_pad_pos / 4;
u32 iv[2];
iv[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 3];
iv[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 2];
u32 enc[2];
enc[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 1];
enc[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
md5_ctx_t ctx;
md5_init (&ctx);
md5_update (&ctx, tmp.i, tmp.pw_len);
u32 t[16];
t[ 0] = s[0];
t[ 1] = s[1];
t[ 2] = 0;
t[ 3] = 0;
t[ 4] = 0;
t[ 5] = 0;
t[ 6] = 0;
t[ 7] = 0;
t[ 8] = 0;
t[ 9] = 0;
t[10] = 0;
t[11] = 0;
t[12] = 0;
t[13] = 0;
t[14] = 0;
t[15] = 0;
md5_update (&ctx, t, 8);
md5_final (&ctx);
u32 ukey[6];
ukey[0] = ctx.h[0];
ukey[1] = ctx.h[1];
ukey[2] = ctx.h[2];
ukey[3] = ctx.h[3];
md5_init (&ctx);
ctx.w0[0] = ukey[0];
ctx.w0[1] = ukey[1];
ctx.w0[2] = ukey[2];
ctx.w0[3] = ukey[3];
ctx.len = 16;
md5_update (&ctx, tmp.i, tmp.pw_len);
md5_update (&ctx, t, 8);
md5_final (&ctx);
ukey[4] = ctx.h[0];
ukey[5] = ctx.h[1];
// DES
u32 K0[16];
u32 K1[16];
u32 K2[16];
u32 K3[16];
u32 K4[16];
u32 K5[16];
_des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb);
_des_crypt_keysetup (ukey[2], ukey[3], K2, K3, s_skb);
_des_crypt_keysetup (ukey[4], ukey[5], K4, K5, s_skb);
u32 dec[2];
// first check the padding
u32 p1[2];
u32 p2[2];
_des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
const int paddingv = pkcs_padding_bs8 (dec, 8);
if (paddingv == -1) continue;
// second check (naive code) ASN.1 structure
_des_crypt_decrypt (p1, first_data, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= s[0];
dec[1] ^= s[1];
const int real_len = (data_len - 8) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) continue;
const u32 r0 = search[0];
const u32 r1 = search[1];
const u32 r2 = search[2];
const u32 r3 = search[3];
COMPARE_M_SCALAR (r0, r1, r2, r3);
}
}
KERNEL_FQ void m22911_sxx (KERN_ATTR_RULES_ESALT (pem_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
#ifdef REAL_SHM
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif
if (gid >= gid_max) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET].digest_buf[0],
digests_buf[DIGESTS_OFFSET].digest_buf[1],
digests_buf[DIGESTS_OFFSET].digest_buf[2],
digests_buf[DIGESTS_OFFSET].digest_buf[3]
};
/**
* base
*/
COPY_PW (pws[gid]);
u32 s[2];
s[0] = salt_bufs[SALT_POS].salt_buf[0];
s[1] = salt_bufs[SALT_POS].salt_buf[1];
u32 first_data[2];
first_data[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
first_data[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
const int data_len = esalt_bufs[DIGESTS_OFFSET].data_len;
const int last_pad_pos = data_len - 1;
const int last_pad_elem = last_pad_pos / 4;
u32 iv[2];
iv[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 3];
iv[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 2];
u32 enc[2];
enc[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 1];
enc[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[last_pad_elem - 0];
/**
* loop
*/
for (u32 il_pos = 0; il_pos < il_cnt; il_pos++)
{
pw_t tmp = PASTE_PW;
tmp.pw_len = apply_rules (rules_buf[il_pos].cmds, tmp.i, tmp.pw_len);
md5_ctx_t ctx;
md5_init (&ctx);
md5_update (&ctx, tmp.i, tmp.pw_len);
u32 t[16];
t[ 0] = s[0];
t[ 1] = s[1];
t[ 2] = 0;
t[ 3] = 0;
t[ 4] = 0;
t[ 5] = 0;
t[ 6] = 0;
t[ 7] = 0;
t[ 8] = 0;
t[ 9] = 0;
t[10] = 0;
t[11] = 0;
t[12] = 0;
t[13] = 0;
t[14] = 0;
t[15] = 0;
md5_update (&ctx, t, 8);
md5_final (&ctx);
u32 ukey[6];
ukey[0] = ctx.h[0];
ukey[1] = ctx.h[1];
ukey[2] = ctx.h[2];
ukey[3] = ctx.h[3];
md5_init (&ctx);
ctx.w0[0] = ukey[0];
ctx.w0[1] = ukey[1];
ctx.w0[2] = ukey[2];
ctx.w0[3] = ukey[3];
ctx.len = 16;
md5_update (&ctx, tmp.i, tmp.pw_len);
md5_update (&ctx, t, 8);
md5_final (&ctx);
ukey[4] = ctx.h[0];
ukey[5] = ctx.h[1];
// DES
u32 K0[16];
u32 K1[16];
u32 K2[16];
u32 K3[16];
u32 K4[16];
u32 K5[16];
_des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb);
_des_crypt_keysetup (ukey[2], ukey[3], K2, K3, s_skb);
_des_crypt_keysetup (ukey[4], ukey[5], K4, K5, s_skb);
u32 dec[2];
// first check the padding
u32 p1[2];
u32 p2[2];
_des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
const int paddingv = pkcs_padding_bs8 (dec, 8);
if (paddingv == -1) continue;
// second check (naive code) ASN.1 structure
_des_crypt_decrypt (p1, first_data, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= s[0];
dec[1] ^= s[1];
const int real_len = (data_len - 8) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) continue;
const u32 r0 = search[0];
const u32 r1 = search[1];
const u32 r2 = search[2];
const u32 r3 = search[3];
COMPARE_S_SCALAR (r0, r1, r2, r3);
}
}