mirror of
https://github.com/hashcat/hashcat.git
synced 2024-12-29 18:08:13 +00:00
73 lines
2.1 KiB
Plaintext
73 lines
2.1 KiB
Plaintext
|
##
|
||
|
## Maximum password lengths vary depending on kernel, hash type, and encoding
|
||
|
##
|
||
|
|
||
|
See https://hashcat.net/faq/lengths
|
||
|
|
||
|
##
|
||
|
## Generic hash modes only support salt lengths up to 256
|
||
|
##
|
||
|
|
||
|
This limitation on salt lengths only affects generic hash modes, such as md5(pass.salt).
|
||
|
|
||
|
Dedicated hash modes allow unlimited salt length support.
|
||
|
|
||
|
##
|
||
|
## File and folder names including UTF-16 characters are not supported
|
||
|
##
|
||
|
|
||
|
UTF-16 is mostly seen on Windows. UTF-8 (as mostly used on Linux and macOS) are fine.
|
||
|
|
||
|
Important: That does not mean UTF-16 file content, which is fully supported.
|
||
|
|
||
|
It only means the filename itself.
|
||
|
|
||
|
##
|
||
|
## The use of --keep-guessing eventually skips reporting duplicate passwords
|
||
|
##
|
||
|
|
||
|
This does not mean that valid passwords are skipped; they are always reported.
|
||
|
|
||
|
Only if you hit the same password twice for the same hash the password may be shown only once.
|
||
|
|
||
|
If --keep-guessing is not used, this can not occur.
|
||
|
|
||
|
This limitation cannot be fixed, because it would require too much device (GPU/CPU) memory.
|
||
|
|
||
|
If we wanted to report back all possible password candidates executed in a single kernel invocation, it would require this much memory:
|
||
|
|
||
|
Number-of-MCU * Max-threads-per-device * Max-accel * Max-inner-loops * sizeof (plain_t)
|
||
|
|
||
|
For example, on a Vega64: 64 * 512 * 1024 * 1024 * 20 = 687,194,767,360 bytes
|
||
|
|
||
|
##
|
||
|
## Hashcat GPU memory usage may be limited by maximum allocation sizes of OpenCL drivers
|
||
|
##
|
||
|
|
||
|
Most hashcat hash modes only use a single OpenCL allocation.
|
||
|
|
||
|
The size of this allocation is limited by GPU drivers / OpenCL runtimes.
|
||
|
|
||
|
Only a few modes (like scrypt) make more than one allocation.
|
||
|
|
||
|
##
|
||
|
## The maximum number of functions per rule is limited to 31
|
||
|
##
|
||
|
|
||
|
This makes the size of one rule 128 byte.
|
||
|
|
||
|
On the other hand, there is a 25% OpenCL single allocation memory limit.
|
||
|
|
||
|
A typical GPU of today has 8GB = 2GB/128 = 16M rules max
|
||
|
|
||
|
If hashcat supported more functions per rule, it would be limited to fewer rules.
|
||
|
|
||
|
This is a trade-off game.
|
||
|
|
||
|
##
|
||
|
## Position identifiers in rules are limited to 36
|
||
|
##
|
||
|
|
||
|
The upper limit of maximum 36 positions for various rule functions (0-9, A-Z) was a design decision by the original authors of the rule engine.
|
||
|
|