1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-27 02:18:21 +00:00
hashcat/OpenCL/m15700-pure.cl

671 lines
16 KiB
Common Lisp
Raw Normal View History

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
2019-04-26 11:59:43 +00:00
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} scrypt_tmp_t;
#ifdef IS_CUDA
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
inline __device__ uint4 rotate (const uint4 a, const int n)
{
2019-08-05 10:39:10 +00:00
return ((a << n) | ((a >> (32 - n))));
}
#endif
typedef struct ethereum_scrypt
{
u32 salt_buf[16];
u32 ciphertext[8];
} ethereum_scrypt_t;
DECLSPEC uint4 hc_swap32_4 (uint4 v)
{
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
}
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
#define GET_STATE_CNT(r) (2 * (r) * 16)
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
#define STATE_CNT4 (STATE_CNT / 4)
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
#ifdef IS_CUDA
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
}
#else
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = X1.s3012; \
X2 = X2.s2301; \
X3 = X3.s1230; \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = X1.s1230; \
X2 = X2.s2301; \
X3 = X3.s3012; \
}
#endif
#define SALSA20_8_XOR() \
{ \
R0 = R0 ^ Y0; \
R1 = R1 ^ Y1; \
R2 = R2 ^ Y2; \
R3 = R3 ^ Y3; \
\
uint4 X0 = R0; \
uint4 X1 = R1; \
uint4 X2 = R2; \
uint4 X3 = R3; \
\
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
\
R0 = R0 + X0; \
R1 = R1 + X1; \
R2 = R2 + X2; \
R3 = R3 + X3; \
}
DECLSPEC void salsa_r (uint4 *TI)
{
uint4 R0 = TI[STATE_CNT4 - 4];
uint4 R1 = TI[STATE_CNT4 - 3];
uint4 R2 = TI[STATE_CNT4 - 2];
uint4 R3 = TI[STATE_CNT4 - 1];
uint4 TO[STATE_CNT4];
int idx_y = 0;
int idx_r1 = 0;
int idx_r2 = SCRYPT_R * 4;
for (int i = 0; i < SCRYPT_R; i++)
{
uint4 Y0;
uint4 Y1;
uint4 Y2;
uint4 Y3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r1++] = R0;
TO[idx_r1++] = R1;
TO[idx_r1++] = R2;
TO[idx_r1++] = R3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r2++] = R0;
TO[idx_r2++] = R1;
TO[idx_r2++] = R2;
TO[idx_r2++] = R3;
}
#pragma unroll
for (int i = 0; i < STATE_CNT4; i++)
{
TI[i] = TO[i];
}
}
DECLSPEC void scrypt_smix (uint4 *X, uint4 *T, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
#define CO Coord(xd4,y,z)
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
2017-07-28 00:28:52 +00:00
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
#ifdef IS_CUDA
T[0] = make_uint4 (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w);
T[1] = make_uint4 (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w);
T[2] = make_uint4 (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w);
T[3] = make_uint4 (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w);
#else
T[0] = (uint4) (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w);
T[1] = (uint4) (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w);
T[2] = (uint4) (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w);
T[3] = (uint4) (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w);
#endif
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
for (u32 y = 0; y < ySIZE; y++)
{
2017-07-28 00:28:52 +00:00
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
}
for (u32 i = 0; i < SCRYPT_N; i++)
{
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
const u32 y = k / SCRYPT_TMTO;
const u32 km = k - (y * SCRYPT_TMTO);
2017-07-28 00:28:52 +00:00
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
for (u32 i = 0; i < km; i++) salsa_r (T);
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
salsa_r (X);
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
#ifdef IS_CUDA
T[0] = make_uint4 (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w);
T[1] = make_uint4 (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w);
T[2] = make_uint4 (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w);
T[3] = make_uint4 (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w);
#else
T[0] = (uint4) (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w);
T[1] = (uint4) (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w);
T[2] = (uint4) (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w);
T[3] = (uint4) (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w);
#endif
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
}
#ifndef KECCAK_ROUNDS
#define KECCAK_ROUNDS 24
#endif
#define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s])
#define Theta2(s) \
{ \
st[ 0 + s] ^= t; \
st[ 5 + s] ^= t; \
st[10 + s] ^= t; \
st[15 + s] ^= t; \
st[20 + s] ^= t; \
}
#define Rho_Pi(s) \
{ \
u32 j = keccakf_piln[s]; \
u32 k = keccakf_rotc[s]; \
bc0 = st[j]; \
st[j] = hc_rotl64_S (t, k); \
t = bc0; \
}
#define Chi(s) \
{ \
bc0 = st[0 + s]; \
bc1 = st[1 + s]; \
bc2 = st[2 + s]; \
bc3 = st[3 + s]; \
bc4 = st[4 + s]; \
st[0 + s] ^= ~bc1 & bc2; \
st[1 + s] ^= ~bc2 & bc3; \
st[2 + s] ^= ~bc3 & bc4; \
st[3 + s] ^= ~bc4 & bc0; \
st[4 + s] ^= ~bc0 & bc1; \
}
2019-05-06 12:34:16 +00:00
CONSTANT_VK u64a keccakf_rndc[24] =
{
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
DECLSPEC void keccak_transform_S (u64 *st)
{
const u8 keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const u8 keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
/**
* Keccak
*/
int round;
for (round = 0; round < KECCAK_ROUNDS; round++)
{
// Theta
u64 bc0 = Theta1 (0);
u64 bc1 = Theta1 (1);
u64 bc2 = Theta1 (2);
u64 bc3 = Theta1 (3);
u64 bc4 = Theta1 (4);
u64 t;
t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0);
t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1);
t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2);
t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3);
t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4);
// Rho Pi
t = st[1];
Rho_Pi (0);
Rho_Pi (1);
Rho_Pi (2);
Rho_Pi (3);
Rho_Pi (4);
Rho_Pi (5);
Rho_Pi (6);
Rho_Pi (7);
Rho_Pi (8);
Rho_Pi (9);
Rho_Pi (10);
Rho_Pi (11);
Rho_Pi (12);
Rho_Pi (13);
Rho_Pi (14);
Rho_Pi (15);
Rho_Pi (16);
Rho_Pi (17);
Rho_Pi (18);
Rho_Pi (19);
Rho_Pi (20);
Rho_Pi (21);
Rho_Pi (22);
Rho_Pi (23);
// Chi
Chi (0);
Chi (5);
Chi (10);
Chi (15);
Chi (20);
// Iota
st[0] ^= keccakf_rndc[round];
}
}
KERNEL_FQ void m15700_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[salt_pos].salt_buf, salt_bufs[salt_pos].salt_len);
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
u32 digest[8];
digest[0] = sha256_hmac_ctx2.opad.h[0];
digest[1] = sha256_hmac_ctx2.opad.h[1];
digest[2] = sha256_hmac_ctx2.opad.h[2];
digest[3] = sha256_hmac_ctx2.opad.h[3];
digest[4] = sha256_hmac_ctx2.opad.h[4];
digest[5] = sha256_hmac_ctx2.opad.h[5];
digest[6] = sha256_hmac_ctx2.opad.h[6];
digest[7] = sha256_hmac_ctx2.opad.h[7];
#ifdef IS_CUDA
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
#else
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
#endif
tmps[gid].P[k + 0] = tmp0;
tmps[gid].P[k + 1] = tmp1;
}
}
KERNEL_FQ void m15700_loop (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
2019-01-04 10:21:42 +00:00
uint4 X[STATE_CNT4];
uint4 T[STATE_CNT4];
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[z]);
2019-01-04 10:21:42 +00:00
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[z] = hc_swap32_4 (X[z]);
#if SCRYPT_P >= 1
for (int i = STATE_CNT4; i < SCRYPT_CNT4; i += STATE_CNT4)
{
for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[i + z]);
2019-01-04 10:21:42 +00:00
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[i + z] = hc_swap32_4 (X[z]);
}
#endif
}
KERNEL_FQ void m15700_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
/**
* 2nd pbkdf2, creates B
*/
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
sha256_hmac_ctx_t ctx;
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 tmp;
tmp = tmps[gid].P[l + 0];
w0[0] = tmp.x;
w0[1] = tmp.y;
w0[2] = tmp.z;
w0[3] = tmp.w;
tmp = tmps[gid].P[l + 1];
w1[0] = tmp.x;
w1[1] = tmp.y;
w1[2] = tmp.z;
w1[3] = tmp.w;
tmp = tmps[gid].P[l + 2];
w2[0] = tmp.x;
w2[1] = tmp.y;
w2[2] = tmp.z;
w2[3] = tmp.w;
tmp = tmps[gid].P[l + 3];
w3[0] = tmp.x;
w3[1] = tmp.y;
w3[2] = tmp.z;
w3[3] = tmp.w;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
}
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
sha256_hmac_final (&ctx);
/**
* keccak
*/
u32 ciphertext[8];
ciphertext[0] = esalt_bufs[digests_offset].ciphertext[0];
ciphertext[1] = esalt_bufs[digests_offset].ciphertext[1];
ciphertext[2] = esalt_bufs[digests_offset].ciphertext[2];
ciphertext[3] = esalt_bufs[digests_offset].ciphertext[3];
ciphertext[4] = esalt_bufs[digests_offset].ciphertext[4];
ciphertext[5] = esalt_bufs[digests_offset].ciphertext[5];
ciphertext[6] = esalt_bufs[digests_offset].ciphertext[6];
ciphertext[7] = esalt_bufs[digests_offset].ciphertext[7];
u32 key[4];
key[0] = hc_swap32_S (ctx.opad.h[4]);
key[1] = hc_swap32_S (ctx.opad.h[5]);
key[2] = hc_swap32_S (ctx.opad.h[6]);
key[3] = hc_swap32_S (ctx.opad.h[7]);
u64 st[25];
st[ 0] = hl32_to_64_S (key[1], key[0]);
st[ 1] = hl32_to_64_S (key[3], key[2]);
st[ 2] = hl32_to_64_S (ciphertext[1], ciphertext[0]);
st[ 3] = hl32_to_64_S (ciphertext[3], ciphertext[2]);
st[ 4] = hl32_to_64_S (ciphertext[5], ciphertext[4]);
st[ 5] = hl32_to_64_S (ciphertext[7], ciphertext[6]);
st[ 6] = 0x01;
st[ 7] = 0;
st[ 8] = 0;
st[ 9] = 0;
st[10] = 0;
st[11] = 0;
st[12] = 0;
st[13] = 0;
st[14] = 0;
st[15] = 0;
st[16] = 0;
st[17] = 0;
st[18] = 0;
st[19] = 0;
st[20] = 0;
st[21] = 0;
st[22] = 0;
st[23] = 0;
st[24] = 0;
const u32 mdlen = 32;
const u32 rsiz = 200 - (2 * mdlen);
const u32 add80w = (rsiz - 1) / 8;
st[add80w] |= 0x8000000000000000;
keccak_transform_S (st);
const u32 r0 = l32_from_64_S (st[0]);
const u32 r1 = h32_from_64_S (st[0]);
const u32 r2 = l32_from_64_S (st[1]);
const u32 r3 = h32_from_64_S (st[1]);
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}