1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-27 00:48:13 +00:00
hashcat/deps/LZMA-SDK/C/XzDec.c

2774 lines
66 KiB
C
Raw Normal View History

/* XzDec.c -- Xz Decode
2018-04-24 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #include <stdio.h>
// #define XZ_DUMP
/* #define XZ_DUMP */
#ifdef XZ_DUMP
#include <stdio.h>
#endif
// #define SHOW_DEBUG_INFO
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
#define PRF_STR(s) PRF(printf("\n" s "\n"))
#define PRF_STR_INT(s, d) PRF(printf("\n" s " %d\n", (unsigned)d))
#include <stdlib.h>
#include <string.h>
#include "7zCrc.h"
#include "Alloc.h"
#include "Bra.h"
#include "CpuArch.h"
#include "Delta.h"
#include "Lzma2Dec.h"
// #define USE_SUBBLOCK
#ifdef USE_SUBBLOCK
#include "Bcj3Dec.c"
#include "SbDec.h"
#endif
#include "Xz.h"
#define XZ_CHECK_SIZE_MAX 64
#define CODER_BUF_SIZE ((size_t)1 << 17)
unsigned Xz_ReadVarInt(const Byte *p, size_t maxSize, UInt64 *value)
{
unsigned i, limit;
*value = 0;
limit = (maxSize > 9) ? 9 : (unsigned)maxSize;
for (i = 0; i < limit;)
{
Byte b = p[i];
*value |= (UInt64)(b & 0x7F) << (7 * i++);
if ((b & 0x80) == 0)
return (b == 0 && i != 1) ? 0 : i;
}
return 0;
}
/* ---------- BraState ---------- */
#define BRA_BUF_SIZE (1 << 14)
typedef struct
{
size_t bufPos;
size_t bufConv;
size_t bufTotal;
int encodeMode;
UInt32 methodId;
UInt32 delta;
UInt32 ip;
UInt32 x86State;
Byte deltaState[DELTA_STATE_SIZE];
Byte buf[BRA_BUF_SIZE];
} CBraState;
static void BraState_Free(void *pp, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, pp);
}
static SRes BraState_SetProps(void *pp, const Byte *props, size_t propSize, ISzAllocPtr alloc)
{
CBraState *p = ((CBraState *)pp);
UNUSED_VAR(alloc);
p->ip = 0;
if (p->methodId == XZ_ID_Delta)
{
if (propSize != 1)
return SZ_ERROR_UNSUPPORTED;
p->delta = (unsigned)props[0] + 1;
}
else
{
if (propSize == 4)
{
UInt32 v = GetUi32(props);
switch (p->methodId)
{
case XZ_ID_PPC:
case XZ_ID_ARM:
case XZ_ID_SPARC:
if ((v & 3) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
case XZ_ID_ARMT:
if ((v & 1) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
case XZ_ID_IA64:
if ((v & 0xF) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
}
p->ip = v;
}
else if (propSize != 0)
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
static void BraState_Init(void *pp)
{
CBraState *p = ((CBraState *)pp);
p->bufPos = p->bufConv = p->bufTotal = 0;
x86_Convert_Init(p->x86State);
if (p->methodId == XZ_ID_Delta)
Delta_Init(p->deltaState);
}
#define CASE_BRA_CONV(isa) case XZ_ID_ ## isa: size = isa ## _Convert(data, size, p->ip, p->encodeMode); break;
static SizeT BraState_Filter(void *pp, Byte *data, SizeT size)
{
CBraState *p = ((CBraState *)pp);
switch (p->methodId)
{
case XZ_ID_Delta:
if (p->encodeMode)
Delta_Encode(p->deltaState, p->delta, data, size);
else
Delta_Decode(p->deltaState, p->delta, data, size);
break;
case XZ_ID_X86:
size = x86_Convert(data, size, p->ip, &p->x86State, p->encodeMode);
break;
CASE_BRA_CONV(PPC)
CASE_BRA_CONV(IA64)
CASE_BRA_CONV(ARM)
CASE_BRA_CONV(ARMT)
CASE_BRA_CONV(SPARC)
}
p->ip += (UInt32)size;
return size;
}
static SRes BraState_Code2(void *pp,
Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcWasFinished,
ECoderFinishMode finishMode,
// int *wasFinished
ECoderStatus *status)
{
CBraState *p = ((CBraState *)pp);
SizeT destRem = *destLen;
SizeT srcRem = *srcLen;
UNUSED_VAR(finishMode);
*destLen = 0;
*srcLen = 0;
// *wasFinished = False;
*status = CODER_STATUS_NOT_FINISHED;
while (destRem > 0)
{
if (p->bufPos != p->bufConv)
{
size_t size = p->bufConv - p->bufPos;
if (size > destRem)
size = destRem;
memcpy(dest, p->buf + p->bufPos, size);
p->bufPos += size;
*destLen += size;
dest += size;
destRem -= size;
continue;
}
p->bufTotal -= p->bufPos;
memmove(p->buf, p->buf + p->bufPos, p->bufTotal);
p->bufPos = 0;
p->bufConv = 0;
{
size_t size = BRA_BUF_SIZE - p->bufTotal;
if (size > srcRem)
size = srcRem;
memcpy(p->buf + p->bufTotal, src, size);
*srcLen += size;
src += size;
srcRem -= size;
p->bufTotal += size;
}
if (p->bufTotal == 0)
break;
p->bufConv = BraState_Filter(pp, p->buf, p->bufTotal);
if (p->bufConv == 0)
{
if (!srcWasFinished)
break;
p->bufConv = p->bufTotal;
}
}
if (p->bufTotal == p->bufPos && srcRem == 0 && srcWasFinished)
{
*status = CODER_STATUS_FINISHED_WITH_MARK;
// *wasFinished = 1;
}
return SZ_OK;
}
SRes BraState_SetFromMethod(IStateCoder *p, UInt64 id, int encodeMode, ISzAllocPtr alloc)
{
CBraState *decoder;
if (id < XZ_ID_Delta || id > XZ_ID_SPARC)
return SZ_ERROR_UNSUPPORTED;
decoder = p->p;
if (!decoder)
{
decoder = (CBraState *)ISzAlloc_Alloc(alloc, sizeof(CBraState));
if (!decoder)
return SZ_ERROR_MEM;
p->p = decoder;
p->Free = BraState_Free;
p->SetProps = BraState_SetProps;
p->Init = BraState_Init;
p->Code2 = BraState_Code2;
p->Filter = BraState_Filter;
}
decoder->methodId = (UInt32)id;
decoder->encodeMode = encodeMode;
return SZ_OK;
}
/* ---------- SbState ---------- */
#ifdef USE_SUBBLOCK
static void SbState_Free(void *pp, ISzAllocPtr alloc)
{
CSbDec *p = (CSbDec *)pp;
SbDec_Free(p);
ISzAlloc_Free(alloc, pp);
}
static SRes SbState_SetProps(void *pp, const Byte *props, size_t propSize, ISzAllocPtr alloc)
{
UNUSED_VAR(pp);
UNUSED_VAR(props);
UNUSED_VAR(alloc);
return (propSize == 0) ? SZ_OK : SZ_ERROR_UNSUPPORTED;
}
static void SbState_Init(void *pp)
{
SbDec_Init((CSbDec *)pp);
}
static SRes SbState_Code2(void *pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode,
// int *wasFinished
ECoderStatus *status)
{
CSbDec *p = (CSbDec *)pp;
SRes res;
UNUSED_VAR(srcWasFinished);
p->dest = dest;
p->destLen = *destLen;
p->src = src;
p->srcLen = *srcLen;
p->finish = finishMode; /* change it */
res = SbDec_Decode((CSbDec *)pp);
*destLen -= p->destLen;
*srcLen -= p->srcLen;
// *wasFinished = (*destLen == 0 && *srcLen == 0); /* change it */
*status = (*destLen == 0 && *srcLen == 0) ?
CODER_STATUS_FINISHED_WITH_MARK :
CODER_STATUS_NOT_FINISHED;
return res;
}
static SRes SbState_SetFromMethod(IStateCoder *p, ISzAllocPtr alloc)
{
CSbDec *decoder = (CSbDec *)p->p;
if (!decoder)
{
decoder = (CSbDec *)ISzAlloc_Alloc(alloc, sizeof(CSbDec));
if (!decoder)
return SZ_ERROR_MEM;
p->p = decoder;
p->Free = SbState_Free;
p->SetProps = SbState_SetProps;
p->Init = SbState_Init;
p->Code2 = SbState_Code2;
p->Filter = NULL;
}
SbDec_Construct(decoder);
SbDec_SetAlloc(decoder, alloc);
return SZ_OK;
}
#endif
/* ---------- Lzma2 ---------- */
typedef struct
{
CLzma2Dec decoder;
Bool outBufMode;
} CLzma2Dec_Spec;
static void Lzma2State_Free(void *pp, ISzAllocPtr alloc)
{
CLzma2Dec_Spec *p = (CLzma2Dec_Spec *)pp;
if (p->outBufMode)
Lzma2Dec_FreeProbs(&p->decoder, alloc);
else
Lzma2Dec_Free(&p->decoder, alloc);
ISzAlloc_Free(alloc, pp);
}
static SRes Lzma2State_SetProps(void *pp, const Byte *props, size_t propSize, ISzAllocPtr alloc)
{
if (propSize != 1)
return SZ_ERROR_UNSUPPORTED;
{
CLzma2Dec_Spec *p = (CLzma2Dec_Spec *)pp;
if (p->outBufMode)
return Lzma2Dec_AllocateProbs(&p->decoder, props[0], alloc);
else
return Lzma2Dec_Allocate(&p->decoder, props[0], alloc);
}
}
static void Lzma2State_Init(void *pp)
{
Lzma2Dec_Init(&((CLzma2Dec_Spec *)pp)->decoder);
}
/*
if (outBufMode), then (dest) is not used. Use NULL.
Data is unpacked to (spec->decoder.decoder.dic) output buffer.
*/
static SRes Lzma2State_Code2(void *pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode,
// int *wasFinished,
ECoderStatus *status)
{
CLzma2Dec_Spec *spec = (CLzma2Dec_Spec *)pp;
ELzmaStatus status2;
/* ELzmaFinishMode fm = (finishMode == LZMA_FINISH_ANY) ? LZMA_FINISH_ANY : LZMA_FINISH_END; */
SRes res;
UNUSED_VAR(srcWasFinished);
if (spec->outBufMode)
{
SizeT dicPos = spec->decoder.decoder.dicPos;
SizeT dicLimit = dicPos + *destLen;
res = Lzma2Dec_DecodeToDic(&spec->decoder, dicLimit, src, srcLen, (ELzmaFinishMode)finishMode, &status2);
*destLen = spec->decoder.decoder.dicPos - dicPos;
}
else
res = Lzma2Dec_DecodeToBuf(&spec->decoder, dest, destLen, src, srcLen, (ELzmaFinishMode)finishMode, &status2);
// *wasFinished = (status2 == LZMA_STATUS_FINISHED_WITH_MARK);
// ECoderStatus values are identical to ELzmaStatus values of LZMA2 decoder
*status = status2;
return res;
}
static SRes Lzma2State_SetFromMethod(IStateCoder *p, Byte *outBuf, size_t outBufSize, ISzAllocPtr alloc)
{
CLzma2Dec_Spec *spec = (CLzma2Dec_Spec *)p->p;
if (!spec)
{
spec = (CLzma2Dec_Spec *)ISzAlloc_Alloc(alloc, sizeof(CLzma2Dec_Spec));
if (!spec)
return SZ_ERROR_MEM;
p->p = spec;
p->Free = Lzma2State_Free;
p->SetProps = Lzma2State_SetProps;
p->Init = Lzma2State_Init;
p->Code2 = Lzma2State_Code2;
p->Filter = NULL;
Lzma2Dec_Construct(&spec->decoder);
}
spec->outBufMode = False;
if (outBuf)
{
spec->outBufMode = True;
spec->decoder.decoder.dic = outBuf;
spec->decoder.decoder.dicBufSize = outBufSize;
}
return SZ_OK;
}
static SRes Lzma2State_ResetOutBuf(IStateCoder *p, Byte *outBuf, size_t outBufSize)
{
CLzma2Dec_Spec *spec = (CLzma2Dec_Spec *)p->p;
if ((spec->outBufMode && !outBuf) || (!spec->outBufMode && outBuf))
return SZ_ERROR_FAIL;
if (outBuf)
{
spec->decoder.decoder.dic = outBuf;
spec->decoder.decoder.dicBufSize = outBufSize;
}
return SZ_OK;
}
static void MixCoder_Construct(CMixCoder *p, ISzAllocPtr alloc)
{
unsigned i;
p->alloc = alloc;
p->buf = NULL;
p->numCoders = 0;
p->outBufSize = 0;
p->outBuf = NULL;
// p->SingleBufMode = False;
for (i = 0; i < MIXCODER_NUM_FILTERS_MAX; i++)
p->coders[i].p = NULL;
}
static void MixCoder_Free(CMixCoder *p)
{
unsigned i;
p->numCoders = 0;
for (i = 0; i < MIXCODER_NUM_FILTERS_MAX; i++)
{
IStateCoder *sc = &p->coders[i];
if (sc->p)
{
sc->Free(sc->p, p->alloc);
sc->p = NULL;
}
}
if (p->buf)
{
ISzAlloc_Free(p->alloc, p->buf);
p->buf = NULL; /* 9.31: the BUG was fixed */
}
}
static void MixCoder_Init(CMixCoder *p)
{
unsigned i;
for (i = 0; i < MIXCODER_NUM_FILTERS_MAX - 1; i++)
{
p->size[i] = 0;
p->pos[i] = 0;
p->finished[i] = 0;
}
for (i = 0; i < p->numCoders; i++)
{
IStateCoder *coder = &p->coders[i];
coder->Init(coder->p);
p->results[i] = SZ_OK;
}
p->outWritten = 0;
p->wasFinished = False;
p->res = SZ_OK;
p->status = CODER_STATUS_NOT_SPECIFIED;
}
static SRes MixCoder_SetFromMethod(CMixCoder *p, unsigned coderIndex, UInt64 methodId, Byte *outBuf, size_t outBufSize)
{
IStateCoder *sc = &p->coders[coderIndex];
p->ids[coderIndex] = methodId;
switch (methodId)
{
case XZ_ID_LZMA2: return Lzma2State_SetFromMethod(sc, outBuf, outBufSize, p->alloc);
#ifdef USE_SUBBLOCK
case XZ_ID_Subblock: return SbState_SetFromMethod(sc, p->alloc);
#endif
}
if (coderIndex == 0)
return SZ_ERROR_UNSUPPORTED;
return BraState_SetFromMethod(sc, methodId, 0, p->alloc);
}
static SRes MixCoder_ResetFromMethod(CMixCoder *p, unsigned coderIndex, UInt64 methodId, Byte *outBuf, size_t outBufSize)
{
IStateCoder *sc = &p->coders[coderIndex];
switch (methodId)
{
case XZ_ID_LZMA2: return Lzma2State_ResetOutBuf(sc, outBuf, outBufSize);
}
return SZ_ERROR_UNSUPPORTED;
}
/*
if (destFinish) - then unpack data block is finished at (*destLen) position,
and we can return data that were not processed by filter
output (status) can be :
CODER_STATUS_NOT_FINISHED
CODER_STATUS_FINISHED_WITH_MARK
CODER_STATUS_NEEDS_MORE_INPUT - not implemented still
*/
static SRes MixCoder_Code(CMixCoder *p,
Byte *dest, SizeT *destLen, int destFinish,
const Byte *src, SizeT *srcLen, int srcWasFinished,
ECoderFinishMode finishMode)
{
SizeT destLenOrig = *destLen;
SizeT srcLenOrig = *srcLen;
*destLen = 0;
*srcLen = 0;
if (p->wasFinished)
return p->res;
p->status = CODER_STATUS_NOT_FINISHED;
// if (p->SingleBufMode)
if (p->outBuf)
{
SRes res;
SizeT destLen2, srcLen2;
int wasFinished;
PRF_STR("------- MixCoder Single ----------");
srcLen2 = srcLenOrig;
destLen2 = destLenOrig;
{
IStateCoder *coder = &p->coders[0];
res = coder->Code2(coder->p, NULL, &destLen2, src, &srcLen2, srcWasFinished, finishMode,
// &wasFinished,
&p->status);
wasFinished = (p->status == CODER_STATUS_FINISHED_WITH_MARK);
}
p->res = res;
/*
if (wasFinished)
p->status = CODER_STATUS_FINISHED_WITH_MARK;
else
{
if (res == SZ_OK)
if (destLen2 != destLenOrig)
p->status = CODER_STATUS_NEEDS_MORE_INPUT;
}
*/
*srcLen = srcLen2;
src += srcLen2;
p->outWritten += destLen2;
if (res != SZ_OK || srcWasFinished || wasFinished)
p->wasFinished = True;
if (p->numCoders == 1)
*destLen = destLen2;
else if (p->wasFinished)
{
unsigned i;
size_t processed = p->outWritten;
for (i = 1; i < p->numCoders; i++)
{
IStateCoder *coder = &p->coders[i];
processed = coder->Filter(coder->p, p->outBuf, processed);
if (wasFinished || (destFinish && p->outWritten == destLenOrig))
processed = p->outWritten;
PRF_STR_INT("filter", i);
}
*destLen = processed;
}
return res;
}
PRF_STR("standard mix");
if (p->numCoders != 1)
{
if (!p->buf)
{
p->buf = (Byte *)ISzAlloc_Alloc(p->alloc, CODER_BUF_SIZE * (MIXCODER_NUM_FILTERS_MAX - 1));
if (!p->buf)
return SZ_ERROR_MEM;
}
finishMode = CODER_FINISH_ANY;
}
for (;;)
{
Bool processed = False;
Bool allFinished = True;
SRes resMain = SZ_OK;
unsigned i;
p->status = CODER_STATUS_NOT_FINISHED;
/*
if (p->numCoders == 1 && *destLen == destLenOrig && finishMode == LZMA_FINISH_ANY)
break;
*/
for (i = 0; i < p->numCoders; i++)
{
SRes res;
IStateCoder *coder = &p->coders[i];
Byte *dest2;
SizeT destLen2, srcLen2; // destLen2_Orig;
const Byte *src2;
int srcFinished2;
int encodingWasFinished;
ECoderStatus status2;
if (i == 0)
{
src2 = src;
srcLen2 = srcLenOrig - *srcLen;
srcFinished2 = srcWasFinished;
}
else
{
size_t k = i - 1;
src2 = p->buf + (CODER_BUF_SIZE * k) + p->pos[k];
srcLen2 = p->size[k] - p->pos[k];
srcFinished2 = p->finished[k];
}
if (i == p->numCoders - 1)
{
dest2 = dest;
destLen2 = destLenOrig - *destLen;
}
else
{
if (p->pos[i] != p->size[i])
continue;
dest2 = p->buf + (CODER_BUF_SIZE * i);
destLen2 = CODER_BUF_SIZE;
}
// destLen2_Orig = destLen2;
if (p->results[i] != SZ_OK)
{
if (resMain == SZ_OK)
resMain = p->results[i];
continue;
}
res = coder->Code2(coder->p,
dest2, &destLen2,
src2, &srcLen2, srcFinished2,
finishMode,
// &encodingWasFinished,
&status2);
if (res != SZ_OK)
{
p->results[i] = res;
if (resMain == SZ_OK)
resMain = res;
}
encodingWasFinished = (status2 == CODER_STATUS_FINISHED_WITH_MARK);
if (!encodingWasFinished)
{
allFinished = False;
if (p->numCoders == 1 && res == SZ_OK)
p->status = status2;
}
if (i == 0)
{
*srcLen += srcLen2;
src += srcLen2;
}
else
p->pos[(size_t)i - 1] += srcLen2;
if (i == p->numCoders - 1)
{
*destLen += destLen2;
dest += destLen2;
}
else
{
p->size[i] = destLen2;
p->pos[i] = 0;
p->finished[i] = encodingWasFinished;
}
if (destLen2 != 0 || srcLen2 != 0)
processed = True;
}
if (!processed)
{
if (allFinished)
p->status = CODER_STATUS_FINISHED_WITH_MARK;
return resMain;
}
}
}
SRes Xz_ParseHeader(CXzStreamFlags *p, const Byte *buf)
{
*p = (CXzStreamFlags)GetBe16(buf + XZ_SIG_SIZE);
if (CrcCalc(buf + XZ_SIG_SIZE, XZ_STREAM_FLAGS_SIZE) !=
GetUi32(buf + XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE))
return SZ_ERROR_NO_ARCHIVE;
return XzFlags_IsSupported(*p) ? SZ_OK : SZ_ERROR_UNSUPPORTED;
}
static Bool Xz_CheckFooter(CXzStreamFlags flags, UInt64 indexSize, const Byte *buf)
{
return indexSize == (((UInt64)GetUi32(buf + 4) + 1) << 2)
&& GetUi32(buf) == CrcCalc(buf + 4, 6)
&& flags == GetBe16(buf + 8)
&& buf[10] == XZ_FOOTER_SIG_0
&& buf[11] == XZ_FOOTER_SIG_1;
}
#define READ_VARINT_AND_CHECK(buf, pos, size, res) \
{ unsigned s = Xz_ReadVarInt(buf + pos, size - pos, res); \
if (s == 0) return SZ_ERROR_ARCHIVE; pos += s; }
static Bool XzBlock_AreSupportedFilters(const CXzBlock *p)
{
unsigned numFilters = XzBlock_GetNumFilters(p) - 1;
unsigned i;
{
const CXzFilter *f = &p->filters[numFilters];
if (f->id != XZ_ID_LZMA2 || f->propsSize != 1 || f->props[0] > 40)
return False;
}
for (i = 0; i < numFilters; i++)
{
const CXzFilter *f = &p->filters[i];
if (f->id == XZ_ID_Delta)
{
if (f->propsSize != 1)
return False;
}
else if (f->id < XZ_ID_Delta
|| f->id > XZ_ID_SPARC
|| (f->propsSize != 0 && f->propsSize != 4))
return False;
}
return True;
}
SRes XzBlock_Parse(CXzBlock *p, const Byte *header)
{
unsigned pos;
unsigned numFilters, i;
unsigned headerSize = (unsigned)header[0] << 2;
/* (headerSize != 0) : another code checks */
if (CrcCalc(header, headerSize) != GetUi32(header + headerSize))
return SZ_ERROR_ARCHIVE;
pos = 1;
p->flags = header[pos++];
p->packSize = (UInt64)(Int64)-1;
if (XzBlock_HasPackSize(p))
{
READ_VARINT_AND_CHECK(header, pos, headerSize, &p->packSize);
if (p->packSize == 0 || p->packSize + headerSize >= (UInt64)1 << 63)
return SZ_ERROR_ARCHIVE;
}
p->unpackSize = (UInt64)(Int64)-1;
if (XzBlock_HasUnpackSize(p))
READ_VARINT_AND_CHECK(header, pos, headerSize, &p->unpackSize);
numFilters = XzBlock_GetNumFilters(p);
for (i = 0; i < numFilters; i++)
{
CXzFilter *filter = p->filters + i;
UInt64 size;
READ_VARINT_AND_CHECK(header, pos, headerSize, &filter->id);
READ_VARINT_AND_CHECK(header, pos, headerSize, &size);
if (size > headerSize - pos || size > XZ_FILTER_PROPS_SIZE_MAX)
return SZ_ERROR_ARCHIVE;
filter->propsSize = (UInt32)size;
memcpy(filter->props, header + pos, (size_t)size);
pos += (unsigned)size;
#ifdef XZ_DUMP
printf("\nf[%u] = %2X: ", i, (unsigned)filter->id);
{
unsigned i;
for (i = 0; i < size; i++)
printf(" %2X", filter->props[i]);
}
#endif
}
if (XzBlock_HasUnsupportedFlags(p))
return SZ_ERROR_UNSUPPORTED;
while (pos < headerSize)
if (header[pos++] != 0)
return SZ_ERROR_ARCHIVE;
return SZ_OK;
}
static SRes XzDecMix_Init(CMixCoder *p, const CXzBlock *block, Byte *outBuf, size_t outBufSize)
{
unsigned i;
Bool needReInit = True;
unsigned numFilters = XzBlock_GetNumFilters(block);
if (numFilters == p->numCoders && ((p->outBuf && outBuf) || (!p->outBuf && !outBuf)))
{
needReInit = False;
for (i = 0; i < numFilters; i++)
if (p->ids[i] != block->filters[numFilters - 1 - i].id)
{
needReInit = True;
break;
}
}
// p->SingleBufMode = (outBuf != NULL);
p->outBuf = outBuf;
p->outBufSize = outBufSize;
// p->SingleBufMode = False;
// outBuf = NULL;
if (needReInit)
{
MixCoder_Free(p);
for (i = 0; i < numFilters; i++)
{
RINOK(MixCoder_SetFromMethod(p, i, block->filters[numFilters - 1 - i].id, outBuf, outBufSize));
}
p->numCoders = numFilters;
}
else
{
RINOK(MixCoder_ResetFromMethod(p, 0, block->filters[numFilters - 1].id, outBuf, outBufSize));
}
for (i = 0; i < numFilters; i++)
{
const CXzFilter *f = &block->filters[numFilters - 1 - i];
IStateCoder *sc = &p->coders[i];
RINOK(sc->SetProps(sc->p, f->props, f->propsSize, p->alloc));
}
MixCoder_Init(p);
return SZ_OK;
}
void XzUnpacker_Init(CXzUnpacker *p)
{
p->state = XZ_STATE_STREAM_HEADER;
p->pos = 0;
p->numStartedStreams = 0;
p->numFinishedStreams = 0;
p->numTotalBlocks = 0;
p->padSize = 0;
p->decodeOnlyOneBlock = 0;
p->parseMode = False;
p->decodeToStreamSignature = False;
// p->outBuf = NULL;
// p->outBufSize = 0;
p->outDataWritten = 0;
}
void XzUnpacker_SetOutBuf(CXzUnpacker *p, Byte *outBuf, size_t outBufSize)
{
p->outBuf = outBuf;
p->outBufSize = outBufSize;
}
void XzUnpacker_Construct(CXzUnpacker *p, ISzAllocPtr alloc)
{
MixCoder_Construct(&p->decoder, alloc);
p->outBuf = NULL;
p->outBufSize = 0;
XzUnpacker_Init(p);
}
void XzUnpacker_Free(CXzUnpacker *p)
{
MixCoder_Free(&p->decoder);
}
void XzUnpacker_PrepareToRandomBlockDecoding(CXzUnpacker *p)
{
p->indexSize = 0;
p->numBlocks = 0;
Sha256_Init(&p->sha);
p->state = XZ_STATE_BLOCK_HEADER;
p->pos = 0;
p->decodeOnlyOneBlock = 1;
}
static void XzUnpacker_UpdateIndex(CXzUnpacker *p, UInt64 packSize, UInt64 unpackSize)
{
Byte temp[32];
unsigned num = Xz_WriteVarInt(temp, packSize);
num += Xz_WriteVarInt(temp + num, unpackSize);
Sha256_Update(&p->sha, temp, num);
p->indexSize += num;
p->numBlocks++;
}
SRes XzUnpacker_Code(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcFinished,
ECoderFinishMode finishMode, ECoderStatus *status)
{
SizeT destLenOrig = *destLen;
SizeT srcLenOrig = *srcLen;
*destLen = 0;
*srcLen = 0;
*status = CODER_STATUS_NOT_SPECIFIED;
for (;;)
{
SizeT srcRem;
if (p->state == XZ_STATE_BLOCK)
{
SizeT destLen2 = destLenOrig - *destLen;
SizeT srcLen2 = srcLenOrig - *srcLen;
SRes res;
ECoderFinishMode finishMode2 = finishMode;
Bool srcFinished2 = srcFinished;
Bool destFinish = False;
if (p->block.packSize != (UInt64)(Int64)-1)
{
UInt64 rem = p->block.packSize - p->packSize;
if (srcLen2 >= rem)
{
srcFinished2 = True;
srcLen2 = (SizeT)rem;
}
if (rem == 0 && p->block.unpackSize == p->unpackSize)
return SZ_ERROR_DATA;
}
if (p->block.unpackSize != (UInt64)(Int64)-1)
{
UInt64 rem = p->block.unpackSize - p->unpackSize;
if (destLen2 >= rem)
{
destFinish = True;
finishMode2 = CODER_FINISH_END;
destLen2 = (SizeT)rem;
}
}
/*
if (srcLen2 == 0 && destLen2 == 0)
{
*status = CODER_STATUS_NOT_FINISHED;
return SZ_OK;
}
*/
{
res = MixCoder_Code(&p->decoder,
(p->outBuf ? NULL : dest), &destLen2, destFinish,
src, &srcLen2, srcFinished2,
finishMode2);
*status = p->decoder.status;
XzCheck_Update(&p->check, (p->outBuf ? p->outBuf + p->outDataWritten : dest), destLen2);
if (!p->outBuf)
dest += destLen2;
p->outDataWritten += destLen2;
}
(*srcLen) += srcLen2;
src += srcLen2;
p->packSize += srcLen2;
(*destLen) += destLen2;
p->unpackSize += destLen2;
RINOK(res);
if (*status != CODER_STATUS_FINISHED_WITH_MARK)
{
if (p->block.packSize == p->packSize
&& *status == CODER_STATUS_NEEDS_MORE_INPUT)
{
PRF_STR("CODER_STATUS_NEEDS_MORE_INPUT");
*status = CODER_STATUS_NOT_SPECIFIED;
return SZ_ERROR_DATA;
}
return SZ_OK;
}
{
XzUnpacker_UpdateIndex(p, XzUnpacker_GetPackSizeForIndex(p), p->unpackSize);
p->state = XZ_STATE_BLOCK_FOOTER;
p->pos = 0;
p->alignPos = 0;
*status = CODER_STATUS_NOT_SPECIFIED;
if ((p->block.packSize != (UInt64)(Int64)-1 && p->block.packSize != p->packSize)
|| (p->block.unpackSize != (UInt64)(Int64)-1 && p->block.unpackSize != p->unpackSize))
{
PRF_STR("ERROR: block.size mismatch");
return SZ_ERROR_DATA;
}
}
// continue;
}
srcRem = srcLenOrig - *srcLen;
// XZ_STATE_BLOCK_FOOTER can transit to XZ_STATE_BLOCK_HEADER without input bytes
if (srcRem == 0 && p->state != XZ_STATE_BLOCK_FOOTER)
{
*status = CODER_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
switch (p->state)
{
case XZ_STATE_STREAM_HEADER:
{
if (p->pos < XZ_STREAM_HEADER_SIZE)
{
if (p->pos < XZ_SIG_SIZE && *src != XZ_SIG[p->pos])
return SZ_ERROR_NO_ARCHIVE;
if (p->decodeToStreamSignature)
return SZ_OK;
p->buf[p->pos++] = *src++;
(*srcLen)++;
}
else
{
RINOK(Xz_ParseHeader(&p->streamFlags, p->buf));
p->numStartedStreams++;
p->indexSize = 0;
p->numBlocks = 0;
Sha256_Init(&p->sha);
p->state = XZ_STATE_BLOCK_HEADER;
p->pos = 0;
}
break;
}
case XZ_STATE_BLOCK_HEADER:
{
if (p->pos == 0)
{
p->buf[p->pos++] = *src++;
(*srcLen)++;
if (p->buf[0] == 0)
{
if (p->decodeOnlyOneBlock)
return SZ_ERROR_DATA;
p->indexPreSize = 1 + Xz_WriteVarInt(p->buf + 1, p->numBlocks);
p->indexPos = p->indexPreSize;
p->indexSize += p->indexPreSize;
Sha256_Final(&p->sha, p->shaDigest);
Sha256_Init(&p->sha);
p->crc = CrcUpdate(CRC_INIT_VAL, p->buf, p->indexPreSize);
p->state = XZ_STATE_STREAM_INDEX;
break;
}
p->blockHeaderSize = ((UInt32)p->buf[0] << 2) + 4;
break;
}
if (p->pos != p->blockHeaderSize)
{
UInt32 cur = p->blockHeaderSize - p->pos;
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
}
else
{
RINOK(XzBlock_Parse(&p->block, p->buf));
if (!XzBlock_AreSupportedFilters(&p->block))
return SZ_ERROR_UNSUPPORTED;
p->numTotalBlocks++;
p->state = XZ_STATE_BLOCK;
p->packSize = 0;
p->unpackSize = 0;
XzCheck_Init(&p->check, XzFlags_GetCheckType(p->streamFlags));
if (p->parseMode)
{
p->headerParsedOk = True;
return SZ_OK;
}
RINOK(XzDecMix_Init(&p->decoder, &p->block, p->outBuf, p->outBufSize));
}
break;
}
case XZ_STATE_BLOCK_FOOTER:
{
if ((((unsigned)p->packSize + p->alignPos) & 3) != 0)
{
if (srcRem == 0)
{
*status = CODER_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->alignPos++;
if (*src++ != 0)
return SZ_ERROR_CRC;
}
else
{
UInt32 checkSize = XzFlags_GetCheckSize(p->streamFlags);
UInt32 cur = checkSize - p->pos;
if (cur != 0)
{
if (srcRem == 0)
{
*status = CODER_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
if (checkSize != p->pos)
break;
}
{
Byte digest[XZ_CHECK_SIZE_MAX];
p->state = XZ_STATE_BLOCK_HEADER;
p->pos = 0;
if (XzCheck_Final(&p->check, digest) && memcmp(digest, p->buf, checkSize) != 0)
return SZ_ERROR_CRC;
if (p->decodeOnlyOneBlock)
{
*status = CODER_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
}
}
break;
}
case XZ_STATE_STREAM_INDEX:
{
if (p->pos < p->indexPreSize)
{
(*srcLen)++;
if (*src++ != p->buf[p->pos++])
return SZ_ERROR_CRC;
}
else
{
if (p->indexPos < p->indexSize)
{
UInt64 cur = p->indexSize - p->indexPos;
if (srcRem > cur)
srcRem = (SizeT)cur;
p->crc = CrcUpdate(p->crc, src, srcRem);
Sha256_Update(&p->sha, src, srcRem);
(*srcLen) += srcRem;
src += srcRem;
p->indexPos += srcRem;
}
else if ((p->indexPos & 3) != 0)
{
Byte b = *src++;
p->crc = CRC_UPDATE_BYTE(p->crc, b);
(*srcLen)++;
p->indexPos++;
p->indexSize++;
if (b != 0)
return SZ_ERROR_CRC;
}
else
{
Byte digest[SHA256_DIGEST_SIZE];
p->state = XZ_STATE_STREAM_INDEX_CRC;
p->indexSize += 4;
p->pos = 0;
Sha256_Final(&p->sha, digest);
if (memcmp(digest, p->shaDigest, SHA256_DIGEST_SIZE) != 0)
return SZ_ERROR_CRC;
}
}
break;
}
case XZ_STATE_STREAM_INDEX_CRC:
{
if (p->pos < 4)
{
(*srcLen)++;
p->buf[p->pos++] = *src++;
}
else
{
p->state = XZ_STATE_STREAM_FOOTER;
p->pos = 0;
if (CRC_GET_DIGEST(p->crc) != GetUi32(p->buf))
return SZ_ERROR_CRC;
}
break;
}
case XZ_STATE_STREAM_FOOTER:
{
UInt32 cur = XZ_STREAM_FOOTER_SIZE - p->pos;
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
if (p->pos == XZ_STREAM_FOOTER_SIZE)
{
p->state = XZ_STATE_STREAM_PADDING;
p->numFinishedStreams++;
p->padSize = 0;
if (!Xz_CheckFooter(p->streamFlags, p->indexSize, p->buf))
return SZ_ERROR_CRC;
}
break;
}
case XZ_STATE_STREAM_PADDING:
{
if (*src != 0)
{
if (((UInt32)p->padSize & 3) != 0)
return SZ_ERROR_NO_ARCHIVE;
p->pos = 0;
p->state = XZ_STATE_STREAM_HEADER;
}
else
{
(*srcLen)++;
src++;
p->padSize++;
}
break;
}
case XZ_STATE_BLOCK: break; /* to disable GCC warning */
}
}
/*
if (p->state == XZ_STATE_FINISHED)
*status = CODER_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
*/
}
SRes XzUnpacker_CodeFull(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen,
ECoderFinishMode finishMode, ECoderStatus *status)
{
XzUnpacker_Init(p);
XzUnpacker_SetOutBuf(p, dest, *destLen);
return XzUnpacker_Code(p,
NULL, destLen,
src, srcLen, True,
finishMode, status);
}
Bool XzUnpacker_IsBlockFinished(const CXzUnpacker *p)
{
return (p->state == XZ_STATE_BLOCK_HEADER) && (p->pos == 0);
}
Bool XzUnpacker_IsStreamWasFinished(const CXzUnpacker *p)
{
return (p->state == XZ_STATE_STREAM_PADDING) && (((UInt32)p->padSize & 3) == 0);
}
UInt64 XzUnpacker_GetExtraSize(const CXzUnpacker *p)
{
UInt64 num = 0;
if (p->state == XZ_STATE_STREAM_PADDING)
num = p->padSize;
else if (p->state == XZ_STATE_STREAM_HEADER)
num = p->padSize + p->pos;
return num;
}
#ifndef _7ZIP_ST
#include "MtDec.h"
#endif
void XzDecMtProps_Init(CXzDecMtProps *p)
{
p->inBufSize_ST = 1 << 18;
p->outStep_ST = 1 << 20;
p->ignoreErrors = False;
#ifndef _7ZIP_ST
p->numThreads = 1;
p->inBufSize_MT = 1 << 18;
p->memUseMax = sizeof(size_t) << 28;
#endif
}
#ifndef _7ZIP_ST
/* ---------- CXzDecMtThread ---------- */
typedef struct
{
Byte *outBuf;
size_t outBufSize;
size_t outPreSize;
size_t inPreSize;
size_t inPreHeaderSize;
size_t blockPackSize_for_Index; // including block header and checksum.
size_t blockPackTotal; // including stream header, block header and checksum.
size_t inCodeSize;
size_t outCodeSize;
ECoderStatus status;
SRes codeRes;
Bool skipMode;
// Bool finishedWithMark;
EMtDecParseState parseState;
Bool parsing_Truncated;
Bool atBlockHeader;
CXzStreamFlags streamFlags;
// UInt64 numFinishedStreams
UInt64 numStreams;
UInt64 numTotalBlocks;
UInt64 numBlocks;
Bool dec_created;
CXzUnpacker dec;
Byte mtPad[1 << 7];
} CXzDecMtThread;
#endif
/* ---------- CXzDecMt ---------- */
typedef struct
{
CAlignOffsetAlloc alignOffsetAlloc;
ISzAllocPtr allocMid;
CXzDecMtProps props;
size_t unpackBlockMaxSize;
ISeqInStream *inStream;
ISeqOutStream *outStream;
ICompressProgress *progress;
// CXzStatInfo *stat;
Bool finishMode;
Bool outSize_Defined;
UInt64 outSize;
UInt64 outProcessed;
UInt64 inProcessed;
UInt64 readProcessed;
Bool readWasFinished;
SRes readRes;
SRes writeRes;
Byte *outBuf;
size_t outBufSize;
Byte *inBuf;
size_t inBufSize;
Bool dec_created;
CXzUnpacker dec;
ECoderStatus status;
SRes codeRes;
#ifndef _7ZIP_ST
Bool mainDecoderWasCalled;
// int statErrorDefined;
int finishedDecoderIndex;
// global values that are used in Parse stage
CXzStreamFlags streamFlags;
// UInt64 numFinishedStreams
UInt64 numStreams;
UInt64 numTotalBlocks;
UInt64 numBlocks;
// UInt64 numBadBlocks;
SRes mainErrorCode;
Bool isBlockHeaderState_Parse;
Bool isBlockHeaderState_Write;
UInt64 outProcessed_Parse;
Bool parsing_Truncated;
Bool mtc_WasConstructed;
CMtDec mtc;
CXzDecMtThread coders[MTDEC__THREADS_MAX];
#endif
} CXzDecMt;
CXzDecMtHandle XzDecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid)
{
CXzDecMt *p = (CXzDecMt *)ISzAlloc_Alloc(alloc, sizeof(CXzDecMt));
if (!p)
return NULL;
AlignOffsetAlloc_CreateVTable(&p->alignOffsetAlloc);
p->alignOffsetAlloc.baseAlloc = alloc;
p->alignOffsetAlloc.numAlignBits = 7;
p->alignOffsetAlloc.offset = 0;
p->allocMid = allocMid;
p->outBuf = NULL;
p->outBufSize = 0;
p->inBuf = NULL;
p->inBufSize = 0;
p->dec_created = False;
p->unpackBlockMaxSize = 0;
XzDecMtProps_Init(&p->props);
#ifndef _7ZIP_ST
p->mtc_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CXzDecMtThread *coder = &p->coders[i];
coder->dec_created = False;
coder->outBuf = NULL;
coder->outBufSize = 0;
}
}
#endif
return p;
}
#ifndef _7ZIP_ST
static void XzDecMt_FreeOutBufs(CXzDecMt *p)
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CXzDecMtThread *coder = &p->coders[i];
if (coder->outBuf)
{
ISzAlloc_Free(p->allocMid, coder->outBuf);
coder->outBuf = NULL;
coder->outBufSize = 0;
}
}
p->unpackBlockMaxSize = 0;
}
#endif
static void XzDecMt_FreeSt(CXzDecMt *p)
{
if (p->dec_created)
{
XzUnpacker_Free(&p->dec);
p->dec_created = False;
}
if (p->outBuf)
{
ISzAlloc_Free(p->allocMid, p->outBuf);
p->outBuf = NULL;
}
p->outBufSize = 0;
if (p->inBuf)
{
ISzAlloc_Free(p->allocMid, p->inBuf);
p->inBuf = NULL;
}
p->inBufSize = 0;
}
void XzDecMt_Destroy(CXzDecMtHandle pp)
{
CXzDecMt *p = (CXzDecMt *)pp;
XzDecMt_FreeSt(p);
#ifndef _7ZIP_ST
if (p->mtc_WasConstructed)
{
MtDec_Destruct(&p->mtc);
p->mtc_WasConstructed = False;
}
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CXzDecMtThread *t = &p->coders[i];
if (t->dec_created)
{
// we don't need to free dict here
XzUnpacker_Free(&t->dec);
t->dec_created = False;
}
}
}
XzDecMt_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alignOffsetAlloc.baseAlloc, pp);
}
#ifndef _7ZIP_ST
static void XzDecMt_Callback_Parse(void *obj, unsigned coderIndex, CMtDecCallbackInfo *cc)
{
CXzDecMt *me = (CXzDecMt *)obj;
CXzDecMtThread *coder = &me->coders[coderIndex];
size_t srcSize = cc->srcSize;
cc->srcSize = 0;
cc->outPos = 0;
cc->state = MTDEC_PARSE_CONTINUE;
cc->canCreateNewThread = True;
if (cc->startCall)
{
coder->outPreSize = 0;
coder->inPreSize = 0;
coder->inPreHeaderSize = 0;
coder->parseState = MTDEC_PARSE_CONTINUE;
coder->parsing_Truncated = False;
coder->skipMode = False;
coder->codeRes = SZ_OK;
coder->status = CODER_STATUS_NOT_SPECIFIED;
coder->inCodeSize = 0;
coder->outCodeSize = 0;
coder->numStreams = me->numStreams;
coder->numTotalBlocks = me->numTotalBlocks;
coder->numBlocks = me->numBlocks;
if (!coder->dec_created)
{
XzUnpacker_Construct(&coder->dec, &me->alignOffsetAlloc.vt);
coder->dec_created = True;
}
XzUnpacker_Init(&coder->dec);
if (me->isBlockHeaderState_Parse)
{
coder->dec.streamFlags = me->streamFlags;
coder->atBlockHeader = True;
XzUnpacker_PrepareToRandomBlockDecoding(&coder->dec);
}
else
{
coder->atBlockHeader = False;
me->isBlockHeaderState_Parse = True;
}
coder->dec.numStartedStreams = me->numStreams;
coder->dec.numTotalBlocks = me->numTotalBlocks;
coder->dec.numBlocks = me->numBlocks;
}
while (!coder->skipMode)
{
ECoderStatus status;
SRes res;
size_t srcSize2 = srcSize;
size_t destSize = (size_t)0 - 1;
coder->dec.parseMode = True;
coder->dec.headerParsedOk = False;
PRF_STR_INT("Parse", srcSize2);
res = XzUnpacker_Code(&coder->dec,
NULL, &destSize,
cc->src, &srcSize2, cc->srcFinished,
CODER_FINISH_END, &status);
// PRF(printf(" res = %d, srcSize2 = %d", res, (unsigned)srcSize2));
coder->codeRes = res;
coder->status = status;
cc->srcSize += srcSize2;
srcSize -= srcSize2;
coder->inPreHeaderSize += srcSize2;
coder->inPreSize = coder->inPreHeaderSize;
if (res != SZ_OK)
{
cc->state =
coder->parseState = MTDEC_PARSE_END;
/*
if (res == SZ_ERROR_MEM)
return res;
return SZ_OK;
*/
return; // res;
}
if (coder->dec.headerParsedOk)
{
const CXzBlock *block = &coder->dec.block;
if (XzBlock_HasUnpackSize(block)
// && block->unpackSize <= me->props.outBlockMax
&& XzBlock_HasPackSize(block))
{
{
if (block->unpackSize * 2 * me->mtc.numStartedThreads > me->props.memUseMax)
{
cc->state = MTDEC_PARSE_OVERFLOW;
return; // SZ_OK;
}
}
{
UInt64 packSize = block->packSize;
UInt64 packSizeAligned = packSize + ((0 - (unsigned)packSize) & 3);
UInt32 checkSize = XzFlags_GetCheckSize(coder->dec.streamFlags);
UInt64 blockPackSum = coder->inPreSize + packSizeAligned + checkSize;
// if (blockPackSum <= me->props.inBlockMax)
// unpackBlockMaxSize
{
coder->blockPackSize_for_Index = (size_t)(coder->dec.blockHeaderSize + packSize + checkSize);
coder->blockPackTotal = (size_t)blockPackSum;
coder->outPreSize = (size_t)block->unpackSize;
coder->streamFlags = coder->dec.streamFlags;
me->streamFlags = coder->dec.streamFlags;
coder->skipMode = True;
break;
}
}
}
}
else
// if (coder->inPreSize <= me->props.inBlockMax)
{
if (!cc->srcFinished)
return; // SZ_OK;
cc->state =
coder->parseState = MTDEC_PARSE_END;
return; // SZ_OK;
}
cc->state = MTDEC_PARSE_OVERFLOW;
return; // SZ_OK;
}
// ---------- skipMode ----------
{
UInt64 rem = coder->blockPackTotal - coder->inPreSize;
size_t cur = srcSize;
if (cur > rem)
cur = (size_t)rem;
cc->srcSize += cur;
coder->inPreSize += cur;
srcSize -= cur;
if (coder->inPreSize == coder->blockPackTotal)
{
if (srcSize == 0)
{
if (!cc->srcFinished)
return; // SZ_OK;
cc->state = MTDEC_PARSE_END;
}
else if ((cc->src)[cc->srcSize] == 0) // we check control byte of next block
cc->state = MTDEC_PARSE_END;
else
{
cc->state = MTDEC_PARSE_NEW;
{
size_t blockMax = me->unpackBlockMaxSize;
if (blockMax < coder->outPreSize)
blockMax = coder->outPreSize;
{
UInt64 required = (UInt64)blockMax * (me->mtc.numStartedThreads + 1) * 2;
if (me->props.memUseMax < required)
cc->canCreateNewThread = False;
}
}
if (me->outSize_Defined)
{
// next block can be zero size
const UInt64 rem2 = me->outSize - me->outProcessed_Parse;
if (rem2 < coder->outPreSize)
{
coder->parsing_Truncated = True;
cc->state = MTDEC_PARSE_END;
}
me->outProcessed_Parse += coder->outPreSize;
}
}
}
else if (cc->srcFinished)
cc->state = MTDEC_PARSE_END;
else
return; // SZ_OK;
coder->parseState = cc->state;
cc->outPos = coder->outPreSize;
me->numStreams = coder->dec.numStartedStreams;
me->numTotalBlocks = coder->dec.numTotalBlocks;
me->numBlocks = coder->dec.numBlocks + 1;
return; // SZ_OK;
}
}
static SRes XzDecMt_Callback_PreCode(void *pp, unsigned coderIndex)
{
CXzDecMt *me = (CXzDecMt *)pp;
CXzDecMtThread *coder = &me->coders[coderIndex];
Byte *dest;
if (!coder->dec.headerParsedOk)
return SZ_OK;
dest = coder->outBuf;
if (!dest || coder->outBufSize < coder->outPreSize)
{
if (dest)
{
ISzAlloc_Free(me->allocMid, dest);
coder->outBuf = NULL;
coder->outBufSize = 0;
}
{
size_t outPreSize = coder->outPreSize;
if (outPreSize == 0)
outPreSize = 1;
dest = (Byte *)ISzAlloc_Alloc(me->allocMid, outPreSize);
}
if (!dest)
return SZ_ERROR_MEM;
coder->outBuf = dest;
coder->outBufSize = coder->outPreSize;
if (coder->outBufSize > me->unpackBlockMaxSize)
me->unpackBlockMaxSize = coder->outBufSize;
}
// return SZ_ERROR_MEM;
XzUnpacker_SetOutBuf(&coder->dec, coder->outBuf, coder->outBufSize);
{
SRes res = XzDecMix_Init(&coder->dec.decoder, &coder->dec.block, coder->outBuf, coder->outBufSize);
// res = SZ_ERROR_UNSUPPORTED; // to test
coder->codeRes = res;
if (res != SZ_OK)
{
// if (res == SZ_ERROR_MEM) return res;
if (me->props.ignoreErrors && res != SZ_ERROR_MEM)
return S_OK;
return res;
}
}
return SZ_OK;
}
static SRes XzDecMt_Callback_Code(void *pp, unsigned coderIndex,
const Byte *src, size_t srcSize, int srcFinished,
// int finished, int blockFinished,
UInt64 *inCodePos, UInt64 *outCodePos, int *stop)
{
CXzDecMt *me = (CXzDecMt *)pp;
CXzDecMtThread *coder = &me->coders[coderIndex];
*inCodePos = coder->inCodeSize;
*outCodePos = coder->outCodeSize;
*stop = True;
if (coder->inCodeSize < coder->inPreHeaderSize)
{
UInt64 rem = coder->inPreHeaderSize - coder->inCodeSize;
size_t step = srcSize;
if (step > rem)
step = (size_t)rem;
src += step;
srcSize -= step;
coder->inCodeSize += step;
if (coder->inCodeSize < coder->inPreHeaderSize)
{
*stop = False;
return SZ_OK;
}
}
if (!coder->dec.headerParsedOk)
return SZ_OK;
if (!coder->outBuf)
return SZ_OK;
if (coder->codeRes == SZ_OK)
{
ECoderStatus status;
SRes res;
size_t srcProcessed = srcSize;
size_t outSizeCur = coder->outPreSize - coder->dec.outDataWritten;
// PRF(printf("\nCallback_Code: Code %d %d\n", (unsigned)srcSize, (unsigned)outSizeCur));
res = XzUnpacker_Code(&coder->dec,
NULL, &outSizeCur,
src, &srcProcessed, srcFinished,
// coder->finishedWithMark ? CODER_FINISH_END : CODER_FINISH_ANY,
CODER_FINISH_END,
&status);
// PRF(printf(" res = %d, srcSize2 = %d, outSizeCur = %d", res, (unsigned)srcProcessed, (unsigned)outSizeCur));
coder->codeRes = res;
coder->status = status;
coder->inCodeSize += srcProcessed;
coder->outCodeSize = coder->dec.outDataWritten;
*inCodePos = coder->inCodeSize;
*outCodePos = coder->outCodeSize;
if (res == SZ_OK)
{
if (srcProcessed == srcSize)
*stop = False;
return SZ_OK;
}
}
if (me->props.ignoreErrors && coder->codeRes != SZ_ERROR_MEM)
{
*inCodePos = coder->inPreSize;
*outCodePos = coder->outPreSize;
return S_OK;
}
return coder->codeRes;
}
#define XZDECMT_STREAM_WRITE_STEP (1 << 24)
static SRes XzDecMt_Callback_Write(void *pp, unsigned coderIndex,
Bool needWriteToStream,
const Byte *src, size_t srcSize,
// int srcFinished,
Bool *needContinue,
Bool *canRecode)
{
CXzDecMt *me = (CXzDecMt *)pp;
const CXzDecMtThread *coder = &me->coders[coderIndex];
// PRF(printf("\nWrite processed = %d srcSize = %d\n", (unsigned)me->mtc.inProcessed, (unsigned)srcSize));
*needContinue = False;
*canRecode = True;
if (!needWriteToStream)
return SZ_OK;
if (!coder->dec.headerParsedOk || !coder->outBuf)
{
if (me->finishedDecoderIndex < 0)
me->finishedDecoderIndex = coderIndex;
return SZ_OK;
}
if (me->finishedDecoderIndex >= 0)
return SZ_OK;
me->mtc.inProcessed += coder->inCodeSize;
*canRecode = False;
{
SRes res;
size_t size = coder->outCodeSize;
Byte *data = coder->outBuf;
// we use in me->dec: sha, numBlocks, indexSize
if (!me->isBlockHeaderState_Write)
{
XzUnpacker_PrepareToRandomBlockDecoding(&me->dec);
me->dec.decodeOnlyOneBlock = False;
me->dec.numStartedStreams = coder->dec.numStartedStreams;
me->dec.streamFlags = coder->streamFlags;
me->isBlockHeaderState_Write = True;
}
me->dec.numTotalBlocks = coder->dec.numTotalBlocks;
XzUnpacker_UpdateIndex(&me->dec, coder->blockPackSize_for_Index, coder->outPreSize);
if (coder->outPreSize != size)
{
if (me->props.ignoreErrors)
{
memset(data + size, 0, coder->outPreSize - size);
size = coder->outPreSize;
}
// me->numBadBlocks++;
if (me->mainErrorCode == SZ_OK)
{
if ((int)coder->status == LZMA_STATUS_NEEDS_MORE_INPUT)
me->mainErrorCode = SZ_ERROR_INPUT_EOF;
else
me->mainErrorCode = SZ_ERROR_DATA;
}
}
if (me->writeRes != SZ_OK)
return me->writeRes;
res = SZ_OK;
{
if (me->outSize_Defined)
{
const UInt64 rem = me->outSize - me->outProcessed;
if (size > rem)
size = (SizeT)rem;
}
for (;;)
{
size_t cur = size;
size_t written;
if (cur > XZDECMT_STREAM_WRITE_STEP)
cur = XZDECMT_STREAM_WRITE_STEP;
written = ISeqOutStream_Write(me->outStream, data, cur);
// PRF(printf("\nWritten ask = %d written = %d\n", (unsigned)cur, (unsigned)written));
me->outProcessed += written;
if (written != cur)
{
me->writeRes = SZ_ERROR_WRITE;
res = me->writeRes;
break;
}
data += cur;
size -= cur;
// PRF_STR_INT("Written size =", size);
if (size == 0)
break;
res = MtProgress_ProgressAdd(&me->mtc.mtProgress, 0, 0);
if (res != SZ_OK)
break;
}
}
if (coder->codeRes != SZ_OK)
if (!me->props.ignoreErrors)
{
me->finishedDecoderIndex = coderIndex;
return res;
}
RINOK(res);
if (coder->inPreSize != coder->inCodeSize
|| coder->blockPackTotal != coder->inCodeSize)
{
me->finishedDecoderIndex = coderIndex;
return SZ_OK;
}
if (coder->parseState != MTDEC_PARSE_END)
{
*needContinue = True;
return SZ_OK;
}
}
// (coder->state == MTDEC_PARSE_END) means that there are no other working threads
// so we can use mtc variables without lock
PRF_STR_INT("Write MTDEC_PARSE_END", me->mtc.inProcessed);
me->mtc.mtProgress.totalInSize = me->mtc.inProcessed;
{
CXzUnpacker *dec = &me->dec;
PRF_STR_INT("PostSingle", srcSize);
{
size_t srcProcessed = srcSize;
ECoderStatus status;
size_t outSizeCur = 0;
SRes res;
// dec->decodeOnlyOneBlock = False;
dec->decodeToStreamSignature = True;
me->mainDecoderWasCalled = True;
if (coder->parsing_Truncated)
{
me->parsing_Truncated = True;
return SZ_OK;
}
res = XzUnpacker_Code(dec,
NULL, &outSizeCur,
src, &srcProcessed,
me->mtc.readWasFinished, // srcFinished
CODER_FINISH_END, // CODER_FINISH_ANY,
&status);
me->status = status;
me->codeRes = res;
me->mtc.inProcessed += srcProcessed;
me->mtc.mtProgress.totalInSize = me->mtc.inProcessed;
if (res != SZ_OK)
{
return S_OK;
// return res;
}
if (dec->state == XZ_STATE_STREAM_HEADER)
{
*needContinue = True;
me->isBlockHeaderState_Parse = False;
me->isBlockHeaderState_Write = False;
{
Byte *crossBuf = MtDec_GetCrossBuff(&me->mtc);
if (!crossBuf)
return SZ_ERROR_MEM;
memcpy(crossBuf, src + srcProcessed, srcSize - srcProcessed);
}
me->mtc.crossStart = 0;
me->mtc.crossEnd = srcSize - srcProcessed;
return SZ_OK;
}
if (status != CODER_STATUS_NEEDS_MORE_INPUT)
{
return E_FAIL;
}
if (me->mtc.readWasFinished)
{
return SZ_OK;
}
}
{
size_t inPos;
size_t inLim;
const Byte *inData;
UInt64 inProgressPrev = me->mtc.inProcessed;
// XzDecMt_Prepare_InBuf_ST(p);
Byte *crossBuf = MtDec_GetCrossBuff(&me->mtc);
if (!crossBuf)
return SZ_ERROR_MEM;
inPos = 0;
inLim = 0;
// outProcessed = 0;
inData = crossBuf;
for (;;)
{
SizeT inProcessed;
SizeT outProcessed;
ECoderStatus status;
SRes res;
if (inPos == inLim)
{
if (!me->mtc.readWasFinished)
{
inPos = 0;
inLim = me->mtc.inBufSize;
me->mtc.readRes = ISeqInStream_Read(me->inStream, (void *)inData, &inLim);
me->mtc.readProcessed += inLim;
if (inLim == 0 || me->mtc.readRes != SZ_OK)
me->mtc.readWasFinished = True;
}
}
inProcessed = inLim - inPos;
outProcessed = 0;
res = XzUnpacker_Code(dec,
NULL, &outProcessed,
inData + inPos, &inProcessed,
(inProcessed == 0), // srcFinished
CODER_FINISH_END, &status);
me->codeRes = res;
me->status = status;
inPos += inProcessed;
me->mtc.inProcessed += inProcessed;
me->mtc.mtProgress.totalInSize = me->mtc.inProcessed;
if (res != SZ_OK)
{
return S_OK;
// return res;
}
if (dec->state == XZ_STATE_STREAM_HEADER)
{
*needContinue = True;
me->mtc.crossStart = inPos;
me->mtc.crossEnd = inLim;
me->isBlockHeaderState_Parse = False;
me->isBlockHeaderState_Write = False;
return SZ_OK;
}
if (status != CODER_STATUS_NEEDS_MORE_INPUT)
return E_FAIL;
if (me->mtc.progress)
{
UInt64 inDelta = me->mtc.inProcessed - inProgressPrev;
if (inDelta >= (1 << 22))
{
RINOK(MtProgress_Progress_ST(&me->mtc.mtProgress));
inProgressPrev = me->mtc.inProcessed;
}
}
if (me->mtc.readWasFinished)
return SZ_OK;
}
}
}
}
#endif
void XzStatInfo_Clear(CXzStatInfo *p)
{
p->InSize = 0;
p->OutSize = 0;
p->NumStreams = 0;
p->NumBlocks = 0;
p->UnpackSize_Defined = False;
p->NumStreams_Defined = False;
p->NumBlocks_Defined = False;
// p->IsArc = False;
// p->UnexpectedEnd = False;
// p->Unsupported = False;
// p->HeadersError = False;
// p->DataError = False;
// p->CrcError = False;
p->DataAfterEnd = False;
p->DecodingTruncated = False;
p->DecodeRes = SZ_OK;
p->ReadRes = SZ_OK;
p->ProgressRes = SZ_OK;
p->CombinedRes = SZ_OK;
p->CombinedRes_Type = SZ_OK;
}
static SRes XzDecMt_Decode_ST(CXzDecMt *p
#ifndef _7ZIP_ST
, Bool tMode
#endif
, CXzStatInfo *stat)
{
size_t outPos;
size_t inPos, inLim;
const Byte *inData;
UInt64 inPrev, outPrev;
CXzUnpacker *dec;
#ifndef _7ZIP_ST
if (tMode)
{
XzDecMt_FreeOutBufs(p);
tMode = MtDec_PrepareRead(&p->mtc);
}
#endif
if (!p->outBuf || p->outBufSize != p->props.outStep_ST)
{
ISzAlloc_Free(p->allocMid, p->outBuf);
p->outBufSize = 0;
p->outBuf = (Byte *)ISzAlloc_Alloc(p->allocMid, p->props.outStep_ST);
if (!p->outBuf)
return SZ_ERROR_MEM;
p->outBufSize = p->props.outStep_ST;
}
if (!p->inBuf || p->inBufSize != p->props.inBufSize_ST)
{
ISzAlloc_Free(p->allocMid, p->inBuf);
p->inBufSize = 0;
p->inBuf = (Byte *)ISzAlloc_Alloc(p->allocMid, p->props.inBufSize_ST);
if (!p->inBuf)
return SZ_ERROR_MEM;
p->inBufSize = p->props.inBufSize_ST;
}
dec = &p->dec;
dec->decodeToStreamSignature = False;
// dec->decodeOnlyOneBlock = False;
XzUnpacker_SetOutBuf(dec, NULL, 0);
inPrev = p->inProcessed;
outPrev = p->outProcessed;
inPos = 0;
inLim = 0;
inData = NULL;
outPos = 0;
for (;;)
{
SizeT outSize;
Bool finished;
ECoderFinishMode finishMode;
SizeT inProcessed;
ECoderStatus status;
SRes res;
SizeT outProcessed;
if (inPos == inLim)
{
#ifndef _7ZIP_ST
if (tMode)
{
inData = MtDec_Read(&p->mtc, &inLim);
inPos = 0;
if (inData)
continue;
tMode = False;
inLim = 0;
}
#endif
if (!p->readWasFinished)
{
inPos = 0;
inLim = p->inBufSize;
inData = p->inBuf;
p->readRes = ISeqInStream_Read(p->inStream, (void *)inData, &inLim);
p->readProcessed += inLim;
if (inLim == 0 || p->readRes != SZ_OK)
p->readWasFinished = True;
}
}
outSize = p->props.outStep_ST - outPos;
finishMode = CODER_FINISH_ANY;
if (p->outSize_Defined)
{
const UInt64 rem = p->outSize - p->outProcessed;
if (outSize >= rem)
{
outSize = (SizeT)rem;
if (p->finishMode)
finishMode = CODER_FINISH_END;
}
}
inProcessed = inLim - inPos;
outProcessed = outSize;
res = XzUnpacker_Code(dec, p->outBuf + outPos, &outProcessed,
inData + inPos, &inProcessed,
(inPos == inLim), // srcFinished
finishMode, &status);
p->codeRes = res;
p->status = status;
inPos += inProcessed;
outPos += outProcessed;
p->inProcessed += inProcessed;
p->outProcessed += outProcessed;
finished = ((inProcessed == 0 && outProcessed == 0) || res != SZ_OK);
if (finished || outProcessed >= outSize)
if (outPos != 0)
{
size_t written = ISeqOutStream_Write(p->outStream, p->outBuf, outPos);
p->outProcessed += written;
if (written != outPos)
{
stat->CombinedRes_Type = SZ_ERROR_WRITE;
return SZ_ERROR_WRITE;
}
outPos = 0;
}
if (p->progress && res == SZ_OK)
{
UInt64 inDelta = p->inProcessed - inPrev;
UInt64 outDelta = p->outProcessed - outPrev;
if (inDelta >= (1 << 22) || outDelta >= (1 << 22))
{
res = ICompressProgress_Progress(p->progress, p->inProcessed, p->outProcessed);
if (res != SZ_OK)
{
stat->CombinedRes_Type = SZ_ERROR_PROGRESS;
stat->ProgressRes = res;
return res;
}
inPrev = p->inProcessed;
outPrev = p->outProcessed;
}
}
if (finished)
return res;
}
}
static SRes XzStatInfo_SetStat(const CXzUnpacker *dec,
int finishMode,
UInt64 readProcessed, UInt64 inProcessed,
SRes res, ECoderStatus status,
Bool decodingTruncated,
CXzStatInfo *stat)
{
UInt64 extraSize;
stat->DecodingTruncated = (Byte)(decodingTruncated ? 1 : 0);
stat->InSize = inProcessed;
stat->NumStreams = dec->numStartedStreams;
stat->NumBlocks = dec->numTotalBlocks;
stat->UnpackSize_Defined = True;
stat->NumStreams_Defined = True;
stat->NumBlocks_Defined = True;
extraSize = XzUnpacker_GetExtraSize(dec);
if (res == SZ_OK)
{
if (status == CODER_STATUS_NEEDS_MORE_INPUT)
{
// CODER_STATUS_NEEDS_MORE_INPUT is expected status for correct xz streams
extraSize = 0;
if (!XzUnpacker_IsStreamWasFinished(dec))
res = SZ_ERROR_INPUT_EOF;
}
else if (!decodingTruncated || finishMode) // (status == CODER_STATUS_NOT_FINISHED)
res = SZ_ERROR_DATA;
}
else if (res == SZ_ERROR_NO_ARCHIVE)
{
/*
SZ_ERROR_NO_ARCHIVE is possible for 2 states:
XZ_STATE_STREAM_HEADER - if bad signature or bad CRC
XZ_STATE_STREAM_PADDING - if non-zero padding data
extraSize / inProcessed don't include "bad" byte
*/
if (inProcessed != extraSize) // if good streams before error
if (extraSize != 0 || readProcessed != inProcessed)
{
stat->DataAfterEnd = True;
// there is some good xz stream before. So we set SZ_OK
res = SZ_OK;
}
}
stat->DecodeRes = res;
stat->InSize -= extraSize;
return res;
}
SRes XzDecMt_Decode(CXzDecMtHandle pp,
const CXzDecMtProps *props,
const UInt64 *outDataSize, int finishMode,
ISeqOutStream *outStream,
// Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
// const Byte *inData, size_t inDataSize,
CXzStatInfo *stat,
int *isMT,
ICompressProgress *progress)
{
CXzDecMt *p = (CXzDecMt *)pp;
#ifndef _7ZIP_ST
Bool tMode;
#endif
XzStatInfo_Clear(stat);
p->props = *props;
p->inStream = inStream;
p->outStream = outStream;
p->progress = progress;
// p->stat = stat;
p->outSize = 0;
p->outSize_Defined = False;
if (outDataSize)
{
p->outSize_Defined = True;
p->outSize = *outDataSize;
}
p->finishMode = finishMode;
// p->outSize = 457; p->outSize_Defined = True; p->finishMode = False; // for test
p->writeRes = SZ_OK;
p->outProcessed = 0;
p->inProcessed = 0;
p->readProcessed = 0;
p->readWasFinished = False;
p->codeRes = 0;
p->status = CODER_STATUS_NOT_SPECIFIED;
if (!p->dec_created)
{
XzUnpacker_Construct(&p->dec, &p->alignOffsetAlloc.vt);
p->dec_created = True;
}
XzUnpacker_Init(&p->dec);
*isMT = False;
/*
p->outBuf = NULL;
p->outBufSize = 0;
if (!outStream)
{
p->outBuf = outBuf;
p->outBufSize = *outBufSize;
*outBufSize = 0;
}
*/
#ifndef _7ZIP_ST
p->isBlockHeaderState_Parse = False;
p->isBlockHeaderState_Write = False;
// p->numBadBlocks = 0;
p->mainErrorCode = SZ_OK;
p->mainDecoderWasCalled = False;
tMode = False;
if (p->props.numThreads > 1)
{
IMtDecCallback vt;
XzDecMt_FreeSt(p);
p->outProcessed_Parse = 0;
p->parsing_Truncated = False;
p->numStreams = 0;
p->numTotalBlocks = 0;
p->numBlocks = 0;
p->finishedDecoderIndex = -1;
if (!p->mtc_WasConstructed)
{
p->mtc_WasConstructed = True;
MtDec_Construct(&p->mtc);
}
p->mtc.mtCallback = &vt;
p->mtc.mtCallbackObject = p;
p->mtc.progress = progress;
p->mtc.inStream = inStream;
p->mtc.alloc = &p->alignOffsetAlloc.vt;
// p->mtc.inData = inData;
// p->mtc.inDataSize = inDataSize;
p->mtc.inBufSize = p->props.inBufSize_MT;
// p->mtc.inBlockMax = p->props.inBlockMax;
p->mtc.numThreadsMax = p->props.numThreads;
*isMT = True;
vt.Parse = XzDecMt_Callback_Parse;
vt.PreCode = XzDecMt_Callback_PreCode;
vt.Code = XzDecMt_Callback_Code;
vt.Write = XzDecMt_Callback_Write;
{
Bool needContinue;
SRes res = MtDec_Code(&p->mtc);
stat->InSize = p->mtc.inProcessed;
p->inProcessed = p->mtc.inProcessed;
p->readRes = p->mtc.readRes;
p->readWasFinished = p->mtc.readWasFinished;
p->readProcessed = p->mtc.readProcessed;
tMode = True;
needContinue = False;
if (res == SZ_OK)
{
if (p->mtc.mtProgress.res != SZ_OK)
{
res = p->mtc.mtProgress.res;
stat->ProgressRes = res;
stat->CombinedRes_Type = SZ_ERROR_PROGRESS;
}
else
needContinue = p->mtc.needContinue;
}
if (!needContinue)
{
SRes codeRes;
Bool truncated = False;
ECoderStatus status;
CXzUnpacker *dec;
stat->OutSize = p->outProcessed;
if (p->finishedDecoderIndex >= 0)
{
CXzDecMtThread *coder = &p->coders[(unsigned)p->finishedDecoderIndex];
codeRes = coder->codeRes;
dec = &coder->dec;
status = coder->status;
}
else if (p->mainDecoderWasCalled)
{
codeRes = p->codeRes;
dec = &p->dec;
status = p->status;
truncated = p->parsing_Truncated;
}
else
return E_FAIL;
XzStatInfo_SetStat(dec, p->finishMode,
p->mtc.readProcessed, p->mtc.inProcessed,
codeRes, status,
truncated,
stat);
if (res == SZ_OK)
{
if (p->writeRes != SZ_OK)
{
res = p->writeRes;
stat->CombinedRes_Type = SZ_ERROR_WRITE;
}
else if (p->mtc.readRes != SZ_OK && p->mtc.inProcessed == p->mtc.readProcessed)
{
res = p->mtc.readRes;
stat->ReadRes = res;
stat->CombinedRes_Type = SZ_ERROR_READ;
}
else if (p->mainErrorCode != SZ_OK)
{
res = p->mainErrorCode;
}
}
stat->CombinedRes = res;
if (stat->CombinedRes_Type == SZ_OK)
stat->CombinedRes_Type = res;
return res;
}
PRF_STR("----- decoding ST -----");
}
}
#endif
*isMT = False;
{
SRes res = XzDecMt_Decode_ST(p
#ifndef _7ZIP_ST
, tMode
#endif
, stat
);
XzStatInfo_SetStat(&p->dec,
p->finishMode,
p->readProcessed, p->inProcessed,
p->codeRes, p->status,
False, // truncated
stat);
if (res == SZ_OK)
{
/*
if (p->writeRes != SZ_OK)
{
res = p->writeRes;
stat->CombinedRes_Type = SZ_ERROR_WRITE;
}
else
*/
if (p->readRes != SZ_OK && p->inProcessed == p->readProcessed)
{
res = p->readRes;
stat->ReadRes = res;
stat->CombinedRes_Type = SZ_ERROR_READ;
}
#ifndef _7ZIP_ST
else if (p->mainErrorCode != SZ_OK)
res = p->mainErrorCode;
#endif
}
stat->CombinedRes = res;
if (stat->CombinedRes_Type == SZ_OK)
stat->CombinedRes_Type = res;
return res;
}
}