1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-09 23:31:14 +00:00
hashcat/OpenCL/m26500-pure.cl

458 lines
11 KiB
Common Lisp
Raw Normal View History

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
2022-02-07 12:31:22 +00:00
#define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl)
#define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl)
typedef struct iphone_passcode_tmp
{
u32 key0[4]; // original key from pbkdf2
u32 key1[4]; // original key from pbkdf2
u32 iterated_key0[4]; // updated key from pbkdf2 with iterations
u32 iterated_key1[4]; // updated key from pbkdf2 with iterations
u32 iv[4]; // current iv
} iphone_passcode_tmp_t;
typedef struct iphone_passcode
{
u32 uidkey[4];
u32 classkey1[10];
} iphone_passcode_t;
DECLSPEC void hmac_sha1_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m26500_init (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
sha1_hmac_ctx_t sha1_hmac_ctx0;
sha1_hmac_init_global_swap (&sha1_hmac_ctx0, pws[gid].i, pws[gid].pw_len);
sha1_hmac_update_global (&sha1_hmac_ctx0, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len);
// we can reuse context intermediate buffer values for pbkdf2
sha1_hmac_ctx_t sha1_hmac_ctx1 = sha1_hmac_ctx0;
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx0;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx1, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx1);
w0[0] = 2;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
// save
tmps[gid].key0[0] = hc_swap32_S (sha1_hmac_ctx1.opad.h[0]);
tmps[gid].key0[1] = hc_swap32_S (sha1_hmac_ctx1.opad.h[1]);
tmps[gid].key0[2] = hc_swap32_S (sha1_hmac_ctx1.opad.h[2]);
tmps[gid].key0[3] = hc_swap32_S (sha1_hmac_ctx1.opad.h[3]);
tmps[gid].key1[0] = hc_swap32_S (sha1_hmac_ctx1.opad.h[4]);
tmps[gid].key1[1] = hc_swap32_S (sha1_hmac_ctx2.opad.h[0]);
tmps[gid].key1[2] = hc_swap32_S (sha1_hmac_ctx2.opad.h[1]);
tmps[gid].key1[3] = hc_swap32_S (sha1_hmac_ctx2.opad.h[2]);
tmps[gid].iterated_key0[0] = tmps[gid].key0[0];
tmps[gid].iterated_key0[1] = tmps[gid].key0[1];
tmps[gid].iterated_key0[2] = tmps[gid].key0[2];
tmps[gid].iterated_key0[3] = tmps[gid].key0[3];
tmps[gid].iterated_key1[0] = tmps[gid].key1[0];
tmps[gid].iterated_key1[1] = tmps[gid].key1[1];
tmps[gid].iterated_key1[2] = tmps[gid].key1[2];
tmps[gid].iterated_key1[3] = tmps[gid].key1[3];
tmps[gid].iv[0] = 0;
tmps[gid].iv[1] = 0;
tmps[gid].iv[2] = 0;
tmps[gid].iv[3] = 0;
}
KERNEL_FQ void m26500_loop (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
// load stuff
u32 key0[4];
u32 key1[4];
key0[0] = tmps[gid].key0[0];
key0[1] = tmps[gid].key0[1];
key0[2] = tmps[gid].key0[2];
key0[3] = tmps[gid].key0[3];
key1[0] = tmps[gid].key1[0];
key1[1] = tmps[gid].key1[1];
key1[2] = tmps[gid].key1[2];
key1[3] = tmps[gid].key1[3];
u32 iterated_key0[4];
u32 iterated_key1[4];
iterated_key0[0] = tmps[gid].iterated_key0[0];
iterated_key0[1] = tmps[gid].iterated_key0[1];
iterated_key0[2] = tmps[gid].iterated_key0[2];
iterated_key0[3] = tmps[gid].iterated_key0[3];
iterated_key1[0] = tmps[gid].iterated_key1[0];
iterated_key1[1] = tmps[gid].iterated_key1[1];
iterated_key1[2] = tmps[gid].iterated_key1[2];
iterated_key1[3] = tmps[gid].iterated_key1[3];
u32 iv[4];
iv[0] = tmps[gid].iv[0];
iv[1] = tmps[gid].iv[1];
iv[2] = tmps[gid].iv[2];
iv[3] = tmps[gid].iv[3];
u32 ukey[4];
ukey[0] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[0];
ukey[1] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[1];
ukey[2] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[2];
ukey[3] = esalt_bufs[DIGESTS_OFFSET_HOST].uidkey[3];
u32 ks[44];
AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3);
// here's what counts
for (u32 i = 0, xorkey = LOOP_POS + 1; i < LOOP_CNT; i++, xorkey++)
{
u32 in[4];
in[0] = key0[0] ^ iv[0] ^ xorkey;
in[1] = key0[1] ^ iv[1] ^ xorkey;
in[2] = key0[2] ^ iv[2] ^ xorkey;
in[3] = key0[3] ^ iv[3] ^ xorkey;
aes128_encrypt (ks, in, iv, s_te0, s_te1, s_te2, s_te3, s_te4);
iterated_key0[0] ^= iv[0];
iterated_key0[1] ^= iv[1];
iterated_key0[2] ^= iv[2];
iterated_key0[3] ^= iv[3];
in[0] = key1[0] ^ iv[0] ^ xorkey;
in[1] = key1[1] ^ iv[1] ^ xorkey;
in[2] = key1[2] ^ iv[2] ^ xorkey;
in[3] = key1[3] ^ iv[3] ^ xorkey;
aes128_encrypt (ks, in, iv, s_te0, s_te1, s_te2, s_te3, s_te4);
iterated_key1[0] ^= iv[0];
iterated_key1[1] ^= iv[1];
iterated_key1[2] ^= iv[2];
iterated_key1[3] ^= iv[3];
}
tmps[gid].iterated_key0[0] = iterated_key0[0];
tmps[gid].iterated_key0[1] = iterated_key0[1];
tmps[gid].iterated_key0[2] = iterated_key0[2];
tmps[gid].iterated_key0[3] = iterated_key0[3];
tmps[gid].iterated_key1[0] = iterated_key1[0];
tmps[gid].iterated_key1[1] = iterated_key1[1];
tmps[gid].iterated_key1[2] = iterated_key1[2];
tmps[gid].iterated_key1[3] = iterated_key1[3];
tmps[gid].iv[0] = iv[0];
tmps[gid].iv[1] = iv[1];
tmps[gid].iv[2] = iv[2];
tmps[gid].iv[3] = iv[3];
}
KERNEL_FQ void m26500_comp (KERN_ATTR_TMPS_ESALT (iphone_passcode_tmp_t, iphone_passcode_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* aes
*/
u32 ukey[8];
ukey[0] = tmps[gid].iterated_key0[0];
ukey[1] = tmps[gid].iterated_key0[1];
ukey[2] = tmps[gid].iterated_key0[2];
ukey[3] = tmps[gid].iterated_key0[3];
ukey[4] = tmps[gid].iterated_key1[0];
ukey[5] = tmps[gid].iterated_key1[1];
ukey[6] = tmps[gid].iterated_key1[2];
ukey[7] = tmps[gid].iterated_key1[3];
u32 ks[60];
aes256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 cipher[4];
cipher[0] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[0];
cipher[1] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[1];
cipher[2] = 0;
cipher[3] = 0;
u32 lsb[8];
lsb[0] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[8];
lsb[1] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[9];
lsb[2] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[6];
lsb[3] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[7];
lsb[4] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[4];
lsb[5] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[5];
lsb[6] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[2];
lsb[7] = esalt_bufs[DIGESTS_OFFSET_HOST].classkey1[3];
for (int j = 5; j >= 0; j--)
{
// 1st
cipher[1] ^= (4 * j + 4);
cipher[2] = lsb[0];
cipher[3] = lsb[1];
AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4);
lsb[0] = cipher[2];
lsb[1] = cipher[3];
// 2nd
cipher[1] ^= (4 * j + 3);
cipher[2] = lsb[2];
cipher[3] = lsb[3];
AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4);
lsb[2] = cipher[2];
lsb[3] = cipher[3];
// 3rd
cipher[1] ^= (4 * j + 2);
cipher[2] = lsb[4];
cipher[3] = lsb[5];
AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4);
lsb[4] = cipher[2];
lsb[5] = cipher[3];
// 4th
cipher[1] ^= (4 * j + 1);
cipher[2] = lsb[6];
cipher[3] = lsb[7];
AES256_decrypt (ks, cipher, cipher, s_td0, s_td1, s_td2, s_td3, s_td4);
lsb[6] = cipher[2];
lsb[7] = cipher[3];
}
if ((cipher[0] == 0xa6a6a6a6) && (cipher[1] == 0xa6a6a6a6))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
return;
}
}