2020-09-08 08:34:21 +00:00
|
|
|
static void hmac_sha256(const byte *Key,size_t KeyLength,const byte *Data,
|
|
|
|
size_t DataLength,byte *ResDigest,
|
|
|
|
sha256_context *ICtxOpt,bool *SetIOpt,
|
|
|
|
sha256_context *RCtxOpt,bool *SetROpt)
|
|
|
|
{
|
|
|
|
const size_t Sha256BlockSize=64; // As defined in RFC 4868.
|
|
|
|
|
|
|
|
byte KeyHash[SHA256_DIGEST_SIZE];
|
|
|
|
if (KeyLength > Sha256BlockSize) // Convert longer keys to key hash.
|
|
|
|
{
|
|
|
|
sha256_context KCtx;
|
|
|
|
sha256_init(&KCtx);
|
|
|
|
sha256_process(&KCtx, Key, KeyLength);
|
|
|
|
sha256_done(&KCtx, KeyHash);
|
|
|
|
|
|
|
|
Key = KeyHash;
|
|
|
|
KeyLength = SHA256_DIGEST_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
byte KeyBuf[Sha256BlockSize]; // Store the padded key here.
|
|
|
|
sha256_context ICtx;
|
|
|
|
|
|
|
|
if (ICtxOpt!=NULL && *SetIOpt)
|
2023-05-19 19:24:23 +00:00
|
|
|
ICtx=*ICtxOpt; // Use already calculated the first block context.
|
2020-09-08 08:34:21 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
// This calculation is the same for all iterations with same password.
|
|
|
|
// So for PBKDF2 we can calculate it only for first block and then reuse
|
|
|
|
// to improve performance.
|
|
|
|
|
|
|
|
for (size_t I = 0; I < KeyLength; I++) // Use 0x36 padding for inner digest.
|
|
|
|
KeyBuf[I] = Key[I] ^ 0x36;
|
|
|
|
for (size_t I = KeyLength; I < Sha256BlockSize; I++)
|
|
|
|
KeyBuf[I] = 0x36;
|
|
|
|
|
|
|
|
sha256_init(&ICtx);
|
|
|
|
sha256_process(&ICtx, KeyBuf, Sha256BlockSize); // Hash padded key.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ICtxOpt!=NULL && !*SetIOpt) // Store constant context for further reuse.
|
|
|
|
{
|
|
|
|
*ICtxOpt=ICtx;
|
|
|
|
*SetIOpt=true;
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_process(&ICtx, Data, DataLength); // Hash data.
|
|
|
|
|
|
|
|
byte IDig[SHA256_DIGEST_SIZE]; // Internal digest for padded key and data.
|
|
|
|
sha256_done(&ICtx, IDig);
|
|
|
|
|
|
|
|
sha256_context RCtx;
|
|
|
|
|
|
|
|
if (RCtxOpt!=NULL && *SetROpt)
|
|
|
|
RCtx=*RCtxOpt; // Use already calculated first block context.
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// This calculation is the same for all iterations with same password.
|
|
|
|
// So for PBKDF2 we can calculate it only for first block and then reuse
|
|
|
|
// to improve performance.
|
|
|
|
|
|
|
|
for (size_t I = 0; I < KeyLength; I++) // Use 0x5c for outer key padding.
|
|
|
|
KeyBuf[I] = Key[I] ^ 0x5c;
|
|
|
|
for (size_t I = KeyLength; I < Sha256BlockSize; I++)
|
|
|
|
KeyBuf[I] = 0x5c;
|
|
|
|
|
|
|
|
sha256_init(&RCtx);
|
|
|
|
sha256_process(&RCtx, KeyBuf, Sha256BlockSize); // Hash padded key.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (RCtxOpt!=NULL && !*SetROpt) // Store constant context for further reuse.
|
|
|
|
{
|
|
|
|
*RCtxOpt=RCtx;
|
|
|
|
*SetROpt=true;
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_process(&RCtx, IDig, SHA256_DIGEST_SIZE); // Hash internal digest.
|
|
|
|
|
|
|
|
sha256_done(&RCtx, ResDigest);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// PBKDF2 for 32 byte key length. We generate the key for specified number
|
|
|
|
// of iteration count also as two supplementary values (key for checksums
|
|
|
|
// and password verification) for iterations+16 and iterations+32.
|
|
|
|
void pbkdf2(const byte *Pwd, size_t PwdLength,
|
|
|
|
const byte *Salt, size_t SaltLength,
|
|
|
|
byte *Key, byte *V1, byte *V2, uint Count)
|
|
|
|
{
|
|
|
|
const size_t MaxSalt=64;
|
|
|
|
byte SaltData[MaxSalt+4];
|
|
|
|
memcpy(SaltData, Salt, Min(SaltLength,MaxSalt));
|
|
|
|
|
2023-05-19 19:24:23 +00:00
|
|
|
SaltData[SaltLength + 0] = 0; // Block index appened to salt.
|
|
|
|
SaltData[SaltLength + 1] = 0; //
|
|
|
|
SaltData[SaltLength + 2] = 0; // Since we do not request the key width
|
|
|
|
SaltData[SaltLength + 3] = 1; // exceeding HMAC width, it is always 1.
|
2020-09-08 08:34:21 +00:00
|
|
|
|
|
|
|
// First iteration: HMAC of password, salt and block index (1).
|
|
|
|
byte U1[SHA256_DIGEST_SIZE];
|
|
|
|
hmac_sha256(Pwd, PwdLength, SaltData, SaltLength + 4, U1, NULL, NULL, NULL, NULL);
|
|
|
|
byte Fn[SHA256_DIGEST_SIZE]; // Current function value.
|
|
|
|
memcpy(Fn, U1, sizeof(Fn)); // Function at first iteration.
|
|
|
|
|
|
|
|
uint CurCount[] = { Count-1, 16, 16 };
|
|
|
|
byte *CurValue[] = { Key , V1, V2 };
|
|
|
|
|
|
|
|
sha256_context ICtxOpt,RCtxOpt;
|
|
|
|
bool SetIOpt=false,SetROpt=false;
|
|
|
|
|
|
|
|
byte U2[SHA256_DIGEST_SIZE];
|
|
|
|
for (uint I = 0; I < 3; I++) // For output key and 2 supplementary values.
|
|
|
|
{
|
|
|
|
for (uint J = 0; J < CurCount[I]; J++)
|
|
|
|
{
|
|
|
|
// U2 = PRF (P, U1).
|
|
|
|
hmac_sha256(Pwd, PwdLength, U1, sizeof(U1), U2, &ICtxOpt, &SetIOpt, &RCtxOpt, &SetROpt);
|
|
|
|
memcpy(U1, U2, sizeof(U1));
|
|
|
|
for (uint K = 0; K < sizeof(Fn); K++) // Function ^= U.
|
|
|
|
Fn[K] ^= U1[K];
|
|
|
|
}
|
|
|
|
memcpy(CurValue[I], Fn, SHA256_DIGEST_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
cleandata(SaltData, sizeof(SaltData));
|
|
|
|
cleandata(Fn, sizeof(Fn));
|
|
|
|
cleandata(U1, sizeof(U1));
|
|
|
|
cleandata(U2, sizeof(U2));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CryptData::SetKey50(bool Encrypt,SecPassword *Password,const wchar *PwdW,
|
|
|
|
const byte *Salt,const byte *InitV,uint Lg2Cnt,byte *HashKey,
|
|
|
|
byte *PswCheck)
|
|
|
|
{
|
|
|
|
if (Lg2Cnt>CRYPT5_KDF_LG2_COUNT_MAX)
|
|
|
|
return;
|
|
|
|
|
|
|
|
byte Key[32],PswCheckValue[SHA256_DIGEST_SIZE],HashKeyValue[SHA256_DIGEST_SIZE];
|
|
|
|
bool Found=false;
|
|
|
|
for (uint I=0;I<ASIZE(KDF5Cache);I++)
|
|
|
|
{
|
|
|
|
KDF5CacheItem *Item=KDF5Cache+I;
|
2023-05-19 19:24:23 +00:00
|
|
|
if (Item->Pwd==*Password && Item->Lg2Count==Lg2Cnt &&
|
2020-09-08 08:34:21 +00:00
|
|
|
memcmp(Item->Salt,Salt,SIZE_SALT50)==0)
|
|
|
|
{
|
|
|
|
memcpy(Key,Item->Key,sizeof(Key));
|
|
|
|
SecHideData(Key,sizeof(Key),false,false);
|
|
|
|
|
|
|
|
memcpy(PswCheckValue,Item->PswCheckValue,sizeof(PswCheckValue));
|
|
|
|
memcpy(HashKeyValue,Item->HashKeyValue,sizeof(HashKeyValue));
|
|
|
|
Found=true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!Found)
|
|
|
|
{
|
|
|
|
char PwdUtf[MAXPASSWORD*4];
|
|
|
|
WideToUtf(PwdW,PwdUtf,ASIZE(PwdUtf));
|
|
|
|
|
|
|
|
pbkdf2((byte *)PwdUtf,strlen(PwdUtf),Salt,SIZE_SALT50,Key,HashKeyValue,PswCheckValue,(1<<Lg2Cnt));
|
|
|
|
cleandata(PwdUtf,sizeof(PwdUtf));
|
|
|
|
|
|
|
|
KDF5CacheItem *Item=KDF5Cache+(KDF5CachePos++ % ASIZE(KDF5Cache));
|
|
|
|
Item->Lg2Count=Lg2Cnt;
|
|
|
|
Item->Pwd=*Password;
|
|
|
|
memcpy(Item->Salt,Salt,SIZE_SALT50);
|
|
|
|
memcpy(Item->Key,Key,sizeof(Item->Key));
|
|
|
|
memcpy(Item->PswCheckValue,PswCheckValue,sizeof(PswCheckValue));
|
|
|
|
memcpy(Item->HashKeyValue,HashKeyValue,sizeof(HashKeyValue));
|
|
|
|
SecHideData(Item->Key,sizeof(Item->Key),true,false);
|
|
|
|
}
|
|
|
|
if (HashKey!=NULL)
|
|
|
|
memcpy(HashKey,HashKeyValue,SHA256_DIGEST_SIZE);
|
|
|
|
if (PswCheck!=NULL)
|
|
|
|
{
|
|
|
|
memset(PswCheck,0,SIZE_PSWCHECK);
|
|
|
|
for (uint I=0;I<SHA256_DIGEST_SIZE;I++)
|
|
|
|
PswCheck[I%SIZE_PSWCHECK]^=PswCheckValue[I];
|
|
|
|
cleandata(PswCheckValue,sizeof(PswCheckValue));
|
|
|
|
}
|
|
|
|
|
|
|
|
// NULL initialization vector is possible if we only need the password
|
|
|
|
// check value for archive encryption header.
|
|
|
|
if (InitV!=NULL)
|
|
|
|
rin.Init(Encrypt, Key, 256, InitV);
|
|
|
|
|
|
|
|
cleandata(Key,sizeof(Key));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ConvertHashToMAC(HashValue *Value,byte *Key)
|
|
|
|
{
|
|
|
|
if (Value->Type==HASH_CRC32)
|
|
|
|
{
|
|
|
|
byte RawCRC[4];
|
|
|
|
RawPut4(Value->CRC32,RawCRC);
|
|
|
|
byte Digest[SHA256_DIGEST_SIZE];
|
|
|
|
hmac_sha256(Key,SHA256_DIGEST_SIZE,RawCRC,sizeof(RawCRC),Digest,NULL,NULL,NULL,NULL);
|
|
|
|
Value->CRC32=0;
|
|
|
|
for (uint I=0;I<ASIZE(Digest);I++)
|
|
|
|
Value->CRC32^=Digest[I] << ((I & 3) * 8);
|
|
|
|
}
|
|
|
|
if (Value->Type==HASH_BLAKE2)
|
|
|
|
{
|
|
|
|
byte Digest[BLAKE2_DIGEST_SIZE];
|
|
|
|
hmac_sha256(Key,BLAKE2_DIGEST_SIZE,Value->Digest,sizeof(Value->Digest),Digest,NULL,NULL,NULL,NULL);
|
|
|
|
memcpy(Value->Digest,Digest,sizeof(Value->Digest));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
static void TestPBKDF2();
|
|
|
|
struct TestKDF {TestKDF() {TestPBKDF2();exit(0);}} GlobalTestKDF;
|
|
|
|
|
|
|
|
void TestPBKDF2() // Test PBKDF2 HMAC-SHA256
|
|
|
|
{
|
|
|
|
byte Key[32],V1[32],V2[32];
|
|
|
|
|
|
|
|
pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 1);
|
|
|
|
byte Res1[32]={0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c, 0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37, 0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48, 0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b };
|
|
|
|
mprintf(L"\nPBKDF2 test1: %s", memcmp(Key,Res1,32)==0 ? L"OK":L"Failed");
|
|
|
|
|
|
|
|
pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 4096);
|
|
|
|
byte Res2[32]={0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41, 0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d, 0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11, 0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a };
|
|
|
|
mprintf(L"\nPBKDF2 test2: %s", memcmp(Key,Res2,32)==0 ? L"OK":L"Failed");
|
|
|
|
|
|
|
|
pbkdf2((byte *)"just some long string pretending to be a password", 49, (byte *)"salt, salt, salt, a lot of salt", 31, Key, V1, V2, 65536);
|
|
|
|
byte Res3[32]={0x08, 0x0f, 0xa3, 0x1d, 0x42, 0x2d, 0xb0, 0x47, 0x83, 0x9b, 0xce, 0x3a, 0x3b, 0xce, 0x49, 0x51, 0xe2, 0x62, 0xb9, 0xff, 0x76, 0x2f, 0x57, 0xe9, 0xc4, 0x71, 0x96, 0xce, 0x4b, 0x6b, 0x6e, 0xbf};
|
|
|
|
mprintf(L"\nPBKDF2 test3: %s", memcmp(Key,Res3,32)==0 ? L"OK":L"Failed");
|
|
|
|
}
|
|
|
|
#endif
|