2020-05-19 13:58:09 +00:00
|
|
|
/**
|
|
|
|
* Author......: See docs/credits.txt
|
|
|
|
* License.....: MIT
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define NEW_SIMD_CODE
|
|
|
|
|
|
|
|
#define BLOCK_SIZE 8
|
|
|
|
#define KEY_LENGTH 24
|
|
|
|
|
|
|
|
#ifdef KERNEL_STATIC
|
|
|
|
#include "inc_vendor.h"
|
|
|
|
#include "inc_types.h"
|
|
|
|
#include "inc_platform.cl"
|
|
|
|
#include "inc_common.cl"
|
|
|
|
#include "inc_simd.cl"
|
|
|
|
#include "inc_cipher_des.cl"
|
2020-06-08 03:35:56 +00:00
|
|
|
#include "inc_pem_common.cl"
|
2020-05-19 13:58:09 +00:00
|
|
|
#endif // KERNEL_STATIC
|
|
|
|
|
2020-06-08 03:35:56 +00:00
|
|
|
KERNEL_FQ void m22911_sxx (KERN_ATTR_VECTOR_ESALT (pem_t))
|
2020-05-19 13:58:09 +00:00
|
|
|
{
|
|
|
|
/**
|
|
|
|
* base
|
|
|
|
*/
|
|
|
|
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
const u64 lid = get_local_id (0);
|
|
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
|
|
|
|
LOCAL_VK u32 data_len;
|
|
|
|
data_len = esalt_bufs[digests_offset].data_len;
|
|
|
|
|
2020-06-08 03:35:56 +00:00
|
|
|
LOCAL_VK u32 data[HC_PEM_MAX_DATA_LENGTH / 4];
|
2020-05-19 13:58:09 +00:00
|
|
|
|
|
|
|
for (u32 i = lid; i <= data_len / 4; i += lsz)
|
|
|
|
{
|
|
|
|
data[i] = esalt_bufs[digests_offset].data[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
LOCAL_VK u32 s_SPtrans[8][64];
|
|
|
|
LOCAL_VK u32 s_skb[8][64];
|
|
|
|
|
|
|
|
for (u32 i = lid; i < 64; i += lsz)
|
|
|
|
{
|
|
|
|
s_SPtrans[0][i] = c_SPtrans[0][i];
|
|
|
|
s_SPtrans[1][i] = c_SPtrans[1][i];
|
|
|
|
s_SPtrans[2][i] = c_SPtrans[2][i];
|
|
|
|
s_SPtrans[3][i] = c_SPtrans[3][i];
|
|
|
|
s_SPtrans[4][i] = c_SPtrans[4][i];
|
|
|
|
s_SPtrans[5][i] = c_SPtrans[5][i];
|
|
|
|
s_SPtrans[6][i] = c_SPtrans[6][i];
|
|
|
|
s_SPtrans[7][i] = c_SPtrans[7][i];
|
|
|
|
|
|
|
|
s_skb[0][i] = c_skb[0][i];
|
|
|
|
s_skb[1][i] = c_skb[1][i];
|
|
|
|
s_skb[2][i] = c_skb[2][i];
|
|
|
|
s_skb[3][i] = c_skb[3][i];
|
|
|
|
s_skb[4][i] = c_skb[4][i];
|
|
|
|
s_skb[5][i] = c_skb[5][i];
|
|
|
|
s_skb[6][i] = c_skb[6][i];
|
|
|
|
s_skb[7][i] = c_skb[7][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
SYNC_THREADS ();
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
const size_t data_len = esalt_bufs[digests_offset].data_len;
|
2020-06-08 03:35:56 +00:00
|
|
|
u32 data[HC_PEM_MAX_DATA_LENGTH / 4];
|
2020-05-19 13:58:09 +00:00
|
|
|
|
|
|
|
#ifdef _unroll
|
|
|
|
#pragma unroll
|
|
|
|
#endif
|
|
|
|
for (u32 i = 0; i < data_len / 4; i++)
|
|
|
|
{
|
|
|
|
data[i] = esalt_bufs[digests_offset].data[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
|
|
|
|
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
|
|
|
|
|
|
|
|
#endif // REAL_SHM
|
|
|
|
|
|
|
|
const u32 pw_len = pws[gid].pw_len;
|
|
|
|
|
|
|
|
u32 salt_buf[16] = { 0 };
|
|
|
|
u32 salt_iv[BLOCK_SIZE / 4], first_block[BLOCK_SIZE / 4];
|
|
|
|
|
|
|
|
prep_buffers(salt_buf, salt_iv, first_block, data, &esalt_bufs[digests_offset]);
|
|
|
|
|
|
|
|
u32x w[16] = { 0 };
|
|
|
|
|
|
|
|
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
|
|
|
|
{
|
|
|
|
w[idx] = pws[gid].i[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
u32x w0l = w[0];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* loop
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
|
|
|
|
{
|
|
|
|
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
|
|
|
|
const u32x w0 = w0l | w0r;
|
|
|
|
|
|
|
|
w[0] = w0;
|
|
|
|
|
2020-06-08 03:35:56 +00:00
|
|
|
u32x key[HC_PEM_MAX_KEY_LENGTH / 4];
|
2020-05-19 13:58:09 +00:00
|
|
|
|
|
|
|
generate_key_vector (salt_buf, w, pw_len, key);
|
|
|
|
|
|
|
|
for (u32 v_pos = 0; v_pos < VECT_SIZE; v_pos++)
|
|
|
|
{
|
|
|
|
u32 asn1_ok = 0, padding_ok = 0, plaintext_length, plaintext[BLOCK_SIZE / 4];
|
|
|
|
u32 ciphertext[BLOCK_SIZE / 4], iv[BLOCK_SIZE / 4];
|
|
|
|
u32 K0[16], K1[16], K2[16], K3[16], K4[16], K5[16];
|
|
|
|
|
|
|
|
_des_crypt_keysetup (VECTOR_ELEMENT(key[0], v_pos), VECTOR_ELEMENT(key[1], v_pos), K0, K1, s_skb);
|
|
|
|
_des_crypt_keysetup (VECTOR_ELEMENT(key[2], v_pos), VECTOR_ELEMENT(key[3], v_pos), K2, K3, s_skb);
|
|
|
|
_des_crypt_keysetup (VECTOR_ELEMENT(key[4], v_pos), VECTOR_ELEMENT(key[5], v_pos), K4, K5, s_skb);
|
|
|
|
|
|
|
|
u32 p1[BLOCK_SIZE / 4], p2[BLOCK_SIZE / 4];
|
|
|
|
|
|
|
|
_des_crypt_decrypt (p1, first_block, K4, K5, s_SPtrans);
|
|
|
|
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
|
|
|
|
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef _unroll
|
|
|
|
#pragma unroll
|
|
|
|
#endif
|
|
|
|
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
|
|
|
|
{
|
|
|
|
plaintext[i] ^= salt_iv[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
printf("First plaintext block:");
|
|
|
|
for (u32 i = 0; i < BLOCK_SIZE / 4; i++) printf(" 0x%08x", plaintext[i]);
|
|
|
|
printf("\n");
|
|
|
|
#endif // DEBUG
|
|
|
|
|
|
|
|
if (data_len < 128)
|
|
|
|
{
|
|
|
|
asn1_ok = (plaintext[0] & 0x00ff80ff) == 0x00020030;
|
|
|
|
plaintext_length = ((plaintext[0] & 0x00007f00) >> 8) + 2;
|
|
|
|
}
|
|
|
|
else if (data_len < 256)
|
|
|
|
{
|
|
|
|
asn1_ok = (plaintext[0] & 0xff00ffff) == 0x02008130;
|
|
|
|
plaintext_length = ((plaintext[0] & 0x00ff0000) >> 16) + 3;
|
|
|
|
}
|
|
|
|
else if (data_len < 65536)
|
|
|
|
{
|
|
|
|
asn1_ok = ((plaintext[0] & 0x0000ffff) == 0x00008230) && ((plaintext[1] & 0x000000ff) == 0x00000002);
|
|
|
|
plaintext_length = ((plaintext[0] & 0xff000000) >> 24) + ((plaintext[0] & 0x00ff0000) >> 8) + 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (asn1_ok == 1) printf("Passed ASN.1 sanity check\n");
|
|
|
|
#endif // DEBUG
|
|
|
|
|
|
|
|
if (asn1_ok == 0)
|
|
|
|
{
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef _unroll
|
|
|
|
#pragma unroll
|
|
|
|
#endif
|
|
|
|
for (u32 i = 0; i < BLOCK_SIZE / 4; i++)
|
|
|
|
{
|
|
|
|
iv[i] = first_block[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (u32 i = BLOCK_SIZE / 4; i < data_len / 4; i += BLOCK_SIZE / 4)
|
|
|
|
{
|
|
|
|
#ifdef _unroll
|
|
|
|
#pragma unroll
|
|
|
|
#endif
|
|
|
|
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
|
|
|
|
{
|
|
|
|
ciphertext[j] = data[i + j];
|
|
|
|
}
|
|
|
|
|
|
|
|
_des_crypt_decrypt (p1, ciphertext, K4, K5, s_SPtrans);
|
|
|
|
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
|
|
|
|
_des_crypt_decrypt (plaintext, p2, K0, K1, s_SPtrans);
|
|
|
|
|
|
|
|
#ifdef _unroll
|
|
|
|
#pragma unroll
|
|
|
|
#endif
|
|
|
|
for (u32 j = 0; j < BLOCK_SIZE / 4; j++)
|
|
|
|
{
|
|
|
|
plaintext[j] ^= iv[j];
|
|
|
|
iv[j] = ciphertext[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
printf("Plaintext block %u:", i / (BLOCK_SIZE / 4));
|
|
|
|
for (u32 j = 0; j < BLOCK_SIZE / 4; j++) printf(" 0x%08x", plaintext[j]);
|
|
|
|
printf("\n");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
u32 padding_count = (plaintext[BLOCK_SIZE / 4 - 1] & 0xff000000) >> 24;
|
|
|
|
u8 *pt_bytes = (u8 *) plaintext;
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
printf("Padding byte: 0x%02x\n", padding_count);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (padding_count > BLOCK_SIZE || padding_count == 0)
|
|
|
|
{
|
|
|
|
// That *can't* be right
|
|
|
|
padding_ok = 0;
|
|
|
|
} else {
|
|
|
|
padding_ok = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (u32 i = 0; i < padding_count; i++)
|
|
|
|
{
|
|
|
|
if (pt_bytes[BLOCK_SIZE - 1 - i] != padding_count)
|
|
|
|
{
|
|
|
|
padding_ok = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
plaintext_length++;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (padding_ok == 1) printf("Padding checks out\n");
|
|
|
|
if (plaintext_length == data_len) printf("ASN.1 sequence length checks out\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (asn1_ok == 1 && padding_ok == 1 && plaintext_length == data_len)
|
|
|
|
{
|
|
|
|
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
|
|
|
|
{
|
|
|
|
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset, gid, il_pos + v_pos, 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|