1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-01 11:21:11 +00:00
hashcat/deps/LZMA-SDK/C/LzmaDec.c

1186 lines
32 KiB
C
Raw Normal View History

2018-07-24 12:07:36 +00:00
/* LzmaDec.c -- LZMA Decoder
2019-07-15 13:16:24 +00:00
2018-07-04 : Igor Pavlov : Public domain */
2018-07-24 12:07:36 +00:00
#include "Precomp.h"
2019-07-15 13:16:24 +00:00
#include <string.h>
2018-07-24 12:07:36 +00:00
/* #include "CpuArch.h" */
#include "LzmaDec.h"
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_INIT_SIZE 5
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
2019-07-15 13:16:24 +00:00
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
2018-07-24 12:07:36 +00:00
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
{ UPDATE_0(p); i = (i + i); A0; } else \
{ UPDATE_1(p); i = (i + i) + 1; A1; }
#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
{ UPDATE_0(p + i); A0; } else \
{ UPDATE_1(p + i); A1; }
#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
#define TREE_DECODE(probs, limit, i) \
{ i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
/* #define _LZMA_SIZE_OPT */
#ifdef _LZMA_SIZE_OPT
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
#else
#define TREE_6_DECODE(probs, i) \
{ i = 1; \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
i -= 0x40; }
#endif
#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
#define MATCHED_LITER_DEC \
matchByte += matchByte; \
bit = offs; \
offs &= matchByte; \
probLit = prob + (offs + bit + symbol); \
GET_BIT2(probLit, symbol, offs ^= bit; , ;)
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
2019-07-15 13:16:24 +00:00
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
2018-07-24 12:07:36 +00:00
#define UPDATE_0_CHECK range = bound;
#define UPDATE_1_CHECK range -= bound; code -= bound;
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
{ UPDATE_0_CHECK; i = (i + i); A0; } else \
{ UPDATE_1_CHECK; i = (i + i) + 1; A1; }
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
#define TREE_DECODE_CHECK(probs, limit, i) \
{ i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
{ UPDATE_0_CHECK; i += m; m += m; } else \
{ UPDATE_1_CHECK; m += m; i += m; }
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenLow 0
#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define LenChoice LenLow
#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
#define kNumStates 12
#define kNumStates2 16
#define kNumLitStates 7
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
/* External ASM code needs same CLzmaProb array layout. So don't change it. */
/* (probs_1664) is faster and better for code size at some platforms */
/*
#ifdef MY_CPU_X86_OR_AMD64
*/
#define kStartOffset 1664
#define GET_PROBS p->probs_1664
/*
#define GET_PROBS p->probs + kStartOffset
#else
#define kStartOffset 0
#define GET_PROBS p->probs
#endif
*/
#define SpecPos (-kStartOffset)
#define IsRep0Long (SpecPos + kNumFullDistances)
#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
#define LenCoder (RepLenCoder + kNumLenProbs)
#define IsMatch (LenCoder + kNumLenProbs)
#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
#define IsRep (Align + kAlignTableSize)
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define PosSlot (IsRepG2 + kNumStates)
#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define NUM_BASE_PROBS (Literal + kStartOffset)
#if Align != 0 && kStartOffset != 0
#error Stop_Compiling_Bad_LZMA_kAlign
#endif
#if NUM_BASE_PROBS != 1984
#error Stop_Compiling_Bad_LZMA_PROBS
#endif
#define LZMA_LIT_SIZE 0x300
#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
#define COMBINED_PS_STATE (posState + state)
#define GET_LEN_STATE (posState)
#define LZMA_DIC_MIN (1 << 12)
/*
p->remainLen : shows status of LZMA decoder:
< kMatchSpecLenStart : normal remain
= kMatchSpecLenStart : finished
= kMatchSpecLenStart + 1 : need init range coder
= kMatchSpecLenStart + 2 : need init range coder and state
*/
/* ---------- LZMA_DECODE_REAL ---------- */
/*
LzmaDec_DecodeReal_3() can be implemented in external ASM file.
3 - is the code compatibility version of that function for check at link time.
*/
#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
/*
LZMA_DECODE_REAL()
In:
RangeCoder is normalized
if (p->dicPos == limit)
{
LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
is not END_OF_PAYALOAD_MARKER, then function returns error code.
}
Processing:
first LZMA symbol will be decoded in any case
All checks for limits are at the end of main loop,
It will decode new LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
Out:
RangeCoder is normalized
Result:
SZ_OK - OK
SZ_ERROR_DATA - Error
p->remainLen:
< kMatchSpecLenStart : normal remain
= kMatchSpecLenStart : finished
*/
#ifdef _LZMA_DEC_OPT
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
#else
static
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
CLzmaProb *probs = GET_PROBS;
unsigned state = (unsigned)p->state;
UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
unsigned lc = p->prop.lc;
unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
Byte *dic = p->dic;
SizeT dicBufSize = p->dicBufSize;
SizeT dicPos = p->dicPos;
UInt32 processedPos = p->processedPos;
UInt32 checkDicSize = p->checkDicSize;
unsigned len = 0;
const Byte *buf = p->buf;
UInt32 range = p->range;
UInt32 code = p->code;
do
{
CLzmaProb *prob;
UInt32 bound;
unsigned ttt;
unsigned posState = CALC_POS_STATE(processedPos, pbMask);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
unsigned symbol;
UPDATE_0(prob);
prob = probs + Literal;
if (processedPos != 0 || checkDicSize != 0)
prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
processedPos++;
if (state < kNumLitStates)
{
state -= (state < 4) ? state : 3;
symbol = 1;
#ifdef _LZMA_SIZE_OPT
do { NORMAL_LITER_DEC } while (symbol < 0x100);
#else
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
#endif
}
else
{
unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
unsigned offs = 0x100;
state -= (state < 10) ? 3 : 6;
symbol = 1;
#ifdef _LZMA_SIZE_OPT
do
{
unsigned bit;
CLzmaProb *probLit;
MATCHED_LITER_DEC
}
while (symbol < 0x100);
#else
{
unsigned bit;
CLzmaProb *probLit;
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
}
#endif
}
dic[dicPos++] = (Byte)symbol;
continue;
}
{
UPDATE_1(prob);
prob = probs + IsRep + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
state += kNumStates;
prob = probs + LenCoder;
}
else
{
UPDATE_1(prob);
/*
// that case was checked before with kBadRepCode
if (checkDicSize == 0 && processedPos == 0)
return SZ_ERROR_DATA;
*/
prob = probs + IsRepG0 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
UPDATE_0(prob);
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
dicPos++;
processedPos++;
state = state < kNumLitStates ? 9 : 11;
continue;
}
UPDATE_1(prob);
}
else
{
UInt32 distance;
UPDATE_1(prob);
prob = probs + IsRepG1 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep1;
}
else
{
UPDATE_1(prob);
prob = probs + IsRepG2 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep2;
}
else
{
UPDATE_1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = probs + RepLenCoder;
}
#ifdef _LZMA_SIZE_OPT
{
unsigned lim, offset;
CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE;
offset = 0;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenChoice2;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
lim = (1 << kLenNumHighBits);
}
}
TREE_DECODE(probLen, lim, len);
len += offset;
}
#else
{
CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE;
len = 1;
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
len -= 8;
}
else
{
UPDATE_1(probLen);
probLen = prob + LenChoice2;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
len = 1;
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenHigh;
TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
len += kLenNumLowSymbols * 2;
}
}
}
#endif
if (state >= kNumStates)
{
UInt32 distance;
prob = probs + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
TREE_6_DECODE(prob, distance);
if (distance >= kStartPosModelIndex)
{
unsigned posSlot = (unsigned)distance;
unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
distance = (2 | (distance & 1));
if (posSlot < kEndPosModelIndex)
{
distance <<= numDirectBits;
prob = probs + SpecPos;
{
UInt32 m = 1;
distance++;
do
{
REV_BIT_VAR(prob, distance, m);
}
while (--numDirectBits);
distance -= m;
}
}
else
{
numDirectBits -= kNumAlignBits;
do
{
NORMALIZE
range >>= 1;
{
UInt32 t;
code -= range;
t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
distance = (distance << 1) + (t + 1);
code += range & t;
}
/*
distance <<= 1;
if (code >= range)
{
code -= range;
distance |= 1;
}
*/
}
while (--numDirectBits);
prob = probs + Align;
distance <<= kNumAlignBits;
{
unsigned i = 1;
REV_BIT_CONST(prob, i, 1);
REV_BIT_CONST(prob, i, 2);
REV_BIT_CONST(prob, i, 4);
REV_BIT_LAST (prob, i, 8);
distance |= i;
}
if (distance == (UInt32)0xFFFFFFFF)
{
len = kMatchSpecLenStart;
state -= kNumStates;
break;
}
}
}
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
rep0 = distance + 1;
state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
{
p->dicPos = dicPos;
return SZ_ERROR_DATA;
}
}
len += kMatchMinLen;
{
SizeT rem;
unsigned curLen;
SizeT pos;
if ((rem = limit - dicPos) == 0)
{
p->dicPos = dicPos;
return SZ_ERROR_DATA;
}
curLen = ((rem < len) ? (unsigned)rem : len);
pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
2019-07-15 13:16:24 +00:00
processedPos += (UInt32)curLen;
2018-07-24 12:07:36 +00:00
len -= curLen;
if (curLen <= dicBufSize - pos)
{
Byte *dest = dic + dicPos;
ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
const Byte *lim = dest + curLen;
2019-07-15 13:16:24 +00:00
dicPos += (SizeT)curLen;
2018-07-24 12:07:36 +00:00
do
*(dest) = (Byte)*(dest + src);
while (++dest != lim);
}
else
{
do
{
dic[dicPos++] = dic[pos];
if (++pos == dicBufSize)
pos = 0;
}
while (--curLen != 0);
}
}
}
}
while (dicPos < limit && buf < bufLimit);
NORMALIZE;
p->buf = buf;
p->range = range;
p->code = code;
2019-07-15 13:16:24 +00:00
p->remainLen = (UInt32)len;
2018-07-24 12:07:36 +00:00
p->dicPos = dicPos;
p->processedPos = processedPos;
p->reps[0] = rep0;
p->reps[1] = rep1;
p->reps[2] = rep2;
p->reps[3] = rep3;
2019-07-15 13:16:24 +00:00
p->state = (UInt32)state;
2018-07-24 12:07:36 +00:00
return SZ_OK;
}
#endif
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
{
if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
{
Byte *dic = p->dic;
SizeT dicPos = p->dicPos;
SizeT dicBufSize = p->dicBufSize;
unsigned len = (unsigned)p->remainLen;
SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
SizeT rem = limit - dicPos;
if (rem < len)
len = (unsigned)(rem);
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
p->checkDicSize = p->prop.dicSize;
2019-07-15 13:16:24 +00:00
p->processedPos += (UInt32)len;
p->remainLen -= (UInt32)len;
2018-07-24 12:07:36 +00:00
while (len != 0)
{
len--;
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
dicPos++;
}
p->dicPos = dicPos;
}
}
#define kRange0 0xFFFFFFFF
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
#if kBadRepCode != (0xC0000000 - 0x400)
#error Stop_Compiling_Bad_LZMA_Check
#endif
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
do
{
SizeT limit2 = limit;
if (p->checkDicSize == 0)
{
UInt32 rem = p->prop.dicSize - p->processedPos;
if (limit - p->dicPos > rem)
limit2 = p->dicPos + rem;
if (p->processedPos == 0)
if (p->code >= kBadRepCode)
return SZ_ERROR_DATA;
}
RINOK(LZMA_DECODE_REAL(p, limit2, bufLimit));
if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
p->checkDicSize = p->prop.dicSize;
LzmaDec_WriteRem(p, limit);
}
while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
return 0;
}
typedef enum
{
DUMMY_ERROR, /* unexpected end of input stream */
DUMMY_LIT,
DUMMY_MATCH,
DUMMY_REP
} ELzmaDummy;
static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
{
UInt32 range = p->range;
UInt32 code = p->code;
const Byte *bufLimit = buf + inSize;
const CLzmaProb *probs = GET_PROBS;
unsigned state = (unsigned)p->state;
ELzmaDummy res;
{
const CLzmaProb *prob;
UInt32 bound;
unsigned ttt;
unsigned posState = CALC_POS_STATE(p->processedPos, (1 << p->prop.pb) - 1);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK
/* if (bufLimit - buf >= 7) return DUMMY_LIT; */
prob = probs + Literal;
if (p->checkDicSize != 0 || p->processedPos != 0)
prob += ((UInt32)LZMA_LIT_SIZE *
((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
(p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
if (state < kNumLitStates)
{
unsigned symbol = 1;
do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
}
else
{
unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
(p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
unsigned offs = 0x100;
unsigned symbol = 1;
do
{
unsigned bit;
const CLzmaProb *probLit;
matchByte += matchByte;
bit = offs;
offs &= matchByte;
probLit = prob + (offs + bit + symbol);
GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
}
while (symbol < 0x100);
}
res = DUMMY_LIT;
}
else
{
unsigned len;
UPDATE_1_CHECK;
prob = probs + IsRep + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
state = 0;
prob = probs + LenCoder;
res = DUMMY_MATCH;
}
else
{
UPDATE_1_CHECK;
res = DUMMY_REP;
prob = probs + IsRepG0 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
NORMALIZE_CHECK;
return DUMMY_REP;
}
else
{
UPDATE_1_CHECK;
}
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG1 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG2 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
}
}
}
state = kNumStates;
prob = probs + RepLenCoder;
}
{
unsigned limit, offset;
const CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0_CHECK(probLen)
{
UPDATE_0_CHECK;
probLen = prob + LenLow + GET_LEN_STATE;
offset = 0;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
probLen = prob + LenChoice2;
IF_BIT_0_CHECK(probLen)
{
UPDATE_0_CHECK;
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
probLen = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
limit = 1 << kLenNumHighBits;
}
}
TREE_DECODE_CHECK(probLen, limit, len);
len += offset;
}
if (state < 4)
{
unsigned posSlot;
prob = probs + PosSlot +
((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
unsigned numDirectBits = ((posSlot >> 1) - 1);
/* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
if (posSlot < kEndPosModelIndex)
{
prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
}
else
{
numDirectBits -= kNumAlignBits;
do
{
NORMALIZE_CHECK
range >>= 1;
code -= range & (((code - range) >> 31) - 1);
/* if (code >= range) code -= range; */
}
while (--numDirectBits);
prob = probs + Align;
numDirectBits = kNumAlignBits;
}
{
unsigned i = 1;
unsigned m = 1;
do
{
REV_BIT_CHECK(prob, i, m);
}
while (--numDirectBits);
}
}
}
}
}
NORMALIZE_CHECK;
return res;
}
2019-07-15 13:16:24 +00:00
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
2018-07-24 12:07:36 +00:00
{
p->remainLen = kMatchSpecLenStart + 1;
p->tempBufSize = 0;
if (initDic)
{
p->processedPos = 0;
p->checkDicSize = 0;
p->remainLen = kMatchSpecLenStart + 2;
}
if (initState)
p->remainLen = kMatchSpecLenStart + 2;
}
void LzmaDec_Init(CLzmaDec *p)
{
p->dicPos = 0;
LzmaDec_InitDicAndState(p, True, True);
}
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
(*srcLen) = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
if (p->remainLen > kMatchSpecLenStart)
{
for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
p->tempBuf[p->tempBufSize++] = *src++;
if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
return SZ_ERROR_DATA;
if (p->tempBufSize < RC_INIT_SIZE)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
p->code =
((UInt32)p->tempBuf[1] << 24)
| ((UInt32)p->tempBuf[2] << 16)
| ((UInt32)p->tempBuf[3] << 8)
| ((UInt32)p->tempBuf[4]);
p->range = 0xFFFFFFFF;
p->tempBufSize = 0;
if (p->remainLen > kMatchSpecLenStart + 1)
{
SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
SizeT i;
CLzmaProb *probs = p->probs;
for (i = 0; i < numProbs; i++)
probs[i] = kBitModelTotal >> 1;
p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
p->state = 0;
}
p->remainLen = 0;
}
LzmaDec_WriteRem(p, dicLimit);
while (p->remainLen != kMatchSpecLenStart)
{
int checkEndMarkNow = 0;
if (p->dicPos >= dicLimit)
{
if (p->remainLen == 0 && p->code == 0)
{
*status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
return SZ_OK;
}
if (finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->remainLen != 0)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_ERROR_DATA;
}
checkEndMarkNow = 1;
}
if (p->tempBufSize == 0)
{
SizeT processed;
const Byte *bufLimit;
if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
{
int dummyRes = LzmaDec_TryDummy(p, src, inSize);
if (dummyRes == DUMMY_ERROR)
{
memcpy(p->tempBuf, src, inSize);
p->tempBufSize = (unsigned)inSize;
(*srcLen) += inSize;
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_ERROR_DATA;
}
bufLimit = src;
}
else
bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
p->buf = src;
if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
return SZ_ERROR_DATA;
processed = (SizeT)(p->buf - src);
(*srcLen) += processed;
src += processed;
inSize -= processed;
}
else
{
unsigned rem = p->tempBufSize, lookAhead = 0;
while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
p->tempBuf[rem++] = src[lookAhead++];
p->tempBufSize = rem;
if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
{
2019-07-15 13:16:24 +00:00
int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, (SizeT)rem);
2018-07-24 12:07:36 +00:00
if (dummyRes == DUMMY_ERROR)
{
2019-07-15 13:16:24 +00:00
(*srcLen) += (SizeT)lookAhead;
2018-07-24 12:07:36 +00:00
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_ERROR_DATA;
}
}
p->buf = p->tempBuf;
if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
return SZ_ERROR_DATA;
{
unsigned kkk = (unsigned)(p->buf - p->tempBuf);
if (rem < kkk)
return SZ_ERROR_FAIL; /* some internal error */
rem -= kkk;
if (lookAhead < rem)
return SZ_ERROR_FAIL; /* some internal error */
lookAhead -= rem;
}
2019-07-15 13:16:24 +00:00
(*srcLen) += (SizeT)lookAhead;
2018-07-24 12:07:36 +00:00
src += lookAhead;
2019-07-15 13:16:24 +00:00
inSize -= (SizeT)lookAhead;
2018-07-24 12:07:36 +00:00
p->tempBufSize = 0;
}
}
if (p->code != 0)
return SZ_ERROR_DATA;
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen;
SizeT inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT inSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->dicPos == p->dicBufSize)
p->dicPos = 0;
dicPos = p->dicPos;
if (outSize > p->dicBufSize - dicPos)
{
outSizeCur = p->dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
}
else
{
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
src += inSizeCur;
inSize -= inSizeCur;
*srcLen += inSizeCur;
outSizeCur = p->dicPos - dicPos;
memcpy(dest, p->dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
}
}
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->probs);
p->probs = NULL;
}
static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->dic);
p->dic = NULL;
}
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
{
LzmaDec_FreeProbs(p, alloc);
LzmaDec_FreeDict(p, alloc);
}
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
{
UInt32 dicSize;
Byte d;
if (size < LZMA_PROPS_SIZE)
return SZ_ERROR_UNSUPPORTED;
else
dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
if (dicSize < LZMA_DIC_MIN)
dicSize = LZMA_DIC_MIN;
p->dicSize = dicSize;
d = data[0];
if (d >= (9 * 5 * 5))
return SZ_ERROR_UNSUPPORTED;
p->lc = (Byte)(d % 9);
d /= 9;
p->pb = (Byte)(d / 5);
p->lp = (Byte)(d % 5);
return SZ_OK;
}
static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
{
UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
if (!p->probs || numProbs != p->numProbs)
{
LzmaDec_FreeProbs(p, alloc);
p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
if (!p->probs)
return SZ_ERROR_MEM;
p->probs_1664 = p->probs + 1664;
p->numProbs = numProbs;
}
return SZ_OK;
}
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
CLzmaProps propNew;
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
p->prop = propNew;
return SZ_OK;
}
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
CLzmaProps propNew;
SizeT dicBufSize;
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
{
UInt32 dictSize = propNew.dicSize;
SizeT mask = ((UInt32)1 << 12) - 1;
if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
dicBufSize = ((SizeT)dictSize + mask) & ~mask;
if (dicBufSize < dictSize)
dicBufSize = dictSize;
}
if (!p->dic || dicBufSize != p->dicBufSize)
{
LzmaDec_FreeDict(p, alloc);
p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
if (!p->dic)
{
LzmaDec_FreeProbs(p, alloc);
return SZ_ERROR_MEM;
}
}
p->dicBufSize = dicBufSize;
p->prop = propNew;
return SZ_OK;
}
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc)
{
CLzmaDec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
if (inSize < RC_INIT_SIZE)
return SZ_ERROR_INPUT_EOF;
LzmaDec_Construct(&p);
RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
p.dic = dest;
p.dicBufSize = outSize;
LzmaDec_Init(&p);
*srcLen = inSize;
res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
LzmaDec_FreeProbs(&p, alloc);
return res;
}