1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-23 07:08:19 +00:00
hashcat/OpenCL/m30906_a0-pure.cl

355 lines
8.3 KiB
Common Lisp
Raw Normal View History

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#define SECP256K1_TMPS_TYPE PRIVATE_AS
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_rp.h)
#include M2S(INCLUDE_PATH/inc_rp.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_hash_ripemd160.cl)
#include M2S(INCLUDE_PATH/inc_ecc_secp256k1.cl)
#endif
DECLSPEC u32 hex_convert_u32 (PRIVATE_AS const u32 c)
{
return (c & 15) + (c >> 6) * 9;
}
DECLSPEC u32 hex_u32_to_u32 (PRIVATE_AS const u32 hex0, PRIVATE_AS const u32 hex1)
{
u32 v = 0;
v |= hex_convert_u32 ((hex0 >> 0) & 0xff) << 28;
v |= hex_convert_u32 ((hex0 >> 8) & 0xff) << 24;
v |= hex_convert_u32 ((hex0 >> 16) & 0xff) << 20;
v |= hex_convert_u32 ((hex0 >> 24) & 0xff) << 16;
v |= hex_convert_u32 ((hex1 >> 0) & 0xff) << 12;
v |= hex_convert_u32 ((hex1 >> 8) & 0xff) << 8;
v |= hex_convert_u32 ((hex1 >> 16) & 0xff) << 4;
v |= hex_convert_u32 ((hex1 >> 24) & 0xff) << 0;
return (v);
}
KERNEL_FQ void m30906_mxx (KERN_ATTR_RULES ())
{
/**
* modifier
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
/**
* base
*/
secp256k1_t preG; // need to change SECP256K1_TMPS_TYPE above to: PRIVATE_AS
set_precomputed_basepoint_g (&preG);
COPY_PW (pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t p = PASTE_PW;
p.pw_len = apply_rules (rules_buf[il_pos].cmds, p.i, p.pw_len);
if (p.pw_len != 64) continue;
for (u32 i = 0; i < 16; i++)
{
if (is_valid_hex_32 (p.i[i]) == 0) continue;
}
// convert password from hex to binary
u32 tmp[16] = { 0 };
for (u32 i = 0, j = 0; i < 8; i += 1, j += 2)
{
tmp[i] = hex_u32_to_u32 (p.i[j + 0], p.i[j + 1]);
}
u32 prv_key[9];
prv_key[0] = tmp[7];
prv_key[1] = tmp[6];
prv_key[2] = tmp[5];
prv_key[3] = tmp[4];
prv_key[4] = tmp[3];
prv_key[5] = tmp[2];
prv_key[6] = tmp[1];
prv_key[7] = tmp[0];
// convert: pub_key = G * prv_key
u32 x[8];
u32 y[8];
point_mul_xy (x, y, prv_key, &preG);
// to public key:
u32 pub_key[32] = { 0 };
pub_key[16] = (y[0] << 24);
pub_key[15] = (y[0] >> 8) | (y[1] << 24);
pub_key[14] = (y[1] >> 8) | (y[2] << 24);
pub_key[13] = (y[2] >> 8) | (y[3] << 24);
pub_key[12] = (y[3] >> 8) | (y[4] << 24);
pub_key[11] = (y[4] >> 8) | (y[5] << 24);
pub_key[10] = (y[5] >> 8) | (y[6] << 24);
pub_key[ 9] = (y[6] >> 8) | (y[7] << 24);
pub_key[ 8] = (y[7] >> 8) | (x[0] << 24);
pub_key[ 7] = (x[0] >> 8) | (x[1] << 24);
pub_key[ 6] = (x[1] >> 8) | (x[2] << 24);
pub_key[ 5] = (x[2] >> 8) | (x[3] << 24);
pub_key[ 4] = (x[3] >> 8) | (x[4] << 24);
pub_key[ 3] = (x[4] >> 8) | (x[5] << 24);
pub_key[ 2] = (x[5] >> 8) | (x[6] << 24);
pub_key[ 1] = (x[6] >> 8) | (x[7] << 24);
pub_key[ 0] = (x[7] >> 8) | (0x04000000);
// calculate HASH160 for pub key
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, pub_key, 65); // length of public key: 65
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
// tmp[ 8] = 0; tmp[ 9] = 0; tmp[10] = 0; tmp[11] = 0;
// tmp[12] = 0; tmp[13] = 0; tmp[14] = 0; tmp[15] = 0;
for (u32 i = 8; i < 16; i++) tmp[i] = 0;
// now let's do RIPEMD-160 on the sha256sum
ripemd160_ctx_t rctx;
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
/*
* 2nd RIPEMD160 (SHA256 ()):
*/
tmp[0] = (rctx.h[0] << 16) | ( 0x1400); // (swapped) OP_0 operation (0x00),
tmp[1] = (rctx.h[1] << 16) | (rctx.h[0] >> 16); // 0x14 == 20, this indicates the
tmp[2] = (rctx.h[2] << 16) | (rctx.h[1] >> 16); // data len
tmp[3] = (rctx.h[3] << 16) | (rctx.h[2] >> 16);
tmp[4] = (rctx.h[4] << 16) | (rctx.h[3] >> 16);
tmp[5] = (rctx.h[4] >> 16);
for (u32 i = 6; i < 16; i++) tmp[i] = 0;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp, 22);
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
const u32 r0 = rctx.h[0];
const u32 r1 = rctx.h[1];
const u32 r2 = rctx.h[2];
const u32 r3 = rctx.h[3];
COMPARE_M_SCALAR (r0, r1, r2, r3);
}
}
KERNEL_FQ void m30906_sxx (KERN_ATTR_RULES ())
{
/**
* modifier
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
};
/**
* base
*/
secp256k1_t preG; // need to change SECP256K1_TMPS_TYPE above to: PRIVATE_AS
set_precomputed_basepoint_g (&preG);
COPY_PW (pws[gid]);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
pw_t p = PASTE_PW;
p.pw_len = apply_rules (rules_buf[il_pos].cmds, p.i, p.pw_len);
if (p.pw_len != 64) continue;
for (u32 i = 0; i < 16; i++)
{
if (is_valid_hex_32 (p.i[i]) == 0) continue;
}
// convert password from hex to binary
u32 tmp[16] = { 0 };
for (u32 i = 0, j = 0; i < 8; i += 1, j += 2)
{
tmp[i] = hex_u32_to_u32 (p.i[j + 0], p.i[j + 1]);
}
u32 prv_key[9];
prv_key[0] = tmp[7];
prv_key[1] = tmp[6];
prv_key[2] = tmp[5];
prv_key[3] = tmp[4];
prv_key[4] = tmp[3];
prv_key[5] = tmp[2];
prv_key[6] = tmp[1];
prv_key[7] = tmp[0];
// convert: pub_key = G * prv_key
u32 x[8];
u32 y[8];
point_mul_xy (x, y, prv_key, &preG);
// to public key:
u32 pub_key[32] = { 0 };
pub_key[16] = (y[0] << 24);
pub_key[15] = (y[0] >> 8) | (y[1] << 24);
pub_key[14] = (y[1] >> 8) | (y[2] << 24);
pub_key[13] = (y[2] >> 8) | (y[3] << 24);
pub_key[12] = (y[3] >> 8) | (y[4] << 24);
pub_key[11] = (y[4] >> 8) | (y[5] << 24);
pub_key[10] = (y[5] >> 8) | (y[6] << 24);
pub_key[ 9] = (y[6] >> 8) | (y[7] << 24);
pub_key[ 8] = (y[7] >> 8) | (x[0] << 24);
pub_key[ 7] = (x[0] >> 8) | (x[1] << 24);
pub_key[ 6] = (x[1] >> 8) | (x[2] << 24);
pub_key[ 5] = (x[2] >> 8) | (x[3] << 24);
pub_key[ 4] = (x[3] >> 8) | (x[4] << 24);
pub_key[ 3] = (x[4] >> 8) | (x[5] << 24);
pub_key[ 2] = (x[5] >> 8) | (x[6] << 24);
pub_key[ 1] = (x[6] >> 8) | (x[7] << 24);
pub_key[ 0] = (x[7] >> 8) | (0x04000000);
// calculate HASH160 for pub key
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, pub_key, 65); // length of public key: 65
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
// tmp[ 8] = 0; tmp[ 9] = 0; tmp[10] = 0; tmp[11] = 0;
// tmp[12] = 0; tmp[13] = 0; tmp[14] = 0; tmp[15] = 0;
for (u32 i = 8; i < 16; i++) tmp[i] = 0;
// now let's do RIPEMD-160 on the sha256sum
ripemd160_ctx_t rctx;
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
/*
* 2nd RIPEMD160 (SHA256 ()):
*/
tmp[0] = (rctx.h[0] << 16) | ( 0x1400); // (swapped) OP_0 operation (0x00),
tmp[1] = (rctx.h[1] << 16) | (rctx.h[0] >> 16); // 0x14 == 20, this indicates the
tmp[2] = (rctx.h[2] << 16) | (rctx.h[1] >> 16); // data len
tmp[3] = (rctx.h[3] << 16) | (rctx.h[2] >> 16);
tmp[4] = (rctx.h[4] << 16) | (rctx.h[3] >> 16);
tmp[5] = (rctx.h[4] >> 16);
for (u32 i = 6; i < 16; i++) tmp[i] = 0;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp, 22);
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
const u32 r0 = rctx.h[0];
const u32 r1 = rctx.h[1];
const u32 r2 = rctx.h[2];
const u32 r3 = rctx.h[3];
COMPARE_S_SCALAR (r0, r1, r2, r3);
}
}