1
0
mirror of https://github.com/GNS3/gns3-server synced 2024-11-28 19:28:07 +00:00
gns3-server/gns3server/utils/asyncio/input_stream.py

420 lines
14 KiB
Python
Raw Normal View History

"""
Parser for VT100 input stream.
"""
# Copied from prompt_toolkit/terminal/vt100_input.py due to dependency on termios (which is not available on Windows)
from __future__ import unicode_literals
import re
import six
from six.moves import range
from prompt_toolkit.keys import Keys
from prompt_toolkit.key_binding.input_processor import KeyPress
# __all__ = (
# 'InputStream',
# 'raw_mode',
# 'cooked_mode',
# )
_DEBUG_RENDERER_INPUT = False
_DEBUG_RENDERER_INPUT_FILENAME = 'prompt-toolkit-render-input.log'
# Regex matching any CPR response
# (Note that we use '\Z' instead of '$', because '$' could include a trailing
# newline.)
_cpr_response_re = re.compile('^' + re.escape('\x1b[') + r'\d+;\d+R\Z')
# Mouse events:
# Typical: "Esc[MaB*" Urxvt: "Esc[96;14;13M" and for Xterm SGR: "Esc[<64;85;12M"
_mouse_event_re = re.compile('^' + re.escape('\x1b[') + r'(<?[\d;]+[mM]|M...)\Z')
# Regex matching any valid prefix of a CPR response.
# (Note that it doesn't contain the last character, the 'R'. The prefix has to
# be shorter.)
_cpr_response_prefix_re = re.compile('^' + re.escape('\x1b[') + r'[\d;]*\Z')
_mouse_event_prefix_re = re.compile('^' + re.escape('\x1b[') + r'(<?[\d;]*|M.{0,2})\Z')
class _Flush(object):
""" Helper object to indicate flush operation to the parser. """
pass
# Mapping of vt100 escape codes to Keys.
ANSI_SEQUENCES = {
'\x1b': Keys.Escape,
'\x00': Keys.ControlSpace, # Control-Space (Also for Ctrl-@)
'\x01': Keys.ControlA, # Control-A (home)
'\x02': Keys.ControlB, # Control-B (emacs cursor left)
'\x03': Keys.ControlC, # Control-C (interrupt)
'\x04': Keys.ControlD, # Control-D (exit)
'\x05': Keys.ControlE, # Contrel-E (end)
'\x06': Keys.ControlF, # Control-F (cursor forward)
'\x07': Keys.ControlG, # Control-G
'\x08': Keys.ControlH, # Control-H (8) (Identical to '\b')
'\x09': Keys.ControlI, # Control-I (9) (Identical to '\t')
'\x0a': Keys.ControlJ, # Control-J (10) (Identical to '\n')
'\x0b': Keys.ControlK, # Control-K (delete until end of line; vertical tab)
'\x0c': Keys.ControlL, # Control-L (clear; form feed)
'\x0d': Keys.ControlM, # Control-M (13) (Identical to '\r')
'\x0e': Keys.ControlN, # Control-N (14) (history forward)
'\x0f': Keys.ControlO, # Control-O (15)
'\x10': Keys.ControlP, # Control-P (16) (history back)
'\x11': Keys.ControlQ, # Control-Q
'\x12': Keys.ControlR, # Control-R (18) (reverse search)
'\x13': Keys.ControlS, # Control-S (19) (forward search)
'\x14': Keys.ControlT, # Control-T
'\x15': Keys.ControlU, # Control-U
'\x16': Keys.ControlV, # Control-V
'\x17': Keys.ControlW, # Control-W
'\x18': Keys.ControlX, # Control-X
'\x19': Keys.ControlY, # Control-Y (25)
'\x1a': Keys.ControlZ, # Control-Z
'\x1c': Keys.ControlBackslash, # Both Control-\ and Ctrl-|
'\x1d': Keys.ControlSquareClose, # Control-]
'\x1e': Keys.ControlCircumflex, # Control-^
'\x1f': Keys.ControlUnderscore, # Control-underscore (Also for Ctrl-hypen.)
'\x7f': Keys.Backspace, # (127) Backspace
'\x1b[A': Keys.Up,
'\x1b[B': Keys.Down,
'\x1b[C': Keys.Right,
'\x1b[D': Keys.Left,
'\x1b[H': Keys.Home,
'\x1bOH': Keys.Home,
'\x1b[F': Keys.End,
'\x1bOF': Keys.End,
'\x1b[3~': Keys.Delete,
'\x1b[3;2~': Keys.ShiftDelete, # xterm, gnome-terminal.
'\x1b[3;5~': Keys.ControlDelete, # xterm, gnome-terminal.
'\x1b[1~': Keys.Home, # tmux
'\x1b[4~': Keys.End, # tmux
'\x1b[5~': Keys.PageUp,
'\x1b[6~': Keys.PageDown,
'\x1b[7~': Keys.Home, # xrvt
'\x1b[8~': Keys.End, # xrvt
'\x1b[Z': Keys.BackTab, # shift + tab
'\x1b[2~': Keys.Insert,
'\x1bOP': Keys.F1,
'\x1bOQ': Keys.F2,
'\x1bOR': Keys.F3,
'\x1bOS': Keys.F4,
'\x1b[[A': Keys.F1, # Linux console.
'\x1b[[B': Keys.F2, # Linux console.
'\x1b[[C': Keys.F3, # Linux console.
'\x1b[[D': Keys.F4, # Linux console.
'\x1b[[E': Keys.F5, # Linux console.
'\x1b[11~': Keys.F1, # rxvt-unicode
'\x1b[12~': Keys.F2, # rxvt-unicode
'\x1b[13~': Keys.F3, # rxvt-unicode
'\x1b[14~': Keys.F4, # rxvt-unicode
'\x1b[15~': Keys.F5,
'\x1b[17~': Keys.F6,
'\x1b[18~': Keys.F7,
'\x1b[19~': Keys.F8,
'\x1b[20~': Keys.F9,
'\x1b[21~': Keys.F10,
'\x1b[23~': Keys.F11,
'\x1b[24~': Keys.F12,
'\x1b[25~': Keys.F13,
'\x1b[26~': Keys.F14,
'\x1b[28~': Keys.F15,
'\x1b[29~': Keys.F16,
'\x1b[31~': Keys.F17,
'\x1b[32~': Keys.F18,
'\x1b[33~': Keys.F19,
'\x1b[34~': Keys.F20,
# Xterm
'\x1b[1;2P': Keys.F13,
'\x1b[1;2Q': Keys.F14,
# '\x1b[1;2R': Keys.F15, # Conflicts with CPR response.
'\x1b[1;2S': Keys.F16,
'\x1b[15;2~': Keys.F17,
'\x1b[17;2~': Keys.F18,
'\x1b[18;2~': Keys.F19,
'\x1b[19;2~': Keys.F20,
'\x1b[20;2~': Keys.F21,
'\x1b[21;2~': Keys.F22,
'\x1b[23;2~': Keys.F23,
'\x1b[24;2~': Keys.F24,
'\x1b[1;5A': Keys.ControlUp, # Cursor Mode
'\x1b[1;5B': Keys.ControlDown, # Cursor Mode
'\x1b[1;5C': Keys.ControlRight, # Cursor Mode
'\x1b[1;5D': Keys.ControlLeft, # Cursor Mode
'\x1b[1;2A': Keys.ShiftUp,
'\x1b[1;2B': Keys.ShiftDown,
'\x1b[1;2C': Keys.ShiftRight,
'\x1b[1;2D': Keys.ShiftLeft,
# Tmux sends following keystrokes when control+arrow is pressed, but for
# Emacs ansi-term sends the same sequences for normal arrow keys. Consider
# it a normal arrow press, because that's more important.
'\x1bOA': Keys.Up,
'\x1bOB': Keys.Down,
'\x1bOC': Keys.Right,
'\x1bOD': Keys.Left,
'\x1b[5A': Keys.ControlUp,
'\x1b[5B': Keys.ControlDown,
'\x1b[5C': Keys.ControlRight,
'\x1b[5D': Keys.ControlLeft,
'\x1bOc': Keys.ControlRight, # rxvt
'\x1bOd': Keys.ControlLeft, # rxvt
'\x1b[200~': Keys.BracketedPaste, # Start of bracketed paste.
# Meta + arrow keys. Several terminals handle this differently.
# The following sequences are for xterm and gnome-terminal.
# (Iterm sends ESC followed by the normal arrow_up/down/left/right
# sequences, and the OSX Terminal sends ESCb and ESCf for "alt
# arrow_left" and "alt arrow_right." We don't handle these
# explicitely, in here, because would could not distinguesh between
# pressing ESC (to go to Vi navigation mode), followed by just the
# 'b' or 'f' key. These combinations are handled in
# the input processor.)
'\x1b[1;3D': (Keys.Escape, Keys.Left),
'\x1b[1;3C': (Keys.Escape, Keys.Right),
'\x1b[1;3A': (Keys.Escape, Keys.Up),
'\x1b[1;3B': (Keys.Escape, Keys.Down),
# Sequences generated by numpad 5. Not sure what it means. (It doesn't
# appear in 'infocmp'. Just ignore.
'\x1b[E': Keys.Ignore, # Xterm.
'\x1b[G': Keys.Ignore, # Linux console.
}
class _IsPrefixOfLongerMatchCache(dict):
"""
Dictiory that maps input sequences to a boolean indicating whether there is
any key that start with this characters.
"""
def __missing__(self, prefix):
# (hard coded) If this could be a prefix of a CPR response, return
# True.
if (_cpr_response_prefix_re.match(prefix) or _mouse_event_prefix_re.match(prefix)):
result = True
else:
# If this could be a prefix of anything else, also return True.
result = any(v for k, v in ANSI_SEQUENCES.items() if k.startswith(prefix) and k != prefix)
self[prefix] = result
return result
_IS_PREFIX_OF_LONGER_MATCH_CACHE = _IsPrefixOfLongerMatchCache()
class InputStream(object):
"""
Parser for VT100 input stream.
Feed the data through the `feed` method and the correct callbacks of the
`input_processor` will be called.
::
def callback(key):
pass
i = InputStream(callback)
i.feed('data\x01...')
:attr input_processor: :class:`~prompt_toolkit.key_binding.InputProcessor` instance.
"""
# Lookup table of ANSI escape sequences for a VT100 terminal
# Hint: in order to know what sequences your terminal writes to stdin, run
# "od -c" and start typing.
def __init__(self, feed_key_callback):
assert callable(feed_key_callback)
self.feed_key_callback = feed_key_callback
self.reset()
if _DEBUG_RENDERER_INPUT:
self.LOG = open(_DEBUG_RENDERER_INPUT_FILENAME, 'ab')
def reset(self, request=False):
self._in_bracketed_paste = False
self._start_parser()
def _start_parser(self):
"""
Start the parser coroutine.
"""
self._input_parser = self._input_parser_generator()
self._input_parser.send(None)
def _get_match(self, prefix):
"""
Return the key that maps to this prefix.
"""
# (hard coded) If we match a CPR response, return Keys.CPRResponse.
# (This one doesn't fit in the ANSI_SEQUENCES, because it contains
# integer variables.)
if _cpr_response_re.match(prefix):
return Keys.CPRResponse
elif _mouse_event_re.match(prefix):
return Keys.Vt100MouseEvent
# Otherwise, use the mappings.
try:
return ANSI_SEQUENCES[prefix]
except KeyError:
return None
def _input_parser_generator(self):
"""
Coroutine (state machine) for the input parser.
"""
prefix = ''
retry = False
flush = False
while True:
flush = False
if retry:
retry = False
else:
# Get next character.
c = yield
if c == _Flush:
flush = True
else:
prefix += c
# If we have some data, check for matches.
if prefix:
is_prefix_of_longer_match = _IS_PREFIX_OF_LONGER_MATCH_CACHE[prefix]
match = self._get_match(prefix)
# Exact matches found, call handlers..
if (flush or not is_prefix_of_longer_match) and match:
self._call_handler(match, prefix)
prefix = ''
# No exact match found.
elif (flush or not is_prefix_of_longer_match) and not match:
found = False
retry = True
# Loop over the input, try the longest match first and
# shift.
for i in range(len(prefix), 0, -1):
match= self._get_match(prefix[:i])
if match:
self._call_handler(match, prefix[:i])
prefix = prefix[i:]
found = True
if not found:
self._call_handler(prefix[0], prefix[0])
prefix = prefix[1:]
def _call_handler(self, key, insert_text):
"""
Callback to handler.
"""
if isinstance(key, tuple):
for k in key:
self._call_handler(k, insert_text)
else:
if key == Keys.BracketedPaste:
self._in_bracketed_paste = True
self._paste_buffer = ''
else:
self.feed_key_callback(KeyPress(key, insert_text))
def feed(self, data):
"""
Feed the input stream.
:param data: Input string (unicode).
"""
assert isinstance(data, six.text_type)
if _DEBUG_RENDERER_INPUT:
self.LOG.write(repr(data).encode('utf-8') + b'\n')
self.LOG.flush()
# Handle bracketed paste. (We bypass the parser that matches all other
# key presses and keep reading input until we see the end mark.)
# This is much faster then parsing character by character.
if self._in_bracketed_paste:
self._paste_buffer += data
end_mark = '\x1b[201~'
if end_mark in self._paste_buffer:
end_index = self._paste_buffer.index(end_mark)
# Feed content to key bindings.
paste_content = self._paste_buffer[:end_index]
self.feed_key_callback(KeyPress(Keys.BracketedPaste, paste_content))
# Quit bracketed paste mode and handle remaining input.
self._in_bracketed_paste = False
remaining = self._paste_buffer[end_index + len(end_mark):]
self._paste_buffer = ''
self.feed(remaining)
# Handle normal input character by character.
else:
for i, c in enumerate(data):
if self._in_bracketed_paste:
# Quit loop and process from this position when the parser
# entered bracketed paste.
self.feed(data[i:])
break
else:
# Replace \r by \n. (Some clients send \r instead of \n
# when enter is pressed. E.g. telnet and some other
# terminals.)
# XXX: We should remove this in a future version. It *is*
# now possible to recognise the difference.
# (We remove ICRNL/INLCR/IGNCR below.)
# However, this breaks IPython and maybe other applications,
# because they bind ControlJ (\n) for handling the Enter key.
# When this is removed, replace Enter=ControlJ by
# Enter=ControlM in keys.py.
if c == '\r':
c = '\n'
self._input_parser.send(c)
def flush(self):
"""
Flush the buffer of the input stream.
This will allow us to handle the escape key (or maybe meta) sooner.
The input received by the escape key is actually the same as the first
characters of e.g. Arrow-Up, so without knowing what follows the escape
sequence, we don't know whether escape has been pressed, or whether
it's something else. This flush function should be called after a
timeout, and processes everything that's still in the buffer as-is, so
without assuming any characters will folow.
"""
self._input_parser.send(_Flush)
def feed_and_flush(self, data):
"""
Wrapper around ``feed`` and ``flush``.
"""
self.feed(data)
self.flush()