

NIST Special Publication 800-52
Revision 1

Guidelines for the Selection,
Configuration, and Use of

Transport Layer Security (TLS)
Implementations

Tim Polk
Kerry McKay

Santosh Chokhani

http://dx.doi.org/10.6028/NIST.SP.800-52r1

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-52
Revision 1

Guidelines for the Selection,
Configuration, and Use of Transport

Layer Security (TLS) Implementations

Tim Polk
Kerry McKay

Computer Security Division
Information Technology Laboratory

Santosh Chokhani

CygnaCom Solutions
McLean, VA

http://dx.doi.org/10.6028/NIST.SP.800-52r1

April 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

ii

Authority

This publication has been developed by NIST to further its statutory responsibilities under the
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is
responsible for developing information security standards and guidelines, including minimum
requirements for Federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate Federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements
of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency
Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections.
Supplemental information is provided in Circular A-130, Appendix III, Security of Federal
Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.
This publication may be used by nongovernmental organizations on a voluntary basis and is not
subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-52 Revision 1
Natl. Inst. Stand. Technol. Spec. Publ. 800-52 Revision 1, 66 pages (April 2014)

http://dx.doi.org/10.6028/NIST.SP.800-52r1
CODEN: NSPUE2

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: SP80052-comments@nist.gov

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.

iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing
technical leadership for the Nation’s measurement and standards infrastructure. ITL
develops tests, test methods, reference data, proof of concept implementations, and
technical analyses to advance the development and productive use of information
technology. ITL’s responsibilities include the development of management,
administrative, technical, and physical standards and guidelines for the cost-effective
security and privacy of other than national security-related information in Federal
information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

Abstract

Transport Layer Security (TLS) provides mechanisms to protect sensitive data during
electronic dissemination across the Internet. This Special Publication provides guidance
to the selection and configuration of TLS protocol implementations while making
effective use of Federal Information Processing Standards (FIPS) and NIST-
recommended cryptographic algorithms, and requires that TLS 1.1 configured with FIPS-
based cipher suites as the minimum appropriate secure transport protocol and
recommends that agencies develop migration plans to TLS 1.2 by January 1, 2015. This
Special Publication also identifies TLS extensions for which mandatory support must be
provided and other recommended extensions.

Keywords

information security; network security; SSL; TLS; Transport Layer Security

Acknowledgements

The authors, Tim Polk and Kerry McKay of NIST, and Santosh Chokhani of CygnaCom
Solutions would like to thank the many people who assisted with the development of this
document. In particular we would like to acknowledge Matthew J. Fanto and C. Michael
Chernick of NIST and Charles Edington III and Rob Rosenthal of Booz Allen and Hamilton who
wrote the initial published version of this document.

iv

Table of Contents
EXECUTIVE SUMMARY ... VI

1 INTRODUCTION .. 1
1.1 BACKGROUND .. 1
1.2 HISTORY OF TLS .. 1
1.3 SCOPE ... 2
1.4 DOCUMENT CONVENTIONS .. 3

2 TLS OVERVIEW ... 4
2.1 HANDSHAKE PROTOCOL .. 4
2.2 SHARED SECRET NEGOTIATION ... 5
2.3 CONFIDENTIALITY .. 6
2.4 INTEGRITY .. 6
2.5 AUTHENTICATION .. 7
2.6 ANTI-REPLAY ... 7
2.7 KEY MANAGEMENT ... 7

3 MINIMUM REQUIREMENTS FOR TLS SERVERS ... 9
3.1 PROTOCOL VERSION SUPPORT ... 9
3.2 SERVER KEYS AND CERTIFICATES ... 9

3.2.1 Server Certificate Profile ... 10
3.2.2 Obtaining Revocation Status Information for the Client Certificate 13
3.2.3 Server Public Key Certificate Assurance... 13

3.3 CRYPTOGRAPHIC SUPPORT .. 14
3.3.1 Cipher Suites .. 14
3.3.2 Validated Cryptography .. 19

3.4 TLS EXTENSION SUPPORT ... 20
3.4.1 Mandatory TLS Extensions .. 20
3.4.2 Conditional TLS Extensions .. 21
3.4.3 Discouraged TLS Extensions ... 22

3.5 CLIENT AUTHENTICATION ... 23
3.5.1 Path Validation .. 23
3.5.2 Trust Anchor Store ... 24
3.5.3 Checking the Client Key Size ... 25
3.5.4 Server Hints List .. 25

3.6 SESSION RESUMPTION .. 26
3.7 COMPRESSION METHODS ... 26
3.8 OPERATIONAL CONSIDERATIONS ... 26
3.9 SERVER RECOMMENDATIONS .. 27

3.9.1 Recommendations for Server Selection ... 27
3.9.2 Recommendations for Server Installation and Configuration 27
3.9.3 Recommendations for Server System Administrators .. 31

4 MINIMUM REQUIREMENTS FOR TLS CLIENTS .. 33
4.1 PROTOCOL VERSION SUPPORT ... 33
4.2 CLIENT KEYS AND CERTIFICATES .. 33

4.2.1 Client Certificate Profile ... 33
4.2.2 Obtaining Revocation Status Information for the Server Certificate 35
4.2.3 Client Public Key Certificate Assurance ... 36

v

4.3 CRYPTOGRAPHIC SUPPORT .. 36
4.3.1 Cipher Suites .. 36
4.3.2 Validated Cryptography .. 36

4.4 TLS EXTENSION SUPPORT ... 37
4.4.1 Mandatory TLS Extensions .. 37
4.4.2 Conditional TLS Extensions .. 37
4.4.3 Discouraged TLS Extensions ... 38

4.5 SERVER AUTHENTICATION .. 38
4.5.1 Path Validation .. 39
4.5.2 Trust Anchor Store ... 40
4.5.3 Checking the Server Key Size .. 40
4.5.4 User Interface .. 40

4.6 SESSION RESUMPTION .. 41
4.7 COMPRESSION METHODS ... 41
4.8 OPERATIONAL CONSIDERATIONS ... 41
4.9 CLIENT RECOMMENDATIONS ... 41

4.9.1 Recommendations for Client Selection .. 42
4.9.2 Recommendations for Client Installation and Configuration 42
4.9.3 Recommendations for Client System Administrators ... 45
4.9.4 Recommendations for End Users ... 45

APPENDIX A ACRONYMS ... 47

APPENDIX B INTERPRETING CIPHER SUITE NAMES ... 48

APPENDIX C PRE-SHARED KEYS ... 50

APPENDIX D FUTURE CAPABILITIES... 52

D.1 ADDITIONAL/ALTERNATE WEB SERVER CERTIFICATE VALIDATION MECHANISMS .. 52
D.1.1 Sovereign Keys .. 52
D.1.2 Certificate Transparency ... 52
D.1.3 Perspectives and Convergence .. 53
D.1.4 DANE ... 53

D.2 CHECKING SERVER/CLIENT KEY SIZE ... 54
D.3 ENCRYPT-THEN-MAC EXTENSION .. 54

APPENDIX E REFERENCES .. 55

Tables
Table 3-1: TLS Server Certificate Profile ... 11
Table 3-2: Cipher Suites for RSA Server Certificates ... 16
Table 3-3: Additional TLS 1.2 Cipher Suites for RSA Server Certificates 16
Table 3-4: Cipher Suites for ECDSA Server Certificates ... 16
Table 3-5: Additional TLS 1.2 Cipher Suites for ECDSA Server Certificates 17
Table 3-6: Cipher Suites for DSA Server Certificates .. 17
Table 3-7: Additional TLS 1.2 Cipher Suites for DSA Server Certificates 17
Table 3-8: Cipher Suites for DH Server Certificates ... 17
Table 3-9: Additional TLS 1.2 Cipher Suites for DH Server Certificates 18
Table 3-10: Cipher Suites for ECDH Server Certificate ... 18
Table 3-11: Additional TLS 1.2 Cipher Suites for ECDH Server Certificate 18
Table 4-1: TLS Client Certificate Profile .. 34
Table C-1: Pre-shared Key Cipher Suites ... 50

vi

Executive Summary
Office of Management and Budget (OMB) Circular A-130, Management of Federal
Information Resources, requires managers of publicly accessible information repositories
or dissemination systems that contain sensitive but unclassified data to ensure that
sensitive data is protected commensurate with the risk and magnitude of the harm that
would result from the loss, misuse, or unauthorized access to or modification of such
data. Given the nature of interconnected networks and the use of the Internet to share
information, protection of this sensitive data can become difficult if proper mechanisms
are not employed to protect the data. Transport layer security (TLS) provides such a
mechanism to protect sensitive data during electronic dissemination across the Internet.
TLS is a protocol created to provide authentication, confidentiality, and data integrity
between two communicating applications. TLS is based on a precursor protocol called
the Secure Sockets Layer Version 3.0 (SSL 3.0) and is considered to be an improvement
to SSL 3.0. SSL 3.0 is specified in [RFC6101]. The Transport Layer Security version 1
(TLS 1.0) specification is an Internet Request for Comments [RFC2246]. Each document
specifies a similar protocol that provides security services over the Internet. TLS 1.0 has
been revised to version 1.1, as documented in [RFC4346], and TLS 1.1 has been further
revised to version 1.2, as documented in [RFC5246]. In addition, some extensions have
been defined to mitigate some of the known security vulnerabilities in implementations
using TLS. These vulnerabilities are not necessarily weaknesses in TLS, but in how
applications use TLS.
This Special Publication provides guidance to the selection and configuration of TLS
protocol implementations while making effective use of Approved cryptographic
schemes and algorithms. In particular, it requires that TLS 1.1 be configured with cipher
suites using Approved schemes and algorithms as the minimum appropriate secure
transport protocol1. It also recommends that agencies develop migration plans to TLS
1.2, configured using Approved schemes and algorithms, by January 1, 2015. When
interoperability with non-government systems is required, TLS 1.0 may be supported.
This Special Publication also identifies TLS extensions for which mandatory support
must be provided and other recommended extensions.
Use of the recommendations provided in this Special Publication would promote:

• More consistent use of authentication, confidentiality and integrity mechanisms
for the protection of information transport across the Internet;

• Consistent use of recommended cipher suites that encompass NIST-Approved
algorithms and open standards;

1 While SSL 3.0 is the most secure of the SSL protocol versions, it is not approved for use in the protection of Federal

information because it relies in part on the use of cryptographic algorithms that are not Approved. TLS versions
1.1 and 1.2 are approved for the protection of Federal information, when properly configured. TLS version 1.0 is
approved only when it is required for interoperability with non-government systems and is configured according
to these guidelines.

vii

• Protection against known and anticipated attacks on the TLS protocol; and

• Informed decisions by system administrators and managers in the integration of
transport layer security implementations.

While these guidelines are primarily designed for Federal users and system
administrators to adequately protect sensitive but unclassified U.S. Federal Government
data against serious threats on the Internet, they may also be used within closed network
environments to segregate data. (The client-server model and security services discussed
also apply in these situations). This Special Publication supersedes NIST Special
Publication 800-52. This Special Publication should be used in conjunction with existing
policies and procedures.

 Guidelines for TLS Implementations

1

1 Introduction
Many networked applications rely on the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols to protect sensitive data transmitted over insecure
channels. The Internet’s client-server model and communication protocol design
principles have been described in many books, such as [Rescorla01], [Comer00], and
[Hall00]. TLS requires the existence of a Public Key Infrastructure (PKI) that generates
public key certificates in compliance with [RFC5280]. Books such as [Adams99] and
[Housley01], as well as technical journal articles (e.g., [Polk03]) and NIST publications
(e.g., [SP800-32]), describe how PKI can be used to protect information in the Internet.
This document assumes that the reader of these guidelines is familiar with public key
infrastructure concepts, including, for example, X.509 certificates; and SSL/TLS
protocols. The references cited above and in Appendix E further explain the background
concepts that are not fully explained in these guidelines.

1.1 Background
The TLS protocol is used to secure communications in a wide variety of online
transactions. Such transactions include financial transactions (e.g., banking, trading
stocks, e-commerce), healthcare transactions (e.g., viewing medical records or scheduling
medical appointments), and social transactions (e.g., email or social networking). Any
network service that handles sensitive or valuable data, whether it is personally
identifiable information (PII), financial data, or login information, needs to adequately
protect that data. TLS provides a protected channel for sending data between the server
and the client. The client is often, but not always, a web browser.

TLS is a layered protocol that runs on top of a reliable transport protocol – typically the
transmission control protocol (TCP). Application protocols, such as the Hypertext
Transfer Protocol (HTTP) and the Internet Message Access Protocol (IMAP), can run
above TLS. TLS is application independent, and used to provide security to any two
communicating applications that transmit data over a network via an application protocol.
It can be used to create a virtual private network (VPN) that connects an external system
to an internal network, allowing that system to access a multitude of internal services and
resources as if it were in the network.

1.2 History of TLS
The SSL protocol was designed by the Netscape Corporation2 to meet security needs of
client and server applications. Version 1 of SSL was never released. SSL 2.0 was
released in 1995, but had well-known security vulnerabilities, which were addressed by
the 1996 release of SSL 3.0. During this timeframe, Microsoft Corporation released a
protocol known as Private Communications Technology (PCT), and later released a
higher performance protocol known as the Secure Transport Layer Protocol (STLP).

2 Commercial company names are used for historical reference purposes only. No product endorsement is intended or

implied.

 Guidelines for TLS Implementations

2

PCT and STLP never commanded the market share that SSL 2.0 and SSL 3.0
commanded. The Internet Engineering Task Force (IETF), a technical working group
responsible for developing Internet standards to ensure communications compatibility
across different implementations, attempted to resolve, as best it could, security
engineering and protocol incompatibility issues between the protocols. The IETF
standards track Transport Layer Security Protocol Version 1.0 (TLS 1.0) emerged and
was codified by the IETF as [RFC2246]. While TLS 1.0 is based on SSL 3.0, and the
differences between them are not dramatic, they are significant enough that TLS 1.0 and
SSL 3.0 do not interoperate. TLS 1.0 is also referred to as SSL 3.1.
TLS 1.0 does incorporate a mechanism by which a TLS 1.0 implementation can negotiate
to use SSL 3.0 with requesting entities as if TLS were never proposed. However,
because SSL 3.0 is not approved for use in the protection of Federal information (Section
D.9 of [FIPS140Impl]), TLS must be properly configured to ensure that the negotiation
and use of SSL 3.0 never occurs when Federal information is to be protected.
TLS 1.1 was developed to address discovered weaknesses in TLS 1.0, primarily in the
areas of initialization vector selection and padding error processing. Initialization vectors
were made explicit3 to prevent a certain class of attacks on the Cipher Block Chaining
(CBC) mode of operation used by TLS. The handling of padding errors was altered to
treat a padding error as a bad message authentication code, rather than a decryption
failure. In addition, the TLS 1.1 RFC acknowledges attacks on CBC mode that rely on
the time to compute the message authentication code (MAC). [RFC4346] states that to
defend against such attacks, an implementation must process records in the same manner
regardless of whether padding errors exist. Further implementation considerations for
CBC modes, not included in [RFC4346], are discussed in Section 3.3.1.1.
TLS 1.2 made several cryptographic enhancements, particularly in the area of hash
functions, with the ability to use or specify SHA-2 family algorithms for hash, MAC, and
Pseudorandom Function (PRF) computations. TLS 1.2 also adds support for
authenticated encryption with associated data (AEAD) cipher suites.

1.3 Scope
Security is not a single property possessed by a single protocol. Rather, security includes
a complex set of related properties that together provide the required information
assurance characteristics and information protection services. Security requirements are
usually derived from a risk assessment to the threats or attacks an adversary is likely to
mount against a system. The adversary is likely to take advantage of implementation
vulnerabilities found in many system components, including computer operating systems,
application software systems, and the computer networks that interconnect them. Thus,
in order to secure a system against a myriad of threats, security must be judiciously
placed in the various systems and network layers.
These guidelines focus only on security within the network, and they focus directly on
the small portion of the network communications stack that is referred to as the transport

3 The initialization vector (IV) must be sent; it cannot be derived from a state known by both parties, such as the

previous message.

 Guidelines for TLS Implementations

3

layer. Several other NIST publications address security requirements in the other parts of
the systems and network layers. Adherence to these guidelines only protects the data in
transit. Other applicable NIST Standards and guidelines should be used to ensure
protection of systems and stored data.
These guidelines focus on the common use where clients and servers must interoperate
with a wide variety of implementations, and authentication is performed using public key
certificates. To promote interoperability, these guidelines (and the RFCs that define the
TLS protocol) establish mandatory features and cipher suites that conforming
implementations must support. There are, however, much more constrained
implementations of TLS servers, where security is needed, but broad interoperability is
not required and the cost of implementing unused features may be prohibitive. For
example, minimal servers are often implemented in embedded controllers and network
infrastructure devices such as routers and then used with browsers to remotely configure
and manage the devices. The use of an appropriate subset of the capabilities specified in
these guidelines may be acceptable in such cases.
The scope is further limited to TLS when used in conjunction with TCP/IP. For example,
Datagram TLS (DTLS) is outside the scope of these guidelines. NIST may issue separate
guidelines for DTLS at a later date.

1.4 Document Conventions
Throughout this document, key words are used to identify requirements. The key words
“shall”, “shall not”, “should”, and “should not” are used. These words are a subset of
the IETF Request For Comments (RFC) 2119 key words, and have been chosen based on
convention in other normative documents [RFC2119]. In addition to the key words, the
words “need”, “can”, and “may” are used in this document, but are not intended to be
normative. The key word “Approved” is used to indicate that a scheme or algorithm is
described in a Federal Information Processing Standard (FIPS) or is recommended by
NIST.
The recommendations in this document are grouped by server recommendations and
client recommendations. Section 3 provides detailed guidance for the selection and
configuration of TLS servers. Section 3.9.1 summarizes guidance that applies to the
selection of TLS server implementations, Section 3.9.2 summarizes guidance that applies
to the configuration of TLS server implementations, and Section 3.9.3 contains guidance
for system administrators that are responsible for maintaining the server. Section 4
provides detailed guidance for the selection, configuration, and use of TLS clients.
Section 4.9.1 summarizes guidance that applies to the selection of TLS client
implementations, Section 4.9.2 summarizes guidance that applies to the configuration of
TLS client implementations, Section 4.9.3 summarizes guidance for system
administrators responsible for maintaining TLS clients, and Section 4.9.4 contains
guidance for end users.

 Guidelines for TLS Implementations

4

2 TLS Overview
TLS exchanges records over the TLS record protocol. A TLS record contains several
fields, including version information, application protocol data, and the higher-level
protocol used to process the application data. TLS protects the application data by using a
set of cryptographic algorithms to ensure the confidentiality, integrity, and authenticity of
exchanged application data. TLS defines several protocols for connection management
that sit on top of the record protocol, where each protocol has its own record type. These
protocols, discussed in Section 2.1, are used to establish and change security parameters,
and communicate error and warning conditions to the server and client. Sections 2.2
through 2.6 describe the security services provided by the TLS protocol and how those
security services are provisioned. Section 2.7 discusses key management.

2.1 Handshake Protocol
There are three subprotocols in the TLS protocol that are used to control the session
connection: the handshake, change cipher spec4, and alert protocols. The TLS handshake
protocol is used to negotiate the session parameters. The alert protocol is used to notify
the other party of an error condition. The change cipher spec protocol is used to change
the cryptographic parameters of a session. In addition, the client and the server exchange
application data that is protected by the security services provisioned by the negotiated
cipher suite. These security services are negotiated and established with the handshake.
The handshake protocol consists of a series of message exchanges between the client and
the server. The handshake protocol initializes both the client and server to use optional
cryptographic capabilities by negotiating a cipher suite of algorithms and functions,
including key establishment, digital signature, confidentiality and integrity algorithms.
Clients and servers can be configured so that one or more of the following security
services are negotiated during the handshake: confidentiality, message integrity,
authentication, and replay protection. A confidentiality service provides assurance that
data is kept secret, preventing eavesdropping. A message integrity service provides
confirmation that unauthorized data modification is detected, thus preventing undetected
deletion, addition, or modification of data. An authentication service provides assurance
of the sender or receiver’s identity, thereby detecting forgery. Replay protection ensures
that an unauthorized user does not capture and successfully replay previous data. In
order to comply with these guidelines, both the client and the server shall be configured
for data confidentiality and integrity services. Note that the anti-replay service is implicit
when data contains monotonically increasing sequence number and data integrity is
assured.

The handshake protocol is used to optionally exchange X.509 public key certificates5 to
authenticate the server and the client to each other. In order to comply with these

4 In these guidelines, “change cipher spec” refers to a protocol, and “ChangeCipherSpec” refers to the message used in

that protocol
5 The use of X.509 public key certificates is fundamental to TLS. For a comprehensive explanation of X.509 public

key certificates see [Adams99] or [Housley01]. In these guidelines, the terms “certificate” and “public key
certificate” are used interchangeably.

 Guidelines for TLS Implementations

5

guidelines, the server always presents an X.509 public key certificate that complies with
the requirements stated elsewhere in these guidelines. For client-authenticated
connections, the client also presents an X.509 public key certificate that complies with
the requirements stated elsewhere in these guidelines.
The handshake protocol is responsible for establishing the session parameters. The client
and server negotiate algorithms for authentication, confidentiality and integrity, as well as
derive symmetric keys and establish other session parameters, such as data compression.
The negotiated set of authentication, confidentiality, and integrity algorithms is called the
cipher suite.
When all the security parameters are in place, the ChangeCipherSpec message is used to
inform the other side to begin using the negotiated security services agreed to during the
handshake. All messages sent after the ChangeCipherSpec message are protected (i.e.,
encrypted and/or integrity protected) using the negotiated cipher suite and derived
symmetric keys.
Finished messages, sent immediately following the ChangeCipherSpec messages, provide
integrity checks for the handshake messages. Each Finished message is protected using
the negotiated cipher suite and the derived session keys. Each side keeps a hash of all of
the handshake messages exchanged up to but not including their Finished message (e.g.,
the Finished message sent by the server includes the Finished message sent by the client
in the hash). The hash value is sent through a pseudorandom function (PRF) keyed by
the master secret key to form the Finished message. The receiving side decrypts the
protected Finished message and compares it to its output of the PRF on the hashed
messages. If the PRF values differ, the handshake has been modified or an error has
occurred in the key management, and the connection is aborted. If the PRF values are the
same, there is high assurance that the entire handshake has cryptographic integrity –
nothing was modified, added or deleted and all key derivation was done correctly.
Alerts are used to convey information about the session, such as errors or warnings. For
example, an alert can be used to signal a decryption error (decrypt_error) or that access
has been denied (access_denied). Some alerts are used for warnings, and others are
considered fatal and lead to immediate termination of the session. A close_notify alert
message is used to signal normal termination of a session. Like all other messages after
the handshake protocol is completed, alert messages are encrypted and optionally
compressed.
Details of the handshake, change cipher spec and alert protocols are outside the scope of
these guidelines; they are described in [RFC5246].

2.2 Shared Secret Negotiation
The client and server establish keying material during the TLS handshake protocol. The
derivation of the premaster secret depends on the key exchange method that is agreed
upon. For example, when the Rivest Shamir Adleman (RSA) algorithm is used for the
key exchange, the premaster secret is generated by the client and sent to the server in a
ClientKeyExchange message, encrypted with the server’s public key. When Diffie-
Hellman is used as the key exchange algorithm, the client and server send each other their
parameters, and the resulting key is used as the premaster secret. The premaster secret,

 Guidelines for TLS Implementations

6

along with random values exchanged by the client and server in the hello messages, is
used to compute the master secret. The master secret is used to derive session keys,
described in Sections 2.3 and 2.4, which are used by the negotiated security services to
protect the data exchanged between the client and the server, thus providing a secure
channel for the client and the server to communicate. Anti-replay protection is implicitly
provided, since each packet has a monotonically increasing sequence number.
The establishment of these secrets is secure against eavesdroppers. When the TLS
protocol is used in accordance with these guidelines, the application data, as well as the
secrets, are not vulnerable to attackers who place themselves in the middle of the
connection. The attacker cannot modify the handshake messages without being detected
by the client and the server because the Finished message, exchanged after security
parameter establishment, provides integrity protection to the entire exchange. In other
words, an attacker cannot modify or downgrade the security of the connection by placing
itself in the middle of the negotiation.
A premaster secret is securely established by the client using the RSA key transfer,
Diffie-Hellman (DH or DHE) key agreement, or Elliptic Curve DH (ECDH or ECDHE).

2.3 Confidentiality
Confidentiality is provided for a communication session by the negotiated encryption
algorithm for the cipher suite and the encryption keys derived from the master secret and
random values, one for encryption by the client (the client write key), and another for
encryption by the server (the server write key). The sender of a message (client or
server) encrypts the message using a derived encryption key; the receiver uses the same
key to decrypt the message. Both the client and server know these keys, and decrypt the
messages using the same key that was used for encryption. The encryption keys are
derived from the shared master secret.

2.4 Integrity
The keyed MAC algorithm, specified by the negotiated cipher suite, provides message
integrity. Two MAC keys are derived: 1) a MAC key to be used when the client is the
message sender and the server is the message receiver (the client write MAC key), and 2)
a second MAC key to be used when the server is the message sender and the client is the
message receiver (the server write MAC key). The sender of a message (client or server)
calculates the MAC for the message using the appropriate MAC key, and encrypts both
the message and the MAC using the appropriate encryption key. The sender then
transmits the encrypted message and MAC to the receiver. The receiver decrypts the
received message and MAC, and calculates its own version of the MAC using the MAC
algorithm and sender’s MAC key. The receiver verifies that the MAC that it calculates
matches the MAC sent by the sender.
Two types of constructions are used for MAC algorithms in TLS. All versions of TLS
support the use of the Keyed-Hash Message Authentication Code (HMAC) using the
hash algorithm specified by the negotiated cipher suite. With HMAC, MACs for server-
to-client messages are keyed by the server write MAC key, while MACs client-to-server

 Guidelines for TLS Implementations

7

messages are keyed by the client write MAC key. These MAC keys are derived from the
shared master secret.
TLS 1.2 added support for AEAD cipher modes, such as Counter with CBC-MAC
(CCM) and Galois Counter Mode (GCM), as an alternative way of providing integrity
and confidentiality. In AEAD modes, the sender uses its write key for both encryption
and integrity protection. The client and server write MAC keys are not used. The
recipient decrypts the message and verifies the integrity information. Both the sender
and the receiver use the sender’s write key to perform these operations.

2.5 Authentication
Server authentication is performed by the client using the server’s public key certificate,
which the server presents during the handshake. The exact nature of the cryptographic
operation for server authentication is dependent on the negotiated cipher suite and
extensions. In most cases (e.g., RSA for key transport, DH and ECDH), authentication is
performed explicitly through verification of digital signatures present in certificates, and
implicitly by the use of the server public key by the client during the establishment of the
master secret. A successful Finished message implies that both parties calculated the
same master secret and thus, the server must have known the private key corresponding
to the public key used for key establishment.
Client authentication is optional, and only occurs at the server’s request. Client
authentication is based on the client’s public key certificate. The exact nature of the
cryptographic operation for client authentication depends on the negotiated cipher suite’s
key exchange algorithm and the negotiated extensions. For example, when the client’s
public key certificate contains an RSA public key, the client signs a portion of the
handshake message using the private key corresponding to that public key, and the server
verifies the signature using the public key to authenticate the client.

2.6 Anti-Replay
The integrity-protected envelope of the message contains a monotonically increasing
sequence number. Once the message integrity is verified, the sequence number of the
current message is compared with the sequence number of the previous message. The
sequence number of the current message must be greater than the sequence number of the
previous message in order to further process the message.

2.7 Key Management
The server public key certificate and corresponding private key, and optionally the client
public key certificate and corresponding private key, are used in the establishment of the
premaster secret, according to the key exchange algorithm dictated by the selected cipher
suite. The premaster secret, server random, and client random are used to determine the
master secret, which is then used to derive the symmetric session keys.
The security of the server’s private key is critical to the security of TLS. If the server’s
private key is weak or can be obtained by a third party, the third party can masquerade as
the server to all clients. Similarly, if a third party can obtain a public key certificate for a
public key corresponding to his own private key in the name of a legitimate server from a

 Guidelines for TLS Implementations

8

certification authority (CA) trusted by the clients, the third party can masquerade as the
server to the clients. Requirement and recommendations to mitigate these concerns are
addressed later in these guidelines.
Similar threats exist for clients. If a client’s private key is weak or can be obtained by a
third party, the third party can masquerade as the client to the server. Similarly, if a third
party can obtain a public key certificate for a public key corresponding to his own private
key in the name of a client from a CA trusted by the server, the third party can
masquerade as that client to the server. Requirements and recommendations to mitigate
these concerns are addressed later in these guidelines.
Since the random numbers generated by the client and server contribute to the
randomness of the session keys, the client and server must be capable of generating
pseudorandom numbers with at least 112 bits of security6 each. The various TLS session
keys derived from these random values and other data are valid for the duration of the
session. Because the session keys are only used to protect messages exchanged during an
active TLS session, and are not used to protect any data at rest, there is no requirement
for recovering TLS session keys. However, servers and clients may (and often do) cache
the master secret (but not the session keys) to reduce the significant overhead in session
resumption. If both the client and server have the master secret and associated session ID
from a previous session in their caches, an abbreviated handshake can be used to resume
the session. A resumed session uses the same negotiated parameters as the previous
session, but uses new session keys derived from the master secret and new server random
and client random values. After some reasonable timeout period, the master secret should
be destroyed on both the server and the client. All of the state variables, including the
session keys, are destroyed when the session ends. The protocol implementation relies
on the operating system to ensure that there is no reuse of the keying material, such as the
random values, premaster secret and session keys.

6 Bits of security provided by Approved algorithms are described in SP 800-57 part 1 [SP800-57p1], Section 5.6.

 Guidelines for TLS Implementations

9

3 Minimum Requirements for TLS Servers
This section provides a minimum set of requirements that a server must implement in
order to meet these guidelines. Requirements are organized in the following sections:
TLS protocol version support; server keys and certificates; cryptographic support; TLS
extension support; client authentication; session resumption; compression methods; and
operational considerations.
Specific requirements are stated as either implementation requirements or configuration
requirements. Implementation requirements indicate that Federal agencies shall not
procure TLS server implementations unless they include the required functionality, or can
be augmented with additional commercial products to meet requirements. Configuration
requirements indicate that TLS server administrators are required to verify that particular
features are enabled, or in some cases, configured appropriately, if present.

3.1 Protocol Version Support
TLS version 1.1 is required, at a minimum, in order to mitigate various attacks on version
1.0 of the TLS protocol. Support for TLS version 1.2 is strongly recommended.
Servers that support government-only applications shall be configured to support TLS
1.1, and should be configured to support TLS 1.2. These servers shall not support TLS
1.0, SSL 2.0, or SSL 3.0. TLS versions 1.1 and 1.2 are represented by major and minor
number tuples (3, 2) and (3, 3), respectively7. Agencies shall develop migration plans to
support TLS 1.2 by January 1, 2015.
Servers that support citizen or business-facing applications shall be configured to support
version 1.1 and should be configured to support version 1.2. These servers may also be
configured to support TLS version 1.0 in order to enable interaction with citizens and
businesses. These servers shall not support SSL version 3.0 or earlier. If TLS 1.0 is
supported, the use of TLS 1.1 and 1.2 shall be preferred over TLS 1.0.
Some server implementations are known to implement version negotiation incorrectly.
For example, there are TLS 1.0 servers that terminate the connection when the client
offers a version newer than TLS 1.0. Servers that incorrectly implement TLS version
negotiation shall not be used.

3.2 Server Keys and Certificates
The TLS server shall be configured with one or more public key certificates and the
associated private keys. TLS server implementations should support multiple server
certificates with their associated private keys to support algorithm and key size agility.
There are six options for TLS server certificates that can satisfy the requirement for
Approved cryptography: an RSA key encipherment certificate; an RSA signature
certificate; an Elliptic Curve Digital Signature Algorithm (ECDSA) signature certificate;

7 Historically TLS 1.0 was assigned major, minor tuple (3,1) to align it as SSL 3.1.

 Guidelines for TLS Implementations

10

a Digital Signature Algorithm (DSA)8 signature certificate; a Diffie-Hellman certificate;
and an ECDH certificate.
At a minimum, TLS servers conforming to this specification shall be configured with an
RSA key encipherment certificate, and also should be configured with an ECDSA
signature certificate or RSA signature certificate. If the server is not configured with an
RSA signature certificate, an ECDSA signature certificate using a Suite B named curve
for the signature and public key in the ECDSA certificate should be used.9
TLS servers shall be configured with certificates issued by a CA, rather than self-signed
certificates. Furthermore, TLS server certificates shall be issued by a CA that publishes
revocation information in either a Certificate Revocation List (CRL) [RFC5280] or in
Online Certificate Status Protocol (OCSP) [RFC6960] responses. The source for the
revocation information shall be included in the CA-issued certificate in the appropriate
extension to promote interoperability.
A TLS server that has been issued certificates by multiple CAs can select the appropriate
certificate, based on the client specified “Trusted CA Keys” TLS extension, as described
in Section 3.4.1.4. A TLS server that has been issued certificates for multiple names can
select the appropriate certificate, based on the client specified “Server Name” TLS
extension, as described in Section 3.4.1.3. A TLS server may also contain multiple
names in the Subject Alternative Name extension of the server certificate in order to
support multiple server names of the same name form (e.g., DNS Name) or multiple
server names of multiple name forms (e.g., DNS Names, IP Address, etc.)
Section 3.2.1 specifies a detailed profile for server certificates. Basic guidelines for DSA,
DH, and ECDH certificates are provided; more detailed profiles may be provided if these
algorithms experience broad use in the future. Section 3.2.2 specifies requirements for
revocation checking. System administrators shall use these sections to identify an
appropriate source for certificates. Section 3.5.4 specifies requirements for the “hints
list.”

3.2.1 Server Certificate Profile
The server certificate profile, described in this section, provides requirements and
recommendations for the format of the server certificate. For these guidelines, the TLS
server certificate shall be an X.509 version 3 certificate; both the public key contained in
the certificate and the signature shall have at least 112 bits of security. The certificate
shall be signed with an algorithm consistent with the public key10:

• Certificates containing RSA (key encipherment or signature), ECDSA, or DSA
public keys shall be signed with those same signature algorithms, respectively;

8 In the names for the TLS cipher suites, DSA is referred to as DSS (Digital Signature Standard), for historical reasons.

9 The Suite B curves are known as P-256 and P-384. These curves are defined in [FIPS186-4] and their inclusion in

Suite B is documented in [RFC6460].
10 Algorithm-dependent rules exist for the generation of public and private key pairs. For guidance on the generation

of DH and ECDH key pairs, see [SP800-56A]. For guidance regarding the generation of RSA key pairs, see
[SP800-56B]. For guidance regarding the generation of DSA and ECDSA key pairs, see [FIPS186-4].

 Guidelines for TLS Implementations

11

• Certificates containing Diffie-Hellman public keys shall be signed with DSA; and

• Certificates containing ECDH public keys shall be signed with ECDSA.
The extended key usage extension limits the operations that keys in a certificate may be
used for. There is an extended key usage extension specifically for server authentication,
and the server should be configured to support it. The use of the extended key usage
extension will facilitate successful server authentication, as some clients may require the
presence of an extended key usage extension. The extended key usage extension will also
indicate that the certificate is not intended to be used for other purposes, such as code
signing. The use of the server DNS name in the Subject Alternative Name field ensures
that any name constraints on the certification path will be properly enforced.
The server certificate profile is listed in Table 3-1. In the absence of agency-specific
certificate profile requirements, this certificate profile should be used for the server
certificate.
Note that for ECDH, the algorithm object identifier (OID) and the signature OID are
identical to those of ECDSA. For interoperability reasons, the algorithm OID is not
changed and the key usage extension determines if the public key is used for key
agreement or signature verification.

Table 3-1: TLS Server Certificate Profile
Field Critical Value Description
Version N/A 2 Version 3
Serial Number N/A Unique positive integer Must be unique

Issuer Signature Algorithm N/A Values by certificate type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

RSA key encipherment certificate, RSA
signature certificate

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

ECDSA signature certificate, ECDH
certificate

id-dsa-with-sha256 {2 16 840 1 101 3 4 3
2}, or stronger

DSA signature certificate, DH certificate

Issuer Distinguished Name
(DN)

N/A Unique X.500 Issuing CA DN Single value shall be encoded in each
Relative Distinguished Name (RDN). All
attributes that are of directoryString type
shall be encoded as a printable string.

Validity Period N/A 3 years or less Dates through 2049 expressed in UTCTime

Subject Distinguished Name N/A Unique X.500 subject DN per agency
requirements

Single value shall be encoded in each
RDN. All attributes that are of
directoryString type shall be encoded as a
printable string.
CN={Host IP Address | Host DNS Name}

 Guidelines for TLS Implementations

12

Field Critical Value Description

Subject Public Key
Information

N/A Values by certificate type:
rsaEncryption {1 2 840 113549 1 1 1} RSA key encipherment certificate, RSA

signature certificate
2048-bit RSA key modulus, or other
approved lengths as defined in [SP800-
56B] and [SP800-57p1]
Parameters: NULL

ecPublicKey {1 2 840 10045 2 1} ECDSA signature certificate, or ECDH
certificate
Parameters: namedCurve OID for names
curve specified in FIPS 186-4. The curve
shall be P-256 or P-384
SubjectPublic Key: Uncompressed EC
Point.

id-dsa {1 2 840 10040 4 1} DSA signature certificate
Parameters: p, q, g (2048 bit large prime,
i.e., p)

dhpublicnumber {1 2 840 10046 2 1} DH certificate
Parameters: p, g, q (2048 bit large prime,
i.e., p)

Issuer’s Signature N/A Values by certificate type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

RSA key encipherment certificate, RSA
signature certificate

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

ECDSA signature certificate, ECDH
certificate

id-dsa-with-sha256 { 2 16 840 1 101 3 4
3 2}, or stronger

DSA signature certificate, DH certificate

Extensions

Authority Key Identifier No Octet String Same as subject key identifier in Issuing
CA certificate
Prohibited: Issuer DN, Serial Number tuple

Subject Key Identifier No Octet String Same as in PKCS-10 request or calculated
by the Issuing CA

Key Usage Yes Values by certificate type:
keyEncipherment RSA key encipherment certificate
digitalSignature RSA signature certificate, ECDSA

signature certificate, or DSA signature
certificate

keyAgreement ECDH certificate, DH certificate

Extended Key Usage No id-kp-serverAuth {1 3 6 1 5 5 7 3 1} Required
id-kp-clientAuth {1 3 6 1 5 5 7 3 2} Optional
 Prohibited: anyExtendedKeyUsage, all

others unless consistent with key usage
extension

Certificate Policies No Per agency X.509 certificate policy

Subject Alternative Name No DNS Host Name or IP Address if there is
no DNS name assigned

Multiple SANs are permitted, e.g., for load
balanced environments.

Authority Information Access No id-ad-caIssuers Required. Access method entry contains
HTTP URL for certificates issued to
Issuing CA

id-ad-ocsp Optional. Access method entry contains
HTTP URL for the Issuing CA OCSP
Responder

CRL Distribution Points No See comments Optional. HTTP value in distributionPoint
field pointing to a full and complete CRL.
Prohibited: reasons and cRLIssuer fields,
and nameRelativetoCRLIssuer CHOICE

 Guidelines for TLS Implementations

13

3.2.2 Obtaining Revocation Status Information for the Client
Certificate

The server shall perform revocation checking of the client certificate, when client
authentication is used. Revocation information shall be obtained by the server from one
or more of the following locations:

1. Certificate Revocation List (CRL) or OCSP [RFC6960] response in the server’s
local store;

2. OCSP response from a locally configured OCSP Responder;
3. OCSP response from the OCSP Responder location identified in the OCSP field

in the Authority Information Access extension in the client certificate; or
4. CRL from the CRL Distribution Point extension in the client certificate.

When the local store does not have the current or a cogent11 CRL or OCSP response, and
the OCSP Responder and the CRL Distribution Point are unavailable or inaccessible at
the time of TLS session establishment, the server will either deny the connection or
accept a potentially revoked or compromised certificate. The decision to accept or reject a
certificate in this situation should be made according to agency policy.

3.2.3 Server Public Key Certificate Assurance
After the server public key certificate has been verified by a client, it may be trusted by
the client on the basis of policies, procedures and security controls used to issue the
server public key certificate. The server is required to possess an X.509 version 3 public
key certificate. The policy, procedures and security controls are optionally represented in
the certificate using the certificatePolicies extension, specified in [RFC5280] and updated
in [RFC6818]. When used, one or more certificate policy OIDs are asserted in this
extension. The actual policies and procedures and security controls associated with each
certificate policy OID are documented in a certificate policy. In the absence of agency-
specific policies, Federal agencies shall use the Common Policy [COMMON].
The use of a certificate policy that is designed with the secure operation of PKI in mind
and adherence to the stipulated certificate policy mitigates the threat that the issuing CA
can be compromised or that the registration system, persons or process can be
compromised to obtain an unauthorized certificate in the name of a legitimate entity, and
thus compromise the clients. With this in mind, the CA Browser Forum, a private sector
organization, has carried out some efforts in this area. The guideline was first published
as the Extended Validation guideline [EVGUIDE]. Under another effort, the CA
Browser Forum published requirements for issuing certificates from publicly trusted CAs
in order for those CAs and their trust anchor to remain in browser trust stores
[CABBASE].

11 A CRL is considered “cogent” when the “CRL Scope” is appropriate for certificate in question. “CRL Scope” is

defined in [RFC5280].

 Guidelines for TLS Implementations

14

It should be noted that there are TLS clients that do not perform X.509 certificate policy
processing as mandated by [RFC5280]. Thus, they are not able to accept or reject a TLS
server certificate based on the assurance level specified by the policy. This may result in
the acceptance of a fraudulent certificate and may expose user data to unintended parties.
The Federal Government and CA Browser Forum hope that the security requirements in
[COMMON], [EVGUIDE], and [CABBASE] are adopted by all CAs under their
purview, mitigating the lack of a policy processing capability.
In order to further mitigate the risk associated with a CA or X.509 certificate registration
system, process or personnel compromise, several concepts are under development.
These emerging concepts are further discussed in Appendix D.

3.3 Cryptographic Support
Cryptographic support in TLS is provided through the use of various cipher suites. A
cipher suite specifies a collection of algorithms for key exchange and for providing
confidentiality and integrity services to application data. The cipher suite negotiation
occurs during the TLS handshake protocol. The client presents cipher suites that it
supports to the server, and the server selects one of them to secure the session data.
Cipher suites have the form:

TLS_KeyExchangeAlg_WITH_EncryptionAlg_MessageAuthenticationAlg
For example, the cipher suite TLS_RSA_WITH_AES_128_CBC_SHA uses RSA for the
key exchange, AES-128 in cipher block chaining mode for encryption, and message
authentication is performed using HMAC_SHA12. For further information on cipher suite
interpretation, see Appendix B.

3.3.1 Cipher Suites
The server shall be configured to only use cipher suites that are composed entirely of
Approved algorithms. A complete list of acceptable cipher suites for general use is
provided in this section, grouped by certificate type and TLS protocol version.
In some situations, such as closed environments, it may be appropriate to used pre-shared
keys. Pre-shared keys are symmetric keys that are already in place prior to the initiation
of a TLS session, which are used in the derivation of the premaster secret. For cipher
suites that are acceptable in pre-shared key environments, see Appendix C.
In order to maximize interoperability, TLS server implementations shall support the
following cipher suites:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA13
• TLS_RSA_WITH_AES_128_CBC_SHA14

In addition, TLS server implementations should support the following cipher suites:

12 SHA indicates the use of the SHA-1 hash algorithm.
13 Support of this cipher suite is mandatory for TLS 1.1 [RFC4346]
14 Support of this cipher suite is mandatory for TLS 1.2 [RFC5246]

 Guidelines for TLS Implementations

15

• TLS_RSA_WITH_AES_256_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA15
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

When ephemeral keys are used to establish the master secret, each ephemeral key-pair
(i.e., the server ephemeral key-pair and the client ephemeral key-pair) shall have at least
112 bits of security.
TLS version 1.2 adds support for authenticated encryption modes, and support for the
SHA-256 and SHA-384 hash algorithms, which are not supported in prior versions of
TLS. These cipher suites are described in [RFC5288] and [RFC5289]. In addition to
supporting the cipher suites listed above, TLS 1.2 servers shall be configured to support
the following cipher suite:

• TLS_RSA_WITH_AES_128_GCM_SHA256
TLS 1.2 servers should be configured to support the following cipher suites:

• TLS_RSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECHDE_RSA_WITH_AES_128_GCM_SHA256

NIST may define additional mandatory or recommended cipher suites at a later date.
The server shall be configured to only support cipher suites for which it has a valid
certificate containing a signature providing at least 112 bits of security. The following
cipher suite tables are grouped by certificate type and TLS protocol version. The cipher
suites in these tables include the cipher suites that shall and should be supported (as
described above), and may be supported. Only cipher suites that are composed of
Approved algorithms are acceptable and are listed in this section. Cipher suites that do
not appear in this section or Appendix C shall not be used.
In the following tables listing recommended cipher suites, cipher suites shown in bold
font shall be supported, cipher suites shown in italics font should be supported, and
cipher suites shown in regular font may be supported.
Table 3-2 identifies the three categories (shall, should, and may) of acceptable cipher
suites for a TLS server that has been configured with an RSA private key and a

15 In TLS versions 1.0 and 1.1, DHE and ECDHE cipher suites use SHA-1 for signature generation on the ephemeral

parameters (including keys) in the ServerKeyExchange message. [SP800-131A] states that the use of SHA-1 for
digital signature generation is disallowed after 2013. Due to the random nature of the ephemeral keys, third party
cannot cause effective collision. The server and client do not have anything to gain by causing collision for the
connection. Due to client random and server random, the server, the client, or a third party cannot use a colliding
set of messages to masquerade as client or server in future connections. Any modification to the parameters by a
third party during the handshake will ultimately result in a failed connection. Because of these reasons, SHA-1 is
allowed for generating digital signatures on ephemeral parameters in TLS.

 Guidelines for TLS Implementations

16

corresponding RSA certificate. Table 3-3 identifies additional RSA cipher suites for TLS
version 1.2 servers, for the three categories. A server having a RSA certificate may
support any cipher suite that appears in Table 3-2 or Table 3-3. The key usage extension
in the RSA certificate shall specify key encipherment for cipher suites that use RSA key
transport to carry out the key exchange, and the key usage extension shall specify digital
signature for cipher suites using ECDHE for key exchange.

Table 3-2: Cipher Suites for RSA Server Certificates

 Cipher Suite Name Key
Exchange

Encryption Hash
Function

for HMAC

Hash
Function

for PRF16
TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA-1 Per RFC
TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA-1 Per RFC
TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA-1 Per RFC
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ECDHE 3DES_EDE_CBC SHA-1 Per RFC
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE AES_128_CBC SHA-1 Per RFC
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDHE AES_256_CBC SHA-1 Per RFC

Table 3-3: Additional TLS 1.2 Cipher Suites for RSA Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
Function

for HMAC

Hash
Function
for PRF

TLS_RSA_WITH_AES_128_GCM_SHA256 RSA AES_128_GCM N/A SHA-256
TLS_RSA_WITH_AES_256_GCM_SHA384 RSA AES_256_GCM N/A SHA-384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ECDHE AES_128_CBC N/A SHA-256
TLS_ECHDE_RSA_WITH_AES_128_GCM_SHA256 ECDHE AES_128_GCM N/A SHA-256
TLS_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA-256 SHA-256
TLS_RSA_WITH_AES_256_CBC_SHA256 RSA AES_256_CBC SHA-256 SHA-256
TLS_RSA_WITH_AES_128_CCM17 RSA AES_128_CCM N/A SHA-256
TLS_RSA_WITH_AES_256_CCM RSA AES_256_CCM N/A SHA-256

Table 3-4 identifies the two categories (should and may) of cipher suites for a TLS server
that has been configured with an elliptic curve private key and a corresponding ECDSA
certificate. These cipher suites are described in [RFC4492]. Table 3-5 identifies
additional two categories (should and may) of ECDSA cipher suites, described in
[RFC5289] for a TLS version 1.2 server. A server that is configured with an ECDSA
certificate may support any of the cipher suites listed in Table 3-4 or Table 3-5.

Table 3-4: Cipher Suites for ECDSA Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function

for HMAC

Hash
Function
for PRF

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ECDHE 3DES_EDE_CBC SHA-1 Per RFC
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE AES_128_CBC SHA-1 Per RFC
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE AES_256_CBC SHA-1 Per RFC

16 In TLS versions 1.0 and 1.1, the hash function used in the PRF is a parallel application of MD5 and SHA-1, as

defined in [RFC2246] and [RFC4346]. For TLS 1.2, the PRF hash function is SHA-256, unless otherwise stated.
17 AES-CCM cipher suites are defined in [RFC6655].

 Guidelines for TLS Implementations

17

Table 3-5: Additional TLS 1.2 Cipher Suites for ECDSA Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function

for
HMAC

Hash
Function
for PRF

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ECDHE AES_128_CBC SHA-256 SHA-256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ECDHE AES_128_GCM N/A SHA-256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDHE AES_256_GCM N/A SHA-384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ECDHE AES_256_CBC SHA-384 SHA-384

Table 3-6 identifies cipher suites that may be supported by a server that has been
configured with a DSA private key and a corresponding DSA certificate. Table 3-7
identifies additional DSA cipher suites that may be supported by a TLS version 1.2
server. A server that is configured with a DSA certificate may support any of the cipher
suites listed in Table 3-6 or Table 3-7.

Table 3-6: Cipher Suites for DSA Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function for

HMAC

Hash
Function
for PRF

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE 3DES_EDE_CBC SHA-1 Per RFC
TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE AES_128_CBC SHA-1 Per RFC
TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE AES_256_CBC SHA-1 Per RFC

Table 3-7: Additional TLS 1.2 Cipher Suites for DSA Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function for

HMAC

Hash
Function
for PRF

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE AES_128_CBC SHA-256 SHA-256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 DHE AES_256_CBC SHA-256 SHA-256
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 DHE AES_128_GCM N/A SHA-256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 DHE AES_256_GCM N/A SHA-384

Table 3-8 identifies cipher suites that may be supported by a TLS server that has been
configured with a DH private key and a corresponding DH certificate signed using DSA.
Table 3-9 identifies additional DH cipher suites that may be supported by a TLS version
1.2 server [RFC5246], [RFC5288].

Table 3-8: Cipher Suites for DH Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function for

HMAC

Hash
Function
for PRF

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH 3DES_EDE_CBC SHA-1 Per RFC
TLS_DH_DSS_WITH_AES_128_CBC_SHA DH AES_128_CBC SHA-1 Per RFC
TLS_DH_DSS_WITH_AES_256_CBC_SHA DH AES_256_CBC SHA-1 Per RFC

 Guidelines for TLS Implementations

18

Table 3-9: Additional TLS 1.2 Cipher Suites for DH Server Certificates

Cipher Suite Name Key
Exchange

Encryption Hash
function for

HMAC

Hash
Function
for PRF

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 DH AES_128_CBC SHA-256 SHA-256
TLS_DH_DSS_WITH_AES_256_CBC_SHA256 DH AES_256_CBC SHA-256 SHA-256
TLS_DH_DSS_WITH_AES_128_GCM_SHA256 DH AES_128_GCM N/A SHA-256
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 DH AES_256_GCM N/A SHA-384

Table 3-10 identifies cipher suites that may be supported by a server that has been
configured with an elliptic curve private key and a corresponding ECDH certificate
signed using ECDSA. Table 3-11 identifies additional ECDH cipher suites that may be
supported by a TLS 1.2 server. These cipher suites are defined in [RFC5289].

Table 3-10: Cipher Suites for ECDH Server Certificate

Cipher Suite Name Key
Exchange

Encryption Hash
function

for
HMAC

Hash
Function
for PRF

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA ECDH 3DES_EDE_CBC SHA-1 Per RFC

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA ECDH AES_128_CBC SHA-1 Per RFC
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA ECDH AES_256_CBC SHA-1 Per RFC

Table 3-11: Additional TLS 1.2 Cipher Suites for ECDH Server Certificate

Cipher Suite Name Key
Exchange

Encryption Hash
function

for
HMAC

Hash
Function
for PRF

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 ECDH AES_128_CBC SHA-256 SHA-256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 ECDH AES_256_CBC SHA-384 SHA-384
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 ECDH AES_128_GCM N/A SHA-256
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 ECDH AES_256_GCM N/A SHA-384

Appendix B provides further details on cipher suite name interpretation. While the cipher
suite name is used in descriptions, the actual protocol uses assigned numbers to identify
cipher suites.
When negotiating a cipher suite, the client sends a handshake message with a list of
cipher suites it will accept. The server chooses from the list and sends a handshake
message back indicating which cipher suite it will accept. Although the client may order
the list with the strongest cipher suites listed first, the server may choose any of the
cipher suites proposed by the client. Therefore there is no guarantee that the negotiation
will settle on the strongest suite in common. If no cipher suites are in common the
connection is aborted.
Cipher suites using ephemeral DH and ephemeral ECDH (i.e., those with DHE or
ECDHE in the second mnemonic) provide perfect forward secrecy18, ensuring long-term

18 Perfect forward secrecy is the condition in which the compromise of a long-term private key used in deriving a

session key subsequent to the derivation does not cause the compromise of the session key.

 Guidelines for TLS Implementations

19

confidentiality of the session. While support of these cipher suites is not required by these
guidelines, it is strongly recommended.
There is no mechanism to specify the minimum key size for the server or client certificate
or for the CAs that are in the certification path.
3.3.1.1 Implementation Considerations
System administrators need to fully understand the ramifications of selecting cipher
suites and configuring applications to support only those cipher suites. The security
guarantees of the cryptography are limited to the weakest cipher suite supported by the
configuration. When configuring an implementation, there are several factors that affect
supported cipher suite selection.
[RFC4346] describes timing attacks on CBC cipher suites, as well mitigation techniques.
TLS implementations shall use the bad_record_mac error to indicate a padding error.
Implementations shall compute the MAC regardless of whether padding errors exist.

In addition to the CBC attacks addressed in [RFC4346], the Lucky 13 attack [Lucky13]
demonstrates that a constant-time decryption routine is also needed to prevent timing
attacks. TLS implementations should support constant-time decryption, or near constant-
time decryption.

Note that CBC-based attacks can be prevented by using AEAD cipher suites (e.g., GCM,
CCM), supported in TLS 1.2.

3.3.1.1.1 Algorithm Support
Many TLS servers and clients support RC4 [Schneier96] cipher suites. RC4 is not an
Approved algorithm. If the server were configured to support RC4 cipher suites, they
may be chosen over the recommended cipher suites composed of Approved algorithms.
Therefore it is important that the server is configured only to use recommended cipher
suites.
Server implementations may not allow the server administrator to specify preference
order. In such servers, the only way to ensure that a server uses Approved algorithms for
encryption is to disable cipher suites that use other encryption algorithms (such as RC4
and Camellia [RFC3713]).
3.3.1.1.2 Cipher Suite Scope
The selection of a cryptographic algorithm may be system-wide and not application
specific for some implementations. For example, disabling an algorithm for one
application on a system might disable that algorithm for all applications on that system.

3.3.2 Validated Cryptography
The cryptographic module used by the server shall be a FIPS 140-validated
cryptographic module. All cryptographic algorithms that are included in the configured
cipher suites shall be within the scope of the validation, as well as the random number
generator. Note that the TLS 1.1 pseudorandom function (PRF) uses MD5 and SHA-1 in
parallel so that if one hash function is broken, security is not compromised. While MD5

 Guidelines for TLS Implementations

20

is not an Approved algorithm, the TLS 1.1 PRF is specified as acceptable in
[FIPS140Impl] and [SP800-135]. Note that in TLS 1.1, use of SHA-1 is found
acceptable for specific cases of signing ephemeral keys and for signing for client
authentication. This is acceptable due the fact that a third party cannot cause a collision
that is not detected and client and server cannot exploit the collision they can cause as
further explained in a footnote in Section 3.3.1. In TLS 1.2, the default hash function in
the PRF is SHA-256. Other than the SHA-1 exception listed for specific instances above,
all cryptography used shall provide at least 112 bits of security. All server and client
certificates shall contain public keys that offer at least 112 bits of security. All server
and client certificates and certificates in their certification paths shall be signed using key
pairs that offer at least 112 bits of security and SHA-224 or stronger hashing algorithm.
All ephemeral keys used by the client and server shall offer at least 112 bits of security.
All symmetric algorithms used to protect the TLS data shall use keys that offer at least
112 bits of security.
The random number generator shall be tested and validated in accordance with [SP800-
90A] under the NIST Cryptographic Algorithm Validation Program (CAVP) and
successful results of this testing shall be indicated on the cryptographic module’s FIPS
140 validation certificate.

The server random value, sent in the ServerHello message, contains a 4-byte timestamp19
value and 28-byte random value. The validated random number generator shall be used
to generate the 28-byte random value of the server random value. The validated random
number generator should be used to generate the 4-byte timestamp of the server random
value.

3.4 TLS Extension Support
Several TLS extensions are described in [RFC6066]. Servers are encouraged to support
these extensions, except where discouraged as specified in Section 3.4.3. Additional
extensions are described in [RFC4492], [RFC5246], and [RFC5746]. This section
contains recommendations for a subset of the TLS extensions that the Federal agencies
shall, should, or should not use as they become prevalent in commercially available
TLS servers and clients.
Some servers will refuse the connection if any TLS extensions are included in the
ClientHello message. Interoperability with servers that do not properly handle TLS
extensions may require multiple connection attempts by the client.

3.4.1 Mandatory TLS Extensions
The server shall support the following TLS extensions.

1. Renegotiation Indication
2. Certificate Status Request
3. Server Name Indication

19 The timestamp value does not need to be correct in TLS. It can be any 4-byte value, unless otherwise restricted by

higher-level or application protocols.

 Guidelines for TLS Implementations

21

4. Trusted CA Indication

3.4.1.1 Renegotiation Indication
TLS session renegotiation is vulnerable to an attack in which the attacker forms a TLS
connection with the target server, injects content of his choice, and then splices in a new
TLS connection from a legitimate client. The server treats the legitimate client’s initial
TLS handshake as a renegotiation of the attacker’s negotiated session and thus believes
that the initial data transmitted by the attacker is from the legitimate client. The session
renegotiation extension is defined to prevent such a session splicing or session
interception. The extension uses the concept of cryptographically binding the initial
session negotiation and session renegotiation.
Servers shall perform initial and subsequent renegotiations in accordance with
[RFC5746].
3.4.1.2 Certificate Status Request
When the client wishes to receive the revocation status of the TLS server certificate from
the TLS server, the client includes the Certificate Status Request (status_request)
extension in the ClientHello message. Upon receipt of the status_request extension, the
server shall include the certificate status along with its certificate by sending a
CertificateStatus message immediately following the Certificate message. While the
extension itself is extensible, only OCSP type certificate status is defined in [RFC6066].
This extension is also called OCSP stapling.
3.4.1.3 Server Name Indication
Multiple virtual servers may exist at the same network address. The server name
indication extension allows the client to specify which of the servers located at the
address it is trying to connect with. The server shall be able to process and respond to the
server name indication extension received in a ClientHello message as described in
[RFC6066].
3.4.1.4 Trusted CA Indication
The trusted CA indication (trusted_ca_keys) extension allows a client to specify which
CA root keys it possesses. This is useful for sessions where the client is memory-
constrained and possesses a small number of root CA keys. The server shall be able to
process and respond to the trusted CA indication extension received in a ClientHello
message as described in [RFC6066].

3.4.2 Conditional TLS Extensions
A TLS server may be able to support the following TLS extensions under the
circumstances described in the following paragraphs:

1. The Supported Elliptic Curves TLS extension shall be supported if the server
supports EC cipher suite(s).

2. The EC Point Format TLS extension shall be supported if the server supports EC
cipher suite(s).

 Guidelines for TLS Implementations

22

3. The Signature Algorithms TLS extension shall be supported when the server is
operating in TLS 1.2.

4. The Multiple Certificate Status extension shall be supported if the extension is
supported by the server implementation.

5. The Truncated HMAC extension may be supported if the server communicates
with constrained device clients and the server implementation does not support
variable-length padding.

3.4.2.1 Supported Elliptic Curves
Servers that support elliptic curve cipher suites shall be able to process the elliptic curves
received in the ClientHello message. The curves P-256 and P-384 shall be supported.
The servers shall process this extension in accordance with Section 5.1 of [RFC4492].
3.4.2.2 EC Point Format
The servers that support EC cipher suites shall be able to process the supported EC point
format received in the ClientHello message by the client. The servers shall process this
extension in accordance with Section 5.1 of [RFC4492].
The servers that support EC cipher suites shall also be able to send the supported EC
point format in the ServerHello message as described in Section 5.2 of [RFC4492].
3.4.2.3 Signature Algorithms
The servers that support TLS 1.2 shall support the processing of the signature algorithms
extension received in a ClientHello message. The extension, its syntax, and processing
rules are described in Sections 7.4.1.4.1, 7.4.2, and 7.4.3 of [RFC5246].
3.4.2.4 Multiple Certificate Status
The multiple certificate status extension improves on the Certificate Status Request
extension described in Section 3.4.1.2 by allowing the client to request the status of all
certificates provided by the server in the TLS handshake. When the server returns the
revocation status of all the certificates in the server certificate chain, the client does not
need to query any revocation service providers, such as OCSP responders. This extension
is documented in [RFC6961]. Server implementations that have this capability shall be
configured to support this extension.
3.4.2.5 Truncated HMAC
The Truncated HMAC extension allows a truncation of the HMAC output to 80 bits for
use as a MAC tag. An 80-bit MAC tag complies with the recommendations in [SP800-
107], but reduces the security provided by the integrity algorithm. Because forging a
MAC tag is an online attack, and the TLS session will terminate immediately when an
invalid MAC tag is encountered, the risk introduced by supporting this extension is low.
However, truncated MAC tags shall not be used in conjunction with variable-length
padding, due to attacks described in [Paterson11].

3.4.3 Discouraged TLS Extensions
The following extensions should not be used:

1. Client Certificate URL

 Guidelines for TLS Implementations

23

The Client Certificate URL extension allows a client to send a URL pointing to a
certificate, rather than sending a certificate to the server during mutual authentication.
This can be very useful for mutual authentication with constrained clients. However, this
extension can be used for malicious purposes. The URL could belong to an innocent
server on which the client would like to perform a denial of service attack, turning the
TLS server into an attacker. A server that supports this extension also acts as a client
while retrieving a certificate, and therefore becomes subject to additional security
concerns. For these reasons, the Client Certificate URL extension should not be
supported. However, if an agency determines the risks to be minimal, and this extension
is needed for environments where clients are in constrained devices, the extension may be
supported. If the client certificate URL extension is supported, the server shall be
configured to mitigate the security concerns described above and in Section 11.3 of
[RFC6066].

3.5 Client Authentication
Where strong cryptographic client authentication is required, TLS servers may use the
TLS protocol client authentication option to request a client certificate to
cryptographically authenticate the client.20 For example, the Personal Identity
Verification (PIV) Authentication Certificate [FIPS201-1] (and the associated private
key) provides a suitable option for strong authentication of Federal employees and
contractors with on-site access. To ensure that agencies are positioned to take full
advantage of the PIV card, all TLS servers that perform client authentication shall
support certificate-based client authentication.
The client authentication option requires the server to implement the X.509 path
validation mechanism and a trust anchor store. Requirements for these mechanisms are
specified in Sections 3.5.1 and 3.5.2, respectively. To ensure that cryptographic
authentication actually results in strong authentication, client keys shall contain at least
112 bits of security. Section 3.5.3 describes mechanisms that can contribute, albeit
indirectly, to enforcing this requirement. Section 3.5.4 describes the client’s use of the
server hints list.
The TLS server shall be configurable to terminate the connection with a fatal “handshake
failure” alert when a client certificate is requested, and the client does not have a suitable
certificate.

3.5.1 Path Validation
The client certificate shall be validated in accordance with the certification path
validation rules specified in Section 6 of [RFC5280]. In addition, the revocation status of

20 The CertificateVerify message is sent to explicitly verify a client certificate that has signing capability. In TLS 1.1

(and TLS 1.0), this message uses SHA-1 to generate a signature on all handshake messages that came before it.
[SP800-131A] states that the use of SHA-1 for digital signature generation is disallowed after 2013. Even if a
collision is found, the client must use its private key to authenticate itself by signing the hash. Due to client
random and server random, the server, the client, or a third party cannot use a colliding set of messages to
masquerade as client or server in future connections. Any modification to this message, preceding messages, or
subsequent messages will ultimately result in a failed connection. Because of these reasons, SHA-1 is allowed for
generating digital signatures in the TLS CertificateVerify message.

 Guidelines for TLS Implementations

24

each certificate in the certification path shall be validated using a Certificate Revocation
List (CRL) or Online Certificate Status Protocol (OCSP). OCSP checking shall be in
compliance with [RFC6960] and should use only one of the following options:

• The OCSP Responder is trusted by the server, i.e., the OCSP Responder public
key is the same as that of one of the public keys in the server’s trust anchor store;
or

• The OCSP Response is signed using the same key as for the certificate whose
status is being checked; or

• The OCSP Response is signed by a designated/delegated OCSP Responder as
described in [RFC6960], and the OCSP Responder certificate is signed using the
same key as for the certificate whose status is being checked.

Revocation information shall be obtained as described in Section 3.2.2.
The server shall be able to determine the certificate policies that the client certificate is
trusted for by using the certification path validation rules specified in Section 6 of
[RFC5280]. Server and backend applications may use this determination to accept or
reject the certificate. Checking certificate policies assures the server that only client
certificates that have been issued with acceptable assurance, in terms of CA and
registration system and process security, are accepted.
Not all commercial products may support the public key certification path validation and
certificate policy processing rules listed and cited above. When implementing client
authentication, the Federal agencies shall either use the commercial products that meet
these requirements or augment commercial products to meet these requirements.
The server shall be able to provide the client certificate, and the certificate policies for
which the client certification path is valid, to the applications in order to support access
control decisions.

3.5.2 Trust Anchor Store
Having an excessive number of trust anchors installed in the TLS application can expose
the application to all the PKIs emanating from these trust anchors. The best way to
minimize the exposure is to only include the trust anchors in the trust anchor store that
are absolutely necessary for client public key certificate authentication.
The server shall be configured with only the trust anchors that the server trusts, and of
those, only the ones that are required to authenticate the clients, in the case where the
server supports client authentication in TLS. These trust anchors are typically a small
subset of the trust anchors that may be included on the server by default. Also note that
this trust anchor store is distinct from the machine trust anchor store. Thus, the default
set of trust anchors shall be examined to determine if any of them are required for client
authentication. Some specific enterprise and/or PKI service provider trust anchor may
need to be added.
In the U.S. Federal environment, in most situations, the Federal Common Policy Root or
the Agency Root (if cross certified with the Federal Bridge Certification Authority)
should be sufficient to build a certification path to the client certificates.

 Guidelines for TLS Implementations

25

System administrators of a TLS server that supports certificate-based client
authentication shall perform an analysis of the client certificate issuers and use that
information to determine the minimum set of trust anchors required for the server. The
server shall be configured only to include those trust anchors.

3.5.3 Checking the Client Key Size
The only direct mechanism for a server to check whether the key size and algorithms
presented in a client public certificate are acceptable is for the server to examine the
public key and algorithm in the client’s certificate. An indirect mechanism is to check
that the certificate policies extension in the client public key certificate indicates the
minimum cryptographic strength of the signature and hashing algorithms used, and for
the server to perform certificate policy processing and checking. A more scalable and
more robust alternative that is standards-based, but has not gained widespread
commercial deployment, is described in Appendix D. The server shall check the client
key length if client authentication is performed, and the server implementation provides a
mechanism to do so. The server shall also check the client public key length if the client
uses ephemeral keys for the creation of the master secret, and the server implementation
provides a mechanism to do so. Federal Agencies shall use the key size guidelines
provided in [SP800-131A] to check the client key size.

3.5.4 Server Hints List
Clients may use the list of trust anchors sent by the server in the CertificateRequest
message to determine if the client’s certification path terminates at one of these trust
anchors. The list sent by the server is known as a “hints list.” When the server and client
are in different PKI domains, and the trust is established via direct cross certification
between the two PKI domains (i.e., the server PKI domain and the client PKI domain) or
via transitive cross certification (i.e., through cross certifications among multiple PKI
domains), the client may erroneously decide that its certificate will not be accepted by the
server, since the client’s trust anchor is not sent in the hints list. To mitigate this failure,
the server shall maintain the trust anchors of the various PKIs whose subscribers are the
potential clients for the server, and include them in the hints list. Alternatively, the server
should be configured to send an empty hints list so that the client can always provide a
certificate it possesses. However, this list shall be distinct from the server’s trust anchor
store21. In other words, the server shall continue to only populate its trust anchor store
with the trust anchor of the server’s PKI domain and the domains it needs to trust directly
for client authentication. Note that the distinction between the server hints list and the
server’s own trust store is as follows: 1) the hints list is the list of trust anchors a potential
client might trust; and 2) the server’s trust store is the list of trust anchors the server
explicitly trusts.

21 Depending on the server and client trust anchors, the two lists could be identical, could have some trust anchors in

common, or have no trust anchors in common.

 Guidelines for TLS Implementations

26

3.6 Session Resumption
During the initial handshake between the client and server, the server generates a session
identifier (ID) and passes this value to the client during the handshake. Both the server
and client store the session ID (along with the keying material and cipher suite) after
completion of the handshake for later use. If the server is willing to resume a session at
the request of a client, the server responds with the original session ID and cipher suite at
the start of the handshake. In the event that the server is unwilling to resume the session,
the server generates and responds with a new session ID.
Typical server implementations are agreeable to resuming a previous session. This is a
secure mode of operation, as the master secret is known only to the client and server, and
is coupled with the initial client authentication, if client authentication was required.
However, if there is a requirement to authenticate each client as it initiates a connection
session, the server shall be configured to ignore requests to resume a session, and
generate a new session ID, which forces the entire handshake procedure (including client
authentication) to proceed.

3.7 Compression Methods
The use of compression may enable attackers to perform attacks using compression-
based side channels. Because of this, only the null compression method, which disables
TLS compression, should be used. If compression is used, the methods defined in
[RFC3749] shall be used. If the client population served is known to support the
compression method in [RFC3943], that method may be used instead. Other
compression methods shall not be used. Compression method recommendations are
based on the TLS standards. Limitations are recommended to ensure interoperability.

3.8 Operational Considerations
The sections above specify TLS-specific functionality. This functionality is necessary,
but is not sufficient, to achieve security in an operational environment.
Federal agencies shall ensure that TLS servers include appropriate network security
protections as specified in other NIST guidelines, such as [SP800-53].

The server shall operate on a secure operating system22. Where the server relies on a
FIPS 140 Level 1 cryptographic module, the software and private key shall be protected
using the operating system identification, authentication and access control mechanisms.
In some highly sensitive applications, server private keys may require protection using a
FIPS 140 Level 2 or higher hardware cryptographic module.
The server and associated platform shall be kept up-to-date in terms of security patches.
This is critical to various aspects of security, including the black list of certificates
pushed by the product vendors. The black list of certificates is useful when an upstream
CA certificate or client certificate is declared to be invalid or not operating with

22 A secure operating system contains and uses the following features: operating system protection from applications

and processes; operating system mediated isolation among applications and processes; user identification and
authentication; access control based on authenticated user identity, and event log of security relevant activities.

 Guidelines for TLS Implementations

27

appropriate security measures, and the server does not perform revocation checking, does
not have access to the latest revocation information, or the certificate has not been
revoked.

3.9 Server Recommendations
This section contains summarized recommendations from Section 3.1 through Section 3.8
for the selection, configuration, and maintenance of a TLS server.

3.9.1 Recommendations for Server Selection
The following summary of recommendations is for individuals tasked with selecting a
TLS server implementation for procurement. TLS server implementations shall not be
procured unless they include the required functionality. Recommendations for server
selection are:

1. Server implementations shall support TLS version 1.1.
2. Server implementations should support TLS version 1.2.
3. Server implementations may support TLS version 1.0.
4. Server implementations that incorrectly implement TLS version negotiation shall not

be selected.
5. Server implementations shall use the bad_record_mac error to indicate a padding

error.
6. Server implementations shall compute the MAC regardless of whether padding errors

exist.
7. Server implementations should support constant-time decryption, or near constant-

time decryption.
8. Server implementations should support multiple server certificates with their private

keys to support algorithm and key size agility.
9. Server implementations shall use an Approved random bit generator specified in

[SP800-90A].
10. Server implementations shall be able to terminate the connection with a “fatal

handshake failure” alert when the client does not have a certificate or an acceptable
certificate.

11. Server implementations shall be configurable to support Certificate Revocation List
(CRL) or Online Certificate Status Protocol (OCSP), or both.

12. Server implementations shall either support the path validation recommendations in
Section 3.5.1 or be augmented to support them.

13. The server shall be able to provide the client certificate, and the certificate policies
for which the client certification path is valid, to the applications in order to support
access control decisions.

3.9.2 Recommendations for Server Installation and Configuration
The following summary of recommendations is for individuals tasked with the
installation and initial configuration of a TLS server implementation. Recommendations
for TLS server configuration are:
1. Version Support

a. The server shall be configured to support TLS version 1.1.

 Guidelines for TLS Implementations

28

b. The server should be configured to support TLS version 1.2.
c. If the server supports government-only applications, it shall not be configured

to support TLS version 1.0.
d. If the server supports citizen or business facing applications, it may be

configured to support TLS version 1.0.
e. If TLS 1.0 is supported, TLS 1.1 and 1.2 shall be preferred over TLS 1.0.
f. The server shall not be configured to support SSL 2.0 or SSL 3.0.

2. Certificates
a. The server shall be configured with one or more public key certificates and

the associated private keys.
b. The server shall be configured with an RSA key encipherment certificate.
c. The server should be configured with an ECDSA signature certificate or RSA

signature certificate.
d. If the server is not configured with an RSA signature certificate, an ECDSA

signature certificate using a Suite B named curve for the signature and public
key in the ECDSA certificate should be used.

e. The server shall be configured with certificates issued by a CA, rather than
self-signed certificates.

f. Server certificates shall be issued by a CA that publishes revocation
information in either CRLs or OCSP responses.

g. The source for the revocation information shall be included in the certificate
in the appropriate extension to promote interoperability.

h. All server certificates shall be X.509 version 3 certificates.
i. Both the public key contained in the certificate and the signature shall have at

least 112 bits of security. In addition, ephemeral keys, when used to establish
the master secret, shall have at least 112 bits of security.

j. The certificate shall be signed with an algorithm consistent with the public
key, as described in Section 3.2.1.

k. The server should be configured to support the server authentication extended
key usage extension.

l. In the absence of agency-specific server certificate profile requirements, the
certificate profile of Table 3-1 should be used for the server certificate.

m. The server shall perform revocation checking of the client certificate, when
client authentication is used.

i. Revocation information shall be obtained by the server from one or
more of the locations described in Section 3.2.2.

ii. When the server cannot obtain current revocation information, the
decision to accept or reject a certificate should be made according to
agency policy.

n. In the absence of agency-specific policies, Federal agencies shall use the
Common Policy.

3. Cryptographic Support
a. The server shall be configured for data confidentiality and integrity services.
b. The server shall be configured to only support cipher suites that are composed

entirely of Approved algorithms.
c. The server shall be configured to support the following cipher suites:

 Guidelines for TLS Implementations

29

TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA

d. The server should be configured to support the following cipher suites:
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

e. If the server is configured to support TLS version 1.2, then the server shall be
configured to support the following cipher suite:

TLS_RSA_WITH_AES_128_GCM_SHA256
f. If the server is configured to support TLS version 1.2, then the server should

be configured to support the following cipher suites:
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

g. The server may be configured to support other acceptable cipher suites, as
described in Section 3.3.1.

h. The server shall only support cipher suites for which it has a valid certificate
containing a signature providing at least 112 bits of security.

i. The server shall not be configured to use cipher suites that do not appear in
Section 3.3.1or Appendix C.

j. For the RSA certificates, the key usage extension shall specify key
encipherment for cipher suites that carry out the key exchange with RSA, and
the key usage extension shall specify digital signature for cipher suites using
ECDHE key exchange.

k. The cryptographic module used by the server shall be a FIPS 140-validated
cryptographic module.

l. All cryptographic algorithms that are included in the cipher suites shall be
within the scope of the validation, as well as the random number generator.

m. The random number generator shall be tested and validated in accordance
with [SP800-90A] under the NIST Cryptographic Algorithm Validation
Program (CAVP) and successful results of this testing shall be indicated on
the cryptographic module’s FIPS 140 validation certificate.

n. The validated random number generator shall be used to generate the 28-byte
random value of the server random value.

o. The validated random number generator should be used to generate the 4-byte
timestamp of the server random value.

4. Extensions
a. The TLS server shall support the following TLS extensions, as described in

Section 3.4.1:
Renegotiation Indication
Certificate Status Request

 Guidelines for TLS Implementations

30

Server Name Indication
Trusted CA Indication

b. The TLS server shall support the following TLS extensions, as described in
Section 3.4.2, when the conditions stated in Section 3.4.2 are met:

Supported Elliptic Curves
EC Point Format
Signature Algorithms
Multiple Certificate Status

c. If the Supported Elliptic Curves extension is supported, the curves P-256 and
P-384 shall be supported.

d. The TLS server may support the Truncated HMAC extension, as described in
Section 3.4.2.5, when the conditions stated in Section 3.4.2 are met.

e. The TLS server should not support the Client Certificate URL extension.
f. If the Client Certificate URL extension is supported, the server shall be

configured to mitigate attacks described in Section 3.4.3.
g. If possible, the server shall check the client ephemeral public key size used

for establishing the master secret to ensure that the client ephemeral public
key can offer at least 112 bits of security.

5. Client Authentication
a. If the server supports client authentication, it shall support certificate-based

client authentication.
b. If possible, the server shall check the client public key size to ensure that the

client public key can offer at least 112 bits of security.
c. The server shall be configured to terminate the connection with a fatal

“handshake failure” alert when a client certificate is requested, and the client
does not have a suitable certificate.

d. If client authentication is performed, the server shall validate the client
certificate in accordance with the certification path validation rules specified
in Section 6 of [RFC5280].

e. The server shall be configured such that each certificate in the certification
path shall be validated using a Certificate Revocation List (CRL) or Online
Certificate Status Protocol (OCSP).

f. If the server supports OCSP, then OCSP checking shall be in compliance with
[RFC6960] and should use only one of the options described in Section 3.5.1
of this document.

g. The server shall be able to determine the certificate policies that the client
certificate is trusted for by using the certification path validation rules
specified in Section 6 of [RFC5280].

h. The server shall be configured with only the trust anchors the server trusts,
and of those, only the ones that are required to authenticate the clients, in the
case where the server supports client authentication in TLS.

i. The default set of trust anchors for the server shall be examined to determine
if any of them are required for client authentication.

j. The server shall check the client key length if client authentication is
performed, and the server implementation provides a mechanism to do so.

 Guidelines for TLS Implementations

31

i. Federal Agencies shall use the key size guidelines provided in [SP800-
131A] to check the client key size.

k. The server shall be configured to maintain the trust anchors of the various
PKIs whose subscribers are the potential clients for the server, and include
them in the hints list.

i. Alternatively, the server should be configured to send an empty hints
list so that the client can always provide a certificate it possesses.

l. The server hints list shall be distinct from the server’s trust anchor store.
m. The server shall continue to only populate its trust anchor store with the trust

anchor of the server PKI domain and the domains it needs to trust directly for
client authentication.

6. Session Resumption
a. If there is a requirement to authenticate each client as it initiates a connection

session, the server shall be configured to ignore requests to resume a session,
and generate a new session ID, which forces the entire handshake procedure
(including client authentication) to proceed.

7. Compression Methods
a. The server should be configured to only support the null compression method,

which disables TLS compression.
b. If compression is used, the server shall be configured to only support the

methods defined in [RFC3749].
i. If the client population served is known to support the compression

method in [RFC3943], that method may be used instead.
c. The server shall not be configured to support other compression methods.

8. Operational Considerations
a. The server shall operate on a secure operating system.
b. Where the server relies on a FIPS 140 Level 1 cryptographic module, the

software and private key shall be protected using the operating system
identification, authentication and access control mechanisms.

3.9.3 Recommendations for Server System Administrators
A Server System Administrator is an individual who is responsible for maintaining the
TLS server on a day-to-day basis.
1. Version Support

a. System administrators shall develop migration plans to support TLS 1.2 by
January 1, 2015.

2. Certificates
a. System administrators shall use Sections 3.2.1 and 3.2.2 to identify an

appropriate source for certificates.
b. System administrators shall install, maintain, and update certificates in

accordance with the certificate recommendations of Section 3.9.2.
3. Cryptographic Support

a. System administrators shall maintain confidentiality and integrity service
configurations in accordance with the recommendations of Section 3.9.2.

 Guidelines for TLS Implementations

32

4. Client Authentication
a. System administrators of a TLS server that supports certificate-based client

authentication shall perform an analysis of the client certificate issuers and
use that information to determine the minimum set of trust anchors required
for the server.

i. The server shall be configured only to include only the minimum set of
trust anchors needed.

5. Operational Considerations
a. System administrators shall ensure that TLS servers include appropriate

network security protections as specified in other NIST guidelines.
b. The server shall operate on a secure operating system.
c. Where the server relies on a FIPS 140 Level 1 cryptographic module, the

system administrator shall ensure that the software and private key are
protected using the operating system identification, authentication and access
control mechanisms.

d. The system administrator shall ensure that the server and associated platform
are kept up-to-date in terms of security patches.

 Guidelines for TLS Implementations

33

4 Minimum Requirements for TLS Clients
This section provides a minimum set of requirements that a TLS client must meet in
order to adhere to these guidelines. Requirements are organized in the following
sections: TLS protocol version support; client keys and certificates; cryptographic
support; TLS extension support; server authentication; session resumption; compression
methods; and operational considerations.
Specific requirements are stated as either implementation requirements or configuration
requirements. Implementation requirements indicate that Federal agencies shall not
procure TLS client implementations unless they include the required functionality.
Configuration requirements indicate that system administrators are required to verify that
particular features are enabled, or in some cases, configured appropriately if present.

4.1 Protocol Version Support
The client shall be configured to support TLS 1.1, and should be configured to support
TLS 1.2. The client may be configured to support TLS 1.0 to facilitate communication
with private sector servers, where necessary. If TLS 1.0 is supported, the use of TLS 1.1
and 1.2 shall be preferred over TLS 1.0. The client shall not support SSL version 3.0 or
earlier. Agencies shall develop migration plans to support TLS 1.2 by January 1, 2015.

4.2 Client Keys and Certificates

4.2.1 Client Certificate Profile
When client authentication is needed, the client shall be configured with a certificate that
adheres to the recommendations presented in this section. A client certificate may be
configured on the system, or located on an external device (e.g., a PIV card). For this
specification, the TLS client certificate shall be an X.509 version 3 certificate; both the
public key contained in the certificate and the signature shall have at least 112 bits of
security. The certificate shall be signed with an algorithm consistent with the public key:

• Certificates containing RSA (signature), ECDSA, or DSA public keys shall be
signed with those same signature algorithms, respectively;

• Certificates containing Diffie-Hellman certificates shall be signed with DSA; and
• Certificates containing ECDH public keys shall be signed with ECDSA.

The extended key usage extension limits the operations that keys in a certificate may be
used for. There is a key usage extension specifically for client authentication. The use of
the extended key usage extension will ensure that the servers accept the certificate as a
client certificate. The extended usage extension can also indicate that the certificate is not
to be used for other purposes, such as code signing. The client certificates should
include an extended key usage extension that specifies the client authentication key
purpose object identifier23.

23 Absence of extended key usage extension in some implementation is known to be interpreted as having special

permission such as code signing, even though not specifically indicated in the certificate.

 Guidelines for TLS Implementations

34

The client certificate profile is listed in Table 4-1: TLS Client Certificate Profile. In the
absence of an agency-specific client certificate profile, this profile should be used for
client certificates.
Note that for ECDH, the algorithm OID and the signature OID are identical to those of
ECDSA. For interoperability reasons, algorithm OID is not changed and the key usage
extension determines if the public key is used for key agreement or signature verification.

Table 4-1: TLS Client Certificate Profile
Field Critical Value Description
Version N/A 2 Version 3
Serial Number N/A Unique positive integer Must be unique

Issuer Signature Algorithm N/A Values by certificate type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

RSA signature certificate

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

ECDSA signature certificate, ECDH
certificate

id-dsa-with-sha256 {2 16 840 1 101 3 4 3
2}, or stronger

DSA signature certificate, DH certificate

Issuer Distinguished Name N/A Unique X.500 Issuing CA DN Single value shall be encoded in each
RDN. All attributes that are of
directoryString type shall be encoded as a
printable string.

Validity Period N/A 3 years or less Dates through 2049 expressed in UTCTime

Subject Distinguished Name N/A Unique X.500 subject DN per agency
requirements

Single value shall be encoded in each
RDN. All attributes that are of
directoryString type shall be encoded as a
printable string.

Subject Public Key
Information

N/A Values by certificate type:
rsaEncryption {1 2 840 113549 1 1 1} RSA key encipherment certificate, RSA

signature certificate
2048-bit RSA key modulus, or other
approved lengths as defined in [FIPS168-4]
and [SP800-57p1]
Parameters: NULL

ecPublicKey {1 2 840 10045 2 1} ECDSA signature certificate, or ECDH
certificate
Parameters: namedCurve OID for names
curve specified in FIPS 186-4. The curve
shall be P-256 or P-384
SubjectPublic Key: Uncompressed EC
Point.

id-dsa {1 2 840 10040 4 1} DSA signature certificate
Parameters: p, q, g

dhpublicnumber {1 2 840 10046 2 1} DH certificate
Parameters: p, g, q

Issuer’s Signature N/A Values by certificate type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

RSA key encipherment certificate, RSA
signature certificate

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

ECDSA signature certificate, ECDH
certificate

id-dsa-with-sha256 { 2 16 840 1 101 3 4
3 2}, or stronger

DSA signature certificate, DH certificate

Extensions
Authority Key Identifier No Octet String Same as subject key identifier in Issuing

CA certificate
Prohibited: Issuer DN, Serial Number tuple

 Guidelines for TLS Implementations

35

Field Critical Value Description

Subject Key Identifier No Octet String Same as in PKCS-10 request or calculated
by the Issuing CA

Key Usage Yes digitalSignature RSA certificate, DSA certificate, ECDSA
certificate

keyAgreement ECDH certificate, DH certificate

Extended Key Usage No id-kp-clientAuth {1 3 6 1 5 5 7 3 2} Required
anyExtendedKeyUsage {2 5 29 37 0} Prohibited24
 Prohibited: all others unless consistent with

key usage extension
Certificate Policies No Per agency X.509 certificate policy

Subject Alternative Name No RFC 822 e-mail address, Universal
Principal Name (UPN), DNS Name,
and/or others

Optional

Authority Information Access No id-ad-caIssuers Required. Access method entry contains
HTTP URL for certificates issued to
Issuing CA

id-ad-ocsp Optional. Access method entry contains
HTTP URL for the Issuing CA OCSP
Responder

CRL Distribution Points No See comments Optional: HTTP value in distributionPoint
field pointing to a full and complete CRL.
Prohibited: reasons and cRLIssuer fields,
and nameRelativetoCRLIssuer CHOICE

Multiple client certificates may be present that meet the requirements of the TLS server.
The TLS client (e.g., a browser) may ask users to select from a list of certificates. The
use of the Extended Key Usage (EKU) extension may eliminate this request.
Client certificates are also filtered by TLS clients on the basis of an ability to build a path
to one of the trust anchors in the hints list sent by the server, as described in Section
3.5.4.

4.2.2 Obtaining Revocation Status Information for the Server
Certificate

The client shall perform revocation checking of the server certificate. Revocation
information can be obtained by the client from one of the following locations:

1. OCSP response or responses in the server’s CertificateStatus message [RFC6066],
[RFC6961].

2. Certificate Revocation List (CRL) or OCSP [RFC6960] response in the client’s
local certificate store;

3. OCSP response from a locally configured OCSP responder;
4. OCSP response from the OCSP responder location identified in the OCSP field in

the Authority Information Access extension in the server certificate; or
5. CRL from the CRL Distribution Point extension in the server certificate.

24 The presence of anyExtendedKeyUsage {2 5 29 37 0} in some implementation is known to be interpreted as having

special permission such as code signing, even though not specifically indicated in the certificate.

 Guidelines for TLS Implementations

36

When the server does not provide the revocation status, the local certificate store does not
have the current or a cogent CRL or OCSP response, and the OCSP Responder and the
CRL Distribution Point are unavailable or inaccessible at the time of TLS session
establishment, the client will either terminate the connection or accept a potentially
revoked or compromised certificate. The decision to accept or reject a certificate in this
situation should be made according to agency policy.
Other emerging concepts that can be useful in lieu of revocation checking are further
discussed in Appendix D.

4.2.3 Client Public Key Certificate Assurance
The client public key certificate may be trusted by the servers on the basis of the policies,
procedures and security controls used to issue the client public key certificate as
described in Section 3.5.1. For example, as the implementation of Personal Identify
Verification (PIV) [FIPS201-1] becomes more established in Federal Agencies, these
guidelines recommend that the PIV Authentication certificate be the norm for
authentication of Federal employees and long-term contractors. For users who do not
have PIV Cards, such as external users, the set of certificate policies to accept should be
determined as specified in Appendix B of [SP800-63], based on the level of assurance
required by the application. PIV Authentication certificate policy is defined in
[COMMON] and PIV-I Authentication certificate policy is defined in [FBCACP].
Depending on the requirements of the server-side application, other certificate policies
defined in [COMMON] may also be acceptable. Guidance regarding the acceptable
certificate policies is outside the scope of these guidelines.

4.3 Cryptographic Support

4.3.1 Cipher Suites
The acceptable cipher suites for a TLS client are the same as those for a TLS server.
General-purpose cipher suites are listed in Section 3.3.1, and cipher suites appropriate for
pre-shared key environments are listed in Appendix C. When ephemeral keys are used to
establish the master secret, each ephemeral key-pair (i.e., the server ephemeral key-pair
and the client ephemeral key-pair) shall have at least 112 bits of security.
The client should not be configured to use cipher suites other than those listed in Section
3.3.1 or Appendix C.
To mitigate attacks against CBC mode, TLS implementations shall use the
bad_record_mac error to indicate a padding error. Implementations shall compute the
MAC regardless of whether padding errors exist. TLS implementations should support
constant-time decryption, or near constant-time decryption.

4.3.2 Validated Cryptography
The client shall use validated cryptography, as described for the server in Section 3.3.2.
The validated random number generator shall be used to generate the 28-byte random
value of the client random value. The validated random number generator should be used
to generate the 4-byte timestamp of the client random value.

 Guidelines for TLS Implementations

37

4.4 TLS Extension Support

4.4.1 Mandatory TLS Extensions
The client shall support the following extensions:

1. Renegotiation Indication
2. Server Name Indication

4.4.1.1 Renegotiation Indication
The Renegotiation Indication extension is required by these guidelines as described in
Section 3.4.1.1. Clients shall perform initial and subsequent renegotiations in accordance
with [RFC5746].
4.4.1.2 Server Name Indication
The server name indication extension is described in Section 3.4.1.3. The client shall be
capable of including this extension in a ClientHello message, as described in [RFC6066].

4.4.2 Conditional TLS Extensions
A TLS client supports the following TLS extensions under the circumstances described:

1. The Supported Elliptic Curves TLS extension shall be supported if the client
supports EC cipher suite(s).

2. The EC Point Format TLS extension shall be supported if the client supports EC
cipher suite(s).

3. The Signature Algorithms TLS extension shall be supported when the client is
operating in TLS 1.2.

4. The Certificate Status Request extension shall be supported when the client is not
able to obtain revocation information.

5. The Multiple Certificate Status extension shall be supported if the extension is
supported by the client implementation.

6. The Trusted CA Indication extension should be supported by clients that run on
memory-constrained devices where only a small number of CA root keys are
stored.

7. The Truncated HMAC extension may be supported by clients that run on
constrained devices when variable-length padding is not supported.

4.4.2.1 Supported Elliptic Curves
The clients that support EC cipher suites shall be capable of listing the elliptic curves
supported in the ClientHello message, in accordance with Section 5.1 of [RFC4492].
4.4.2.2 EC Point Format
The clients that support EC cipher suites shall be capable of specifying the supported EC
point format in the ClientHello message, in accordance with Section 5.1 of [RFC4492].

 Guidelines for TLS Implementations

38

Clients that support EC cipher suites shall support the processing of at least one25 of the
EC point formats received in the ServerHello message, as described in Section 5.2 of
[RFC4492].
4.4.2.3 Signature Algorithms
The clients that support TLS 1.2 shall be able to assert acceptable hashing and signature
algorithm pairs in this extension in a ClientHello message. The extension, its syntax, and
processing rules are described in Sections 7.4.1.4.1, 7.4.4, 7.4.6 and 7.4.8 of [RFC5246].
4.4.2.4 Certificate Status Request
When the client wishes to receive the revocation status of the TLS server certificate from
the TLS server, the client shall include the “status_request” extension in the ClientHello
message.
4.4.2.5 Multiple Certificate Status
The multiple certificate status extension is described in Section 3.4.2.4. This extension
improves on the Certificate Status Request extension described in Section 3.4.1.2 by
allowing the client to request the status of all certificates provided by the Server in the
TLS handshake. This extension is documented in [RFC6961]. Client implementations
that have this capability shall be configured to support this extension.
4.4.2.6 Trusted CA Indication
The client should be capable of including the trusted CA indication (trusted_ca_keys)
extension in a ClientHello message as described in [RFC6066].
4.4.2.7 Truncated HMAC
The Truncated HMAC extension is described in Section 3.4.2.5. Clients running on
constrained devices may support this extension. The Truncated HMAC extension shall
not be used in conjunction with variable-length padding, due to attacks described in
[Paterson11].

4.4.3 Discouraged TLS Extensions
The following extension should not be used:

1. Client Certificate URL
The reasons for discouraging the use of this extension can be found in Section 3.4.3.

4.5 Server Authentication
The client shall be able to build the certification path for the server certificate presented
in the TLS handshake with at least one of the trust anchors in the client trust store, if an
appropriate trust anchor is present in the store. The client may use all or a subset of the
following resources to build the certification path: local certificate store, certificates
received from the server during the handshake, LDAP, resources declared in CA

25 The uncompressed point format must be supported, as described in Sections 5.1.2 and 5.2 of [RFC4492].

 Guidelines for TLS Implementations

39

Repository field of the Subject Information Access extension in various CA certificates,
and resources declared in the CA Issuers field of the Authority Information Access
extension in various certificates.

4.5.1 Path Validation
The client shall validate the server certificate in accordance with the certification path
validation rules specified in Section 6 of [RFC5280]. In addition, the revocation status of
each certificate in the certification path shall be checked using the Certificate Revocation
List (CRL) or Online Certificate Status Protocol (OCSP). OCSP checking shall be in
compliance with [RFC6960] and should use only one of the following options:

• The OCSP Responder is trusted by the client, i.e., the OCSP Responder public
key is the same as that of one of the public keys in the client’s trust anchor store;
or

• The OCSP Response is signed using the same key as that of the certificate whose
status is being checked; or

• The OCSP Response is signed by a designated/delegated OCSP Responder as
described in [RFC6960], and the OCSP Responder certificate is signed using the
same key as that of the certificate whose status is being checked.

Revocation information shall be obtained as described in Section 4.2.2.
Not all commercial products support the public key certification path validation and
certificate policy processing rules listed and cited above. Specifically, revocation
checking in some instances may not be available, or the client could accept a server
public key certificate if the latest revocation information is inaccessible. Similarly, some
clients are not able to provide inputs related to acceptable certificate policy or initial
values for requiring policies, and inhibiting policy mapping. In the absence of clients
that are fully certificate policy aware, Federal agencies may use other mechanisms to
decide if a server certificate has been issued with due diligence.
Not all clients support checking name constraints. The Federal agencies shall only
procure clients that perform name constraint checking in order to obtain assurance that
unauthorized certificates are properly rejected. As an alternative, the Federal agency may
procure clients that use one or more of the features discussed in Appendix D.
The client shall terminate the TLS connection if path validation fails.
Federal agencies shall only use clients that check that the DNS name or IP address,
whichever is presented in the client TLS request, matches a DNS name or IP address
contained in the server certificate’s subject alternative name extension. If the name
presented in the client TLS request is absent from the server certificate’s subject
alternative name extension, only then the client shall check the server certificate’s subject
distinguished name field to determine if the subject distinguished name (specifically, the
common name attribute type) contains the requested name. The client shall terminate
the TLS connection if the name check fails.

 Guidelines for TLS Implementations

40

4.5.2 Trust Anchor Store
Having an excessive number of trust anchors installed in the TLS client can increase the
chances for the client to be spoofed. As the number of trust anchors increase, the number
of CAs that the client trusts increases, and the chances that one of these CAs or their
registration system or process will be compromised to issue TLS server certificates also
increases. In the minimal case, a Federal Agency relying party client can have a single
trust anchor: an agency legacy trust anchor or the Common Policy trust anchor.
Federal Agencies shall perform a trade-off between the risk associated with and need to
access commercial web sites to determine the trust anchor store in the various client
machines. Federal agencies shall administer this trust anchor store through centralized
management applications. Federal agency systems and clients shall be configured such
that an update to the trust anchor store is a privileged system administrative function
requiring appropriate agency security approval.
To mitigate the client certificate selection and path-building problem at the client end
described in Section 3.5.4, clients shall not overpopulate their trust stores with various
CA certificates that can be verified via cross-certification. Direct trust of these
certificates can expose the clients unduly to a variety of situations, including but not
limited to, revocation or compromise of these trust anchors. Direct trust also increases
the operational and security burden on the clients to promulgate addition and deletion of
trust anchors. Instead, the client shall rely on the server overpopulating or not providing
the hints listed as discussed in Section 3.5.4.

4.5.3 Checking the Server Key Size
The only direct mechanism for a client to check if the key size presented in a server
public certificate is acceptable is for the client to examine the server public key in the
certificate. An indirect mechanism is to check that the certificate policies extension in the
server public key certificate indicates the minimum cryptographic strength of the
signature and hashing algorithms used and for the client to perform certificate policy
processing and checking. A more scalable and more robust alternative that is standards-
based is described in Appendix D. The client shall check the server public key length if
the client implementation provides a mechanism to do so. The client shall also check the
server public key length if the server uses ephemeral keys for the creation of the master
secret, and the client implementation provides a mechanism to do so.
The length of each write key is determined by the negotiated cipher suite. Restrictions on
the length of the shared session keys can be enforced by configuring the client to only
support cipher suites that meet the key length requirements.

4.5.4 User Interface
When the TLS client is a browser, the browser interface can be used to determine if a
TLS session is in effect. The indication that a TLS session is in effect varies by browser.
Examples of indicators include a padlock in the URL bar, or a different color for the URL
bar. Some clients, such as browsers, may allow further investigation of the server
certificate and negotiated session parameters by clicking on the lock (or other indicator).
Users should examine the interface for the presence of the indicator to ensure that the

 Guidelines for TLS Implementations

41

TLS session is in force and should also visually examine the web site URL to ensure that
the user intended to visit the indicated web site. Users should be aware that URLs can
appear to be legitimate, but still not be valid. For example, the numeric “1” and the letter
“l” appear quite similar or the same to the human eye. If the user navigates to a URL that
appears to be correct, the browser software could defeat these threats by matching the
requested URL with the DNS name in the server certificate.
Client authentication keys may be located outside of the client (e.g., PIV cards). Users
shall follow the policies and procedures for protecting client authentication keys outside
of the client.

4.6 Session Resumption
The client shall follow the same session resumption recommendations as the server,
which are described in Section 3.6.

4.7 Compression Methods
The client shall follow the same compression recommendations as the server, which are
described in Section 3.7.

4.8 Operational Considerations
The client and associated platform shall be kept up-to-date in terms of security patches.
This is critical to various aspects of security, including the black list of certificates
pushed by the product vendors. The black list of certificates is useful when an upstream
CA certificate or server certificate is declared to be invalid or not operating with
appropriate security measures, and the client does not perform revocation checking, does
not have access to the latest revocation information, or the certificate has not been
revoked.
Once the TLS-protected data is received at the client, and decrypted and authenticated by
the TLS layer of the client system, the unencrypted data is available to the applications on
the client platform.
These guidelines also do not mitigate the threats against the misuse or exposure of the
client credential that resides on the client machine. These credentials could contain the
private key used for client authentication or other credentials (e.g., one-time password
(OTP) or user ID and password) for authenticating to server side application.
For these reasons, the use of TLS does not obviate the need for the client to use
appropriate security measures, as described in applicable Federal Information Processing
Standards and NIST Special Publications, to protect computer systems and applications.
Users shall operate client systems in accordance with agency and administrator
instructions.

4.9 Client Recommendations
This section contains summarized recommendations from Section 4.1 through Section 4.8
for the selection, configuration, maintenance, and use of a TLS client.

 Guidelines for TLS Implementations

42

4.9.1 Recommendations for Client Selection
The following summary of recommendations is for individuals tasked with selecting a
TLS client implementation for procurement. TLS clients shall not be procured unless
they include the required functionality. Recommendations for client selection are:
1. Client implementations shall support TLS version 1.1.
2. Client implementations should support TLS version 1.2.
3. Client implementations may support TLS version 1.0.
4. Client implementations shall be configurable to prefer TLS 1.1 and TLS 1.2 over

TLS 1.0.
5. Client implementations shall use the bad_record_mac error to indicate a padding

error.
6. Client implementations shall compute the MAC regardless of whether padding errors

exist.
7. Client implementations should support constant-time decryption, or near constant-

time decryption.
8. Client implementations shall support the client authentication extended key usage

extension.
9. Client implementations shall support name constraint checking in order to ensure that

unauthorized certificates are properly rejected.
10. Client implementations shall check that the DNS name or IP addresses presented in

the client TLS request matches a name or IP address contained in the server
certificate’s subject distinguished name field or subject alternative name extension.

11. Client implementations shall terminate the TLS connection if the path validation
fails.

4.9.2 Recommendations for Client Installation and Configuration
The following summary of recommendations is for individuals tasked with the
installation and initial configuration of a TLS client implementation. Recommendations
for TLS client configuration are:
1. Version Support

a. The client shall be configured to support TLS version 1.1.
b. The client should be configured to support TLS version 1.2.
c. The client may be configured to support TLS version 1.0.
d. If TLS version 1.0 is supported, the client shall be configured to prefer TLS

1.1 and TLS 1.2 over TLS 1.0.
e. The client shall not be configured to support SSL version 3.0 or earlier.

2. Certificates
a. All client certificates shall be X.509 version 3 certificates.
b. Both the public key contained in the certificate and the signature shall have at

least 112 bits of security. In addition, ephemeral keys, when used to establish
the master secret, shall have at least 112 bits of security.

c. The certificate shall be signed with an algorithm consistent with the public
key, as described in Section 4.2.1.

d. The client certificate should include an extended key usage extension that
specifies the client authentication key purpose object identifier.

 Guidelines for TLS Implementations

43

e. In the absence of an agency-specific client certificate profile, the profile in
Table 4-1 should be used for client certificates.

f. The client shall perform revocation checking of the server certificate, as
described in Section 4.2.2.

i. When the client cannot obtain current revocation information, the
decision to accept or reject a certificate should be made according to
agency policy.

3. Cryptographic support
a. The client shall be configured to support the following cipher suites:

TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA

b. The client should be configured to support the following cipher suites:
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

c. If the client is configured to support TLS 1.2, then the client shall be
configured to support the following cipher suites:

TLS_RSA_WITH_AES_128_GCM_SHA256
d. If the client is configured to support TLS 1.2, then the client should be

configured to support the following cipher suites:
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

e. The client should not be configured to support cipher suites other than those
listed above and in Section 3.3.1 or Appendix C.

f. The cryptographic module used by the client shall be a FIPS 140-validated
cryptographic module.

g. All cryptographic algorithms that are included in the cipher suites shall be
within the scope of the validation, as well as the random number generator.

h. The random number generator shall be tested and validated in accordance
with [SP800-90A] under the NIST Cryptographic Algorithm Validation
Program (CAVP) and successful results of this testing shall be indicated on
the cryptographic module’s FIPS 140 validation certificate.

i. The validated random number generator shall be used to generate the 28-byte
random value of the client random value.

j. The validated random number generator should be used to generate the 4-byte
timestamp of the client random value.

4. Extensions
a. The TLS client shall support the following TLS extensions, as described in

Section 4.4.1:
Renegotiation Indication

 Guidelines for TLS Implementations

44

Server Name Indication
b. The TLS client shall support the following TLS extensions, as described in

Section 4.4.2, when the conditions stated in Section 4.4.2 are met:
Supported Elliptic Curves
EC Point Format
Signature Algorithms
Certificate Status Request
Multiple Certificate Status

c. The TLS client should support the Trusted CA Indication extension, as
described in Section 4.4.2.6, when the conditions stated in Section 4.4.2 are
met.

d. The TLS client may support the Truncated HMAC extension, as described in
Section 4.4.2.7, when the conditions stated in Section 4.4.2 are met.

e. The TLS client should not support the following TLS extension:
Client Certificate URL

5. Server Authentication
a. The client shall be able to build the certification path for the server certificate

presented in the TLS handshake with at least one of the trust anchors in the
client trust store, if an appropriate trust anchor is present in the store.

b. The client may use all or a subset of the following resources to build the
certification path: local certificate store, certificates received from the server
during the handshake, LDAP, resources declared in CA Repository field of
the Subject Information Access extension in various CA certificates, and
resources declared in the CA Issuers field of the Authority Information Access
extension in various certificates.

c. The client shall validate the server certificate in accordance with the
certification path validation rules specified in Section 6 of [RFC5280].

d. The client shall be configured such that the revocation status of each
certificate in the certification path shall be checked using the Certificate
Revocation List (CRL) or Online Certificate Status Protocol (OCSP).

e. If the client supports OCSP, then OCSP checking shall be in compliance with
[RFC6960] and should use only one of the options described in Section 4.5.1
of this document.

f. The client shall terminate the TLS connection if path validation fails.
g. The client shall check that the DNS name or IP addresses presented in the

client TLS request matches a name or IP address contained in the server
certificate’s subject alternative name extension.

h. If the name presented in the client TLS request is absent from the server
certificate’s subject alternative name extension, then the client shall check the
server certificate’s subject distinguished name field to determine if the subject
distinguished name contains the requested name.

i. The client shall terminate the TLS connection if the name check fails.
j. Clients shall not overpopulate their trust stores with various CA certificates

that can be verified via cross-certification.
k. The client shall rely on server trust store overpopulating or not providing the

hints list as discussed in Section 3.5.4.

 Guidelines for TLS Implementations

45

l. The client shall check the server public key length if the client
implementation provides a mechanism to do so. This is applicable to both the
public keys in the server certificate and the ephemeral server public keys used
for establishing the master secret.

6. Session Resumption
a. If there is a requirement to authenticate the server for each connection session,

the client shall generate a new session ID, which forces the entire handshake
procedure (including server authentication) to proceed.

7. Compression Methods
a. The client should support the null compression method, which disables TLS

compression.
b. If compression is used, the client shall support the methods defined in

[RFC3749].
i. If the server population served is known to support the compression

method in [RFC3943], that method may be used instead.
c. The client shall not support other compression methods.

4.9.3 Recommendations for Client System Administrators
A Client System Administrator is an individual who is responsible for maintaining the
TLS client on a day-to-day basis.
1. Version support

a. System administrators shall develop migration plans to support TLS 1.2 by
January 1, 2015.

2. Certificates
a. System administrators shall install, maintain, and update certificates in

accordance with the certificate recommendations of Section 4.9.2.
3. Server Authentication

a. System administrators shall perform a trade-off between risk associated with
and need to access commercial web sites to determine the trust anchor store in
the various client machines.

b. System administrators shall administer the trust anchor store through
centralized management applications.

c. System administrators shall configure clients such that an update to the trust
anchor store is a privileged system administrative function requiring
appropriate agency security approval.

d. Administrators shall ensure that client trust stores are not overpopulated with
various CA certificates that are otherwise to be trusted via cross-certification.

i. Instead, the client shall rely on the server overpopulating or not
providing the hints list as discussed in Section 3.5.4.

4. Operational Considerations
a. The client and associated platform shall be kept up-to-date in terms of

security patches.

4.9.4 Recommendations for End Users
An end user is an individual using a client to establish a TLS connection.
Recommendations for end users are:

 Guidelines for TLS Implementations

46

1. If the client is a browser, users should examine the interface to ensure that the TLS
session is in force and should also visually examine the web site URL to ensure that
the user intended to visit the indicated web site.

2. Users should be aware that URLs can appear to be legitimate, but still not be valid.
3. Users shall operate client systems in accordance with agency and administrator

instructions.
4. Users shall follow appropriate policies and procedures for protecting client

authentication keys outside of the client (e.g., PIV cards).

 Guidelines for TLS Implementations

47

Appendix A Acronyms
Selected acronyms and abbreviations used in these guidelines are defined below.

3DES Triple DES (TDEA)
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
CA Certification Authority
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CRL Certificate Revocation List
DES Data Encryption Standard
DH Diffie-Hellman key exchange
DHE Ephemeral Diffie-Hellman key exchange
DNS Domain Name System
DNSSEC DNS Security Extensions
DSA Digital Signature Algorithm
DSS Digital Signature Standard (implies DSA)
EC Elliptic Curve
ECDHE Ephemeral Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
FIPS Federal Information Processing Standard
GCM Galois Counter Mode
IETF Internet Engineering Task Force
MAC Message Authentication Code
OCSP Online Certificate Status Protocol
OID Object Identifier
PIV Personal Identity Verification
PKI Public Key Infrastructure
PRF Pseudo-random Function
PSK Pre-shared Key
RFC Request for Comments
SHA Secure Hash Algorithm
SSL Secure Sockets Layer
TLS Transport Layer Security
URL Uniform Resource Locator

 Guidelines for TLS Implementations

48

Appendix B Interpreting Cipher Suite Names
The cipher suite name consists of a set of mnemonics separated by underscores (i.e., “_”).
The first mnemonic is the protocol name, i.e., TLS. This section provides guidance for
interpreting the names of cipher suites that are recommended in these guidelines. Future
cipher suites may not follow these conventions.
One or two mnemonics follow the protocol name, indicating the key exchange algorithm.
If there is only one mnemonic, it must be RSA or PSK, based on the recommendations in
these guidelines. The single mnemonic RSA signifies that the public key in the server
certificate is an RSA key transport public key that should be used by the client for
sending the premaster secret to the server. The single mnemonic PSK indicates that the
premaster secret is established using only symmetric algorithms with pre-shared keys, as
described in [RFC4279]. Pre-shared key cipher suites that are approved for use are listed
in Appendix C. If there are two mnemonics following the protocol name, the first key
exchange mnemonic should be DH, ECDH, DHE, or ECDHE. When the first key
exchange mnemonic is DH or ECDH, it indicates that the server’s public key in its
certificate is for either DH or ECDH key exchange, and the second mnemonic indicates
the signature algorithm that was used by the issuing CA to sign the server certificate.
When the first key exchange mnemonic is DHE or ECDHE, it indicates that ephemeral
DH or ECDH will be used for key exchange, with the second mnemonic indicating the
server signature public key type26 that will be used to authenticate the server’s ephemeral
public key.
Next are the word WITH and the mnemonic for the symmetric encryption algorithm and
associated mode of operations.
The last mnemonic is generally the hashing algorithm to be used for HMAC, if
applicable27. In cases where HMAC is not applicable (e.g., AES-GCM), and the cipher
suite is defined after the release of the TLS 1.2 RFC, this mnemonic represents the
hashing algorithm for the PRF.
The following examples illustrate how to interpret the cipher suite names:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA: The server is using an RSA public
key that the client would use for key exchange. The CA signature algorithm is not
specified. Once the handshake is completed, the messages are encrypted using
triple DES in CBC mode. In TLS versions 1.0 and 1.1, a combination of SHA-1
and MD5 is used in the PRF, and SHA-1 is used for HMAC computations on the
messages. In TLS 1.2, SHA-256 is used for the PRF, and SHA-1 is used for
HMAC computations on the messages.

• TLS_DH_DSS_WITH_AES_256_CBC_SHA256: The server is using a DH
certificate. If the connection uses TLS version 1.2, and the signature algorithms

26 In this case, the signature algorithm used by the CA to sign the certificate is not articulated in the cipher suite.
27 HMAC is not applicable when the symmetric encryption mode of operation is authenticated encryption, i.e., CCM

or GCM. Separately, note that the CCM mode cipher suites do not specify the last mnemonic and require that
SHA-256 be used for the PRF.

 Guidelines for TLS Implementations

49

extension is provided by the client, then the certificate is signed using the
algorithm specified by the extension. Otherwise, the certificate is signed using
DSA. Once the handshake is completed, the messages are encrypted using AES-
256 in CBC mode. SHA-256 is used for both the PRF and HMAC computations.
Cipher suites that specify secure hash algorithms other than SHA-1 are not
supported prior to TLS 1.2.

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: Ephemeral ECDH is
used for key exchange. The server’s ephemeral public key is authenticated using
the server’s ECDSA public key. The CA signature algorithm used to certify the
server’s ECDSA public key is not specified. Once the handshake is completed,
the messages are encrypted and authenticated using AES-256 in GCM mode, and
SHA-384 is used for the PRF. Since an authenticated encryption mode is used,
messages neither have nor require an HMAC message authentication code.

 Guidelines for TLS Implementations

50

Appendix C Pre-shared Keys
Pre-shared keys (PSK) are symmetric keys that are already in place prior to the initiation
of a TLS session (e.g., as the result of a manual distribution). The use of PSKs in the TLS
protocol is described in [RFC4279], [RFC5487], and [RFC5489]. In general, pre-shared
keys should not be used. However, the use of pre-shared keys may be appropriate for
some closed environments that have adequate key management support. For example,
they might be appropriate for constrained environments with limited processing, memory,
or power. If PSKs are appropriate and supported, then the following additional guidelines
shall be followed.
Recommended pre-shared key (PSK) cipher suites are listed in Table C-1; pre-shared
keys shall be distributed in a secure manner, such as a secure manual distribution or
using a key establishment certificate. These cipher suites employ a pre-shared key for
entity authentication (for both the server and the client) and may also use RSA or
ephemeral Diffie-Hellman (DHE) algorithms for key establishment. For example, when
DHE is used, the result of the Diffie-Hellman computation is combined with the pre-
shared key and other input to determine the premaster secret.
The pre-shared key shall have a minimum security strength of 112 bits. Because these
cipher suites require pre-shared keys, these suites are not generally applicable to classic
secure web site applications and are not expected to be widely supported in TLS clients
or TLS servers. NIST suggests that these suites be considered in particular for
infrastructure applications, particularly if frequent authentication of the network entities
is required. These cipher suites may be used with TLS versions 1.1 or 1.2. Note that
cipher suites using GCM, SHA-256, or SHA-384 are only available in TLS 1.2.
Pre-shared key cipher suites may only be used in networks where both the client and
server are government systems. Cipher suites using pre-shared keys shall not be
supported when TLS 1.0 is supported, and shall not be supported where the client or
server communicates with non-government systems.

Table C-1: Pre-shared Key Cipher Suites

Cipher Suite Name Key
Exchange

Encryption Hash
function

for
HMAC

Hash
Function
for PRF

TLS_PSK_WITH_3DES_EDE_CBC_SHA PSK 3DES_EDE_CBC SHA-1 Per RFC
TLS_PSK_WITH_AES_128_CBC_SHA PSK AES_128_CBC SHA-1 Per RFC
TLS_PSK_WITH_AES_256_CBC_SHA PSK AES_256_CBC SHA-1 Per RFC
TLS_PSK_WITH_AES_128_GCM_SHA256 PSK AES_128_GCM N/A SHA-256
TLS_PSK_WITH_AES_256_GCM_SHA384 PSK AES_256_GCM N/A SHA-384
TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA DHE_PSK 3DES_EDE_CBC SHA-1 Per RFC
TLS_DHE_PSK_WITH_AES_128_CBC_SHA DHE_PSK AES_128_CBC SHA-1 Per RFC
TLS_DHE_PSK_WITH_AES_256_CBC_SHA DHE_PSK AES_256_CBC SHA-1 Per RFC
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 DHE_PSK AES_128_GCM N/A SHA-256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 DHE_PSK AES_256_GCM N/A SHA-384
TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA RSA_PSK 3DES_EDE_CBC SHA-1 Per RFC
TLS_RSA_PSK_WITH_AES_128_CBC_SHA RSA_PSK AES_128_CBC SHA-1 Per RFC
TLS_RSA_PSK_WITH_AES_256_CBC_SHA RSA_PSK AES_256_CBC SHA-1 Per RFC
TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 RSA_PSK AES_128_GCM N/A SHA-256
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 RSA_PSK AES_256_GCM N/A SHA-384
TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA ECDHE_PSK 3DES_EDE_CBC SHA-1 Per RFC

 Guidelines for TLS Implementations

51

Cipher Suite Name Key
Exchange

Encryption Hash
function

for
HMAC

Hash
Function
for PRF

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA ECDHE_PSK AES_128_CBC SHA-1 Per RFC
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA ECDHE_PSK AES_256_CBC SHA-1 Per RFC
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 ECDHE_PSK AES_128_CBC SHA-256 SHA-256
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 ECDHE_PSK AES_256_CBC SHA-384 SHA-384

 Guidelines for TLS Implementations

52

Appendix D Future Capabilities
This section identifies emerging concepts and capabilities that are applicable to TLS. As
these concepts mature, and commercial products are available to support them, these
guidelines will be revised to provide specific recommendations.

D.1 Additional/Alternate Web Server Certificate Validation
Mechanisms

In order to deal with the threat associated with the compromise of a CA, registration
system, or process, new ideas about how to gain assurance of the legitimacy of the server
certificate presented in a TLS session have been developed.
In addition, new standards are emerging in the use of public key technology to secure the
DNS. These DNSSEC standards can be used to replace or augment the traditional PKI
approach to establishing trust in the server certificate.
The following sections describe these concepts. In some cases, these concepts are not
fully standardized, and in most cases, they are not widely available in commercial
products. As these concepts mature and become widely available, these guidelines will
be revised to describe them further and to recommend how they can be used to augment
or replace traditional mechanisms to establish trust in the server certificate and associated
revocation checking.

D.1.1 Sovereign Keys
The sovereign key approach has been developed by the Electronic Frontier Foundation.
Under this approach, the server public key certificates and, optionally, intermediate CA
certificates are claimed by the server domain holder, and these claims are countersigned
by one or more trusted third parties. When client systems are shipped with these trusted
third-party public keys, clients can query the records and obtain the claims to verify that
the server certificate being presented in the TLS handshake is legitimate (i.e., has been
signed by a trusted third party). The concept is further described in [SOVER]. While the
concept is still in the development stage, its use can obviate the need for public key
certification path development, validation and revocation checking, and replace the server
authentication requirements listed in Section 4.5.

D.1.2 Certificate Transparency
Google’s Certificate Transparency project [RFC6962] strives to reduce the impact of
certificate-based threats by making the issuance of CA-signed certificates more
transparent. This is done through the use of public logs of certificates, public log
monitoring, and public certificate auditing. Certificate logs are cryptographically assured
records of certificates that are open to public scrutiny. Certificates may be appended to
logs, but they cannot be removed, modified, or inserted into the middle of a log. Monitors
watch certificate logs for suspicious certificates, such as those that were not authorized by
the domain they claim to represent. Auditors have the ability to check the membership of
a particular certificate in a log, as well as verify the integrity and consistency of logs.

 Guidelines for TLS Implementations

53

D.1.3 Perspectives and Convergence
Perspectives is a project undertaken at Carnegie Mellon University [PERSP].
Perspectives takes a different approach to establish trust in a TLS server public key
certificate than using trust in certification authorities and the public key certificate trust
model in X.509 and [RFC5280]. Perspectives has a decentralized model that uses
“network notary servers.” A network notary server is connected to the Internet and
regularly monitors websites to build a history of the TLS certificate used by each site.
Rather than validating a TLS server certificate as described in [RFC5280] and in Section
4.5, with Perspectives, the TLS client validates a certificate by checking for consistency
with the certificates observed by the network notaries over time. A client has the network
notaries’ public keys embedded in it and decides which and how many notary servers to
trust. Clients can also decide how many notaries must provide a positive response before
trusting a TLS server public key certificate and can augment the decision with trust
history and user input. [PERSP] further describes Perspectives. The decentralized model
used by Perspectives provides a high degree of reliability and availability, while
protecting against single or even a few compromised “network notaries”.
Implementations of Perspectives are available at [Perspectives].
Convergence [Convergence] is another effort to implement concepts from the
Perspectives project, as well as to augment those ideas to form a comprehensive solution.
In particular, it addresses the problems of completeness, privacy, and responsiveness that
existed in the original Perspectives work. Convergence notaries can also employ
additional methods beyond network perspectives to decide whether a certificate should be
trusted.
The Perspectives/Convergence approach can be used to establish confidence in a self-
signed TLS server certificate, and in doing so, reduce the amount of certificate warnings
that are presented to users.

D.1.4 DANE
Standards and products are still emerging in the area of DNS-based Authentication of
Named Entities (DANE), and some of the standards are informational [RFC6394].
However, one of the following mechanisms can aid in the security of TLS server
authentication and protect the clients from accepting unauthorized certificates issued due
to the errors or compromise in CA or registration system and processes:

1. In addition to the server public key certificate validation as specified in Section
4.5, the client verifies that the TLS server certificate matches the one provided in
the DNS records. Digital signatures on the DNS records are verified in
accordance with the DNS Security Extensions (DNSSEC), as described in
[RFC4033].

2. The client forgoes server public key certificate validation as specified in Section
4.5. Instead, the client verifies that the TLS server certificate matches the one
provided in the DNS Records. Digital signatures on the DNS records are verified
in accordance with the DNS Security Extensions (DNSSEC), as described in
[RFC4033].

 Guidelines for TLS Implementations

54

3. In addition to the server public key certificate validation, as specified in Section
4.5, the client verifies that the CA certificate in the certificate list provided by the
server during a handshake matches the certificate provided in the DNS records
and is part of the certification path verified as specified in Section 4.5. Digital
signatures on the DNS Records are verified in accordance with the DNS Security
Extensions (DNSSEC), as described in [RFC4033].

4. The client verifies that the TLS server certificate can be validated by the trust
anchor provided in the DNS records. Digital signatures on the DNS records are
verified in accordance with the DNS Security Extensions (DNSSEC), as
described in [RFC4033].

D.2 Checking Server/Client Key Size
If the clients or servers wish to require certain key sizes or algorithms, they can
implement cryptographic algorithm policy using the concept defined in [RFC5698]. The
specification and processing of cryptographic algorithms policy as described in
[RFC5698] can ensure that, regardless of the cipher suite specification in the TLS
handshake, unacceptable algorithms and key sizes are not accepted by the entity (client or
the server) who implements the cryptographic algorithms policy.

D.3 Encrypt-then-MAC Extension
The TLS working group is working towards the addition of an Encrypt-then-MAC
construction to TLS, as an extension [ETM]. This is a departure from the MAC-then-
Encrypt construction specified in [RFC2246], [RFC4346], and [RFC5246]. If the
Encrypt-then-MAC extension is standardized, it will mitigate or prevent several known
attacks on CBC cipher suites.

 Guidelines for TLS Implementations

55

Appendix E References
The following list of documents, publications, and organizations provide a wide variety
of information on varying aspects of Transport Layer Security.
[Adams99] Adams, C. and Lloyd, S., Understanding PKI: Concepts, Standard, and

Deployment Considerations, (Macmillan Technology Publishing, Indianapolis, IN,
ISBN 1-57870-166-X, 1999).

[CABBASE] Baseline Requirements for the Issuance and Management of Publicly-
Trusted Certificates, CA Browser Forum, Version 1.1.6, 29 July 2013.
https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf

[Comer00] Comer, D. E., Internetworking with TCP/IP, Principles, Protocols, and
Architectures, Fourth Edition, (Prentice Hall, Upper Saddle River, NJ 07458, ISBN:
0-13- 018380-6, 2000).

[COMMON] X.509 Certificate Policy for the U.S. Federal PKI Common Policy
Framework, Version 1.21, 18 December 2012.
http://idmanagement.gov/documents/common-policy-framework-certificate-policy

[Convergence] Thoughtcrime Labs, Convergence, http://convergence.io/
[ETM] Gutmann, P., Encrypt-then-MAC for TLS and DTLS, Internet Engineering Task

Force, December 2013, http://tools.ietf.org/html/draft-gutmann-tls-encrypt-then-
mac-05

[EVGUIDE] Guidelines For The Issuance and Management of Extended Validation
Certificates, CA Browser Forum, Version 1.4.3, 9 July 2013.
https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf

[FBCACP] X.509 Certificate Policy for the Federal Bridge Certification Authority,
Version 2.26, 26 April 2012.
http://www.idmanagement.gov/sites/default/files/documents/FBCA%20Certificate
%20Policy%20v2.26_s.pdf

[FIPS140-2] FIPS 140-2, Security Requirements For Cryptographic Modules,
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS140Impl] National Institute of Standards and Technology, Implementation
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program,
25 July 2013, http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-
2/FIPS1402IG.pdf

[FIPS180-4] National Institute of Standards and Technology, Secure Hash Standard,
Federal Information Processing Standards Publication 180-4, March 2012,
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[FIPS186-4] National Institute of Standards and Technology, Digital Signature Standard,
Federal Information Processing Standard 186-4, July 2013,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf
http://idmanagement.gov/documents/common-policy-framework-certificate-policy
http://convergence.io/
http://tools.ietf.org/html/draft-gutmann-tls-encrypt-then-mac-05
http://tools.ietf.org/html/draft-gutmann-tls-encrypt-then-mac-05
https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf
http://www.idmanagement.gov/sites/default/files/documents/FBCA%20Certificate%20Policy%20v2.26_s.pdf
http://www.idmanagement.gov/sites/default/files/documents/FBCA%20Certificate%20Policy%20v2.26_s.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

 Guidelines for TLS Implementations

56

[FIPS197] National Institute of Standards and Technology, Advanced Encryption
Standard (AES), Federal Information Processing Standard 197, November 26, 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[FIPS198-1] National Institute of Standards and Technology, The Keyed-Hash Message
Authentication Code (HMAC), Federal Information Processing Standard 198-1, July
2008, http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[FIPS201-1] National Institute of Standards and Technology, Personal Identification
Verification (PIV) of Federal Employees and Contractors, Federal Information
Processing Standard 201-1, March 2006,
http://csrc.nist.gov/publications/fips/fips201-1/FIPS-201-1-chng1.pdf

[Hall00] Hall, E. A., Internet Core Protocols, The Definitive Guide, (O'Reilly &
Associates, ISBN: 1-56592-572-6, February 2000).

[Housley01] Housley, R. and Polk, T., Planning for PKI, Best Practices Guide for
Deploying Public Key Infrastructure, (John Wiley & Sons, New York, NY, ISBN
0-471-39702-4, 2001).

[Lucky13] AlFardan, N. J., and Paterson, K. G., Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols, IEEE Symposium on Security and Privacy 2013, pages
526-540, full version at http://www.isg.rhul.ac.uk/tls/TLStiming.pdf

[Paterson11] Paterson, K. G., Ristenpart, T., and Shrimpton, T., Tag Size Does Matter:
Attacks and Proofs for the TLS Record Protocol, in ASIACRYPT 2011, (Springer
Lecture Notes in Computer Science, volume 7073, ISBN 978-3-642-25384-3).

[PERSP] Wendlandt D., Andersen D.G. and Perrig A., Perspectives: Improving SSH-
style Host Authentication with Multi-Path Probing, 2011 USENIX.
http://perspectivessecurity.files.wordpress.com/2011/07/perspectives_usenix08.pdf.

[Perspectives] Perspectives Project, http://perspectives-project.org/
[Polk03] Polk, W., Hastings, N., and Malani, A., Public Key Infrastructures that Satisfy

Security Goals, IEEE Internet Computing, Volume 7, Number 4, July-August,
2003.

[Rescorla01] Rescorla, E., SSL and TLS – Designing and Building Secure Systems,
(Addison- Wesley, Upper Saddle River NJ, 07458, ISBN 0-201-61598, March
2001).

[RFC2119] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels,
Internet Engineering Task Force, Request for Comments 2119, March 1997,
http://www.ietf.org/rfc/rfc2119.txt

[RFC2246] Dierks, T. and Allen, C., The TLS Protocol Version 1.0, Internet Engineering
Task Force, Request for Comments 2246, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

[RFC3279] Polk, W., et al., Algorithms and Identifiers for the Internet X.509 Public Key
Infrastructure Certificate Revocation List (CRL) Profile, Internet Engineering Task
Force, Request for Comments 3279, April 2002, http://www.ietf.org/rfc/rfc3279.txt

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips201-1/FIPS-201-1-chng1.pdf
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
http://perspectivessecurity.files.wordpress.com/2011/07/perspectives_usenix08.pdf
http://perspectives-project.org/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3279.txt

 Guidelines for TLS Implementations

57

[RFC3447] Jonsson, J., and Kaliski, B., Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1, Request for Comments 3447,
February 2003, http://www.ietf.org/rfc/rfc3447.txt

[RFC3713] Matsui, M., et al. A Description of the Camellia Encryption Algorithm,
Internet Engineering Task Force, Request for Comments 3713, April 2004,
http://www.ietf.org/rfc/rfc3713.txt

[RFC3749] Hollenbeck, S., Transport Layer Security Protocol Compression Methods,
Internet Engineering Task Force, Request for Comments 3749, May 2004,
http://www.ietf.org/rfc/rfc3749.txt

[RFC3943] Friend, R., Transport Layer Security (TLS) Protocol Compression Using
Lempel-Ziv-Stac (LZS), Internet Engineering Task Force, Request for Comments
3943, November 2004, http://www.ietf.org/rfc/rfc3943.txt

[RFC4033] Arends, R. et al., DNS Security Introduction and Requirements, Internet
Engineering Task Force, Request for Comments 4033, March 2005,
http://www.ietf.org/rfc/rfc4033.txt

[RFC4055] Shaad, J. et al., Additional Algorithms and Identifiers for RSA Cryptography
for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, Internet Engineering Task Force, Request for
Comments 4055, June 2005, http://www.ietf.org/rfc/rfc4055.txt

[RFC4279] Eronen, P. and Tschofenig, H. Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS), Internet Engineering Task Force, Request for Comments
4279, December 2005, http://www.ietf.org/rfc/rfc4279.txt

[RFC4346] Dierks, T. and Rescorla, E., The Transport Layer Security (TLS) Protocol
Version 1.1, Internet Engineering Task Force, Request for Comments 4346, April
2006, http://www.ietf.org/rfc/rfc4346.txt

[RFC4492] Blake-Wilson, S., et al., Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS), Internet Engineering Task Force, Request for
Comments 4492, May 2006, http://www.ietf.org/rfc/rfc4492.txt

[RFC5246] Dierks, T. and Rescorla, E., The Transport Layer Security (TLS) Protocol
Version 1.2, Internet Engineering Task Force, Request for Comments 5246, August
2008, http://www.ietf.org/rfc/rfc5246.txt

[RFC5280] Cooper, D., et al., Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, Internet Engineering Task Force,
Request for Comments 5280, May 2008, http://www.ietf.org/rfc/rfc5280.txt

[RFC5288] Salowey, J., Choudhury, A., and McGrew, D., AES Galois Counter Mode
(GCM) Cipher Suites for TLS, Internet Engineering Task Force, Request for
Comments 5288, August 2008, http://www.ietf.org/rfc/rfc5288.txt

[RFC5289] Rescorla, E., TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES
Galois Counter Mode (GCM), Internet Engineering Task Force, Request for
Comments 5289, August 2008, http://www.ietf.org/rfc/rfc5289.txt

http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3749.txt
http://www.ietf.org/rfc/rfc3943.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc4279.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5288.txt
http://www.ietf.org/rfc/rfc5289.txt

 Guidelines for TLS Implementations

58

[RFC5487] Badra, M., Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and
AES Galois Counter Mode, Internet Engineering Task Force, Request for
Comments 5487, March 2009, http://www.ietf.org/rfc/rfc5487.txt

[RFC5489] Badra, M. and Hajjeh, I., ECDHE_PSK Cipher Suites for Transport Layer
Security (TLS), Internet Engineering Task Force, Request for Comments 5489,
March 2009, http://www.ietf.org/rfc/rfc5489.txt

[RFC5698] Kunz, T., Okunick, S., and Pordesch U., Data Structure for the Security
Suitability of Cryptographic Algorithms (DSSC), Internet Engineering Task Force,
Request for Comments 5698, November 2009, http://www.ietf.org/rfc/rfc5698.txt

[RFC5746] Rescorla E. et al., Transport Layer Security (TLS) Renegotiation Indication
Extension, Internet Engineering Task Force, Request for Comments 5746, February
2010, http://www.ietf.org/rfc/rfc5746.txt

[RFC5758] Dang, Q., et al., Internet X.509 Public Key Infrastructure: Additional
Algorithms and Identifiers for DSA and ECDSA, Internet Engineering Task Force,
Request for Comments 5758, January 2010, http://www.ietf.org/rfc/rfc5758.txt

[RFC6066] Eastlake, D., Transport Layer Security (TLS) Extensions: Extension
Definitions, Internet Engineering Task Force, Request for Comments 6066, January
2011, http://www.ietf.org/rfc/rfc6066.txt

[RFC6101] Freier, A. e al., The Secure Sockets Layer (SSL) Protocol Version 3.0,
Internet Engineering Task Force, Request for Comments 6101, August 2011,
http://www.ietf.org/rfc/rfc6101.txt

[RFC6394] Barnes, R., Use Cases and Requirements for DNS-Based Authentication of
Named Entities (DANE), Internet Engineering Task Force, Request for Comments
6394, October 2011, http://www.ietf.org/rfc/rfc6394.txt

[RFC6460] Salter, M. and Housley, R., Suite B Profile for Transport Layer Security
(TLS), Internet Engineering Task Force, Request for Comments 6460, January
2012, http://www.ietf.org/rfc/rfc6460.txt

[RFC6655] McGrew, D. and Bailey, D., AES-CCM Cipher Suites for Transport Layer
Security (TLS), Internet Engineering Task Force, Request for Comments 6655, July
2012, http://www.ietf.org/rfc/rfc6655.txt

[RFC6818] Yee, P., Updates to the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile, Internet Engineering Task Force,
Request for Comments 6818, January 2013, http://www.ietf.org/rfc/rfc6818.txt

[RFC6960] Santesson, S., et al., X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP, Internet Engineering Task Force, Request for
Comments 6960, June 2013, http://www.ietf.org/rfc/rfc6960.txt

[RFC6961] Pettersen, Y., The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension, Internet Engineering Task Force, Request for Comments 6961,
June 2013, http://www.ietf.org/rfc/rfc6961.txt

[RFC6962] Laurie, B., et al., Certificate Transparency, Internet Engineering Task Force,
Request for Comments 6962, June 2013, http://www.ietf.org/rfc/rfc6962.txt

http://www.ietf.org/rfc/rfc5487.txt
http://www.ietf.org/rfc/rfc5489.txt
http://www.ietf.org/rfc/rfc5698.txt
http://www.ietf.org/rfc/rfc5746.txt
http://www.ietf.org/rfc/rfc5758.txt
http://www.ietf.org/rfc/rfc6066.txt
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc6394.txt
http://www.ietf.org/rfc/rfc6460.txt
http://www.ietf.org/rfc/rfc6655.txt
http://www.ietf.org/rfc/rfc6818.txt
http://www.ietf.org/rfc/rfc6960.txt
http://www.ietf.org/rfc/rfc6961.txt
http://www.ietf.org/rfc/rfc6962.txt

 Guidelines for TLS Implementations

59

[SOVER] Sovereign Key Cryptography for Internet Domains, Electronic Frontier
Foundation, https://git.eff.org/?p=sovereign-keys.git;a=blob_plain;f=sovereign-key-
design.txt;hb=master

[SP800-32] NIST Special Publication 800-32, Introduction to Public Key Technology
and the Federal PKI Infrastructure, February 2001,
http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf

[SP800-53] NIST Special Publication 800-53, Security and Privacy Controls for Federal
Information Systems and Organizations, April 2013,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

[SP800-56A] NIST Special Publication 800-56A, Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography, May 2013,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[SP800-56B] NIST Special Publication 800-56B, Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography, August 2009,
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf

[SP800-57p1] NIST Special Publication 800-57 Part 1, Recommendation for Key
Management – Part 1: General (Revision 3), July 2012,
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

[SP800-63] NIST Special Publication 800-63-2, Electronic Authentication Guide, August
2013, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[SP800-67] NIST Special Publication 800-67 Revision 1, Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher, January 2012,
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

[SP800-90A] NIST Special Publication 800-90A Revision 1, Recommendation for
Random Number Generation Using Deterministic Random Bit Generators, January
2012, http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

[SP800-107] NIST Special Publication 800-107 Revision 1, Recommendation for
Applications Using Approved Hash Algorithms, August 2012,
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf

[SP800-131A] NIST Special Publication 800-131A, Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011,
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

[SP800-135] NIST Special Publication 800-135 Revision 1, Recommendation for
Existing Application-Specific Key Derivation Functions, December 2011,
http://csrc.nist.gov/publications/nistpubs/800-135-rev1/sp800-135-rev1.pdf

[Schneier96] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd ed., (John Wiley & Sons, Inc. 1996).

https://git.eff.org/?p=sovereign-keys.git;a=blob_plain;f=sovereign-key-design.txt;hb=master
https://git.eff.org/?p=sovereign-keys.git;a=blob_plain;f=sovereign-key-design.txt;hb=master
http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-135-rev1/sp800-135-rev1.pdf

	NIST.SP.800-52r1
	Executive Summary
	1 Introduction
	1.1 Background
	1.2 History of TLS
	1.3 Scope
	1.4 Document Conventions

	2 TLS Overview
	2.1 Handshake Protocol
	2.2 Shared Secret Negotiation
	2.3 Confidentiality
	2.4 Integrity
	2.5 Authentication
	2.6 Anti-Replay
	2.7 Key Management

	3 Minimum Requirements for TLS Servers
	3.1 Protocol Version Support
	3.2 Server Keys and Certificates
	3.2.1 Server Certificate Profile
	3.2.2 Obtaining Revocation Status Information for the Client Certificate
	3.2.3 Server Public Key Certificate Assurance

	3.3 Cryptographic Support
	3.3.1 Cipher Suites
	3.3.1.1 Implementation Considerations
	3.3.1.1.1 Algorithm Support
	3.3.1.1.2 Cipher Suite Scope

	3.3.2 Validated Cryptography

	3.4 TLS Extension Support
	3.4.1 Mandatory TLS Extensions
	3.4.1.1 Renegotiation Indication
	3.4.1.2 Certificate Status Request
	3.4.1.3 Server Name Indication
	3.4.1.4 Trusted CA Indication

	3.4.2 Conditional TLS Extensions
	3.4.2.1 Supported Elliptic Curves
	3.4.2.2 EC Point Format
	3.4.2.3 Signature Algorithms
	3.4.2.4 Multiple Certificate Status
	3.4.2.5 Truncated HMAC

	3.4.3 Discouraged TLS Extensions

	3.5 Client Authentication
	3.5.1 Path Validation
	3.5.2 Trust Anchor Store
	3.5.3 Checking the Client Key Size
	3.5.4 Server Hints List

	3.6 Session Resumption
	3.7 Compression Methods
	3.8 Operational Considerations
	3.9 Server Recommendations
	3.9.1 Recommendations for Server Selection
	3.9.2 Recommendations for Server Installation and Configuration
	3.9.3 Recommendations for Server System Administrators

	4 Minimum Requirements for TLS Clients
	4.1 Protocol Version Support
	4.2 Client Keys and Certificates
	4.2.1 Client Certificate Profile
	4.2.2 Obtaining Revocation Status Information for the Server Certificate
	4.2.3 Client Public Key Certificate Assurance

	4.3 Cryptographic Support
	4.3.1 Cipher Suites
	4.3.2 Validated Cryptography

	4.4 TLS Extension Support
	4.4.1 Mandatory TLS Extensions
	4.4.1.1 Renegotiation Indication
	4.4.1.2 Server Name Indication

	4.4.2 Conditional TLS Extensions
	4.4.2.1 Supported Elliptic Curves
	4.4.2.2 EC Point Format
	4.4.2.3 Signature Algorithms
	4.4.2.4 Certificate Status Request
	4.4.2.5 Multiple Certificate Status
	4.4.2.6 Trusted CA Indication
	4.4.2.7 Truncated HMAC

	4.4.3 Discouraged TLS Extensions

	4.5 Server Authentication
	4.5.1 Path Validation
	4.5.2 Trust Anchor Store
	4.5.3 Checking the Server Key Size
	4.5.4 User Interface

	4.6 Session Resumption
	4.7 Compression Methods
	4.8 Operational Considerations
	4.9 Client Recommendations
	4.9.1 Recommendations for Client Selection
	4.9.2 Recommendations for Client Installation and Configuration
	4.9.3 Recommendations for Client System Administrators
	4.9.4 Recommendations for End Users

	Appendix A Acronyms
	Appendix B Interpreting Cipher Suite Names
	Appendix C Pre-shared Keys
	Appendix D Future Capabilities
	D.1 Additional/Alternate Web Server Certificate Validation Mechanisms
	D.1.1 Sovereign Keys
	D.1.2 Certificate Transparency
	D.1.3 Perspectives and Convergence
	D.1.4 DANE

	D.2 Checking Server/Client Key Size
	D.3 Encrypt-then-MAC Extension

	Appendix E References

