// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package expfmt import ( "fmt" "io" "math" "mime" "net/http" dto "github.com/prometheus/client_model/go" "github.com/matttproud/golang_protobuf_extensions/pbutil" "github.com/prometheus/common/model" ) // Decoder types decode an input stream into metric families. type Decoder interface { Decode(*dto.MetricFamily) error } type DecodeOptions struct { // Timestamp is added to each value from the stream that has no explicit timestamp set. Timestamp model.Time } // ResponseFormat extracts the correct format from a HTTP response header. // If no matching format can be found FormatUnknown is returned. func ResponseFormat(h http.Header) Format { ct := h.Get(hdrContentType) mediatype, params, err := mime.ParseMediaType(ct) if err != nil { return FmtUnknown } const ( textType = "text/plain" jsonType = "application/json" ) switch mediatype { case ProtoType: if p, ok := params["proto"]; ok && p != ProtoProtocol { return FmtUnknown } if e, ok := params["encoding"]; ok && e != "delimited" { return FmtUnknown } return FmtProtoDelim case textType: if v, ok := params["version"]; ok && v != TextVersion { return FmtUnknown } return FmtText case jsonType: var prometheusAPIVersion string if params["schema"] == "prometheus/telemetry" && params["version"] != "" { prometheusAPIVersion = params["version"] } else { prometheusAPIVersion = h.Get("X-Prometheus-API-Version") } switch prometheusAPIVersion { case "0.0.2", "": return fmtJSON2 default: return FmtUnknown } } return FmtUnknown } // NewDecoder returns a new decoder based on the given input format. // If the input format does not imply otherwise, a text format decoder is returned. func NewDecoder(r io.Reader, format Format) Decoder { switch format { case FmtProtoDelim: return &protoDecoder{r: r} case fmtJSON2: return newJSON2Decoder(r) } return &textDecoder{r: r} } // protoDecoder implements the Decoder interface for protocol buffers. type protoDecoder struct { r io.Reader } // Decode implements the Decoder interface. func (d *protoDecoder) Decode(v *dto.MetricFamily) error { _, err := pbutil.ReadDelimited(d.r, v) if err != nil { return err } if !model.IsValidMetricName(model.LabelValue(v.GetName())) { return fmt.Errorf("invalid metric name %q", v.GetName()) } for _, m := range v.GetMetric() { if m == nil { continue } for _, l := range m.GetLabel() { if l == nil { continue } if !model.LabelValue(l.GetValue()).IsValid() { return fmt.Errorf("invalid label value %q", l.GetValue()) } if !model.LabelName(l.GetName()).IsValid() { return fmt.Errorf("invalid label name %q", l.GetName()) } } } return nil } // textDecoder implements the Decoder interface for the text protocol. type textDecoder struct { r io.Reader p TextParser fams []*dto.MetricFamily } // Decode implements the Decoder interface. func (d *textDecoder) Decode(v *dto.MetricFamily) error { // TODO(fabxc): Wrap this as a line reader to make streaming safer. if len(d.fams) == 0 { // No cached metric families, read everything and parse metrics. fams, err := d.p.TextToMetricFamilies(d.r) if err != nil { return err } if len(fams) == 0 { return io.EOF } d.fams = make([]*dto.MetricFamily, 0, len(fams)) for _, f := range fams { d.fams = append(d.fams, f) } } *v = *d.fams[0] d.fams = d.fams[1:] return nil } type SampleDecoder struct { Dec Decoder Opts *DecodeOptions f dto.MetricFamily } func (sd *SampleDecoder) Decode(s *model.Vector) error { if err := sd.Dec.Decode(&sd.f); err != nil { return err } *s = extractSamples(&sd.f, sd.Opts) return nil } // Extract samples builds a slice of samples from the provided metric families. func ExtractSamples(o *DecodeOptions, fams ...*dto.MetricFamily) model.Vector { var all model.Vector for _, f := range fams { all = append(all, extractSamples(f, o)...) } return all } func extractSamples(f *dto.MetricFamily, o *DecodeOptions) model.Vector { switch f.GetType() { case dto.MetricType_COUNTER: return extractCounter(o, f) case dto.MetricType_GAUGE: return extractGauge(o, f) case dto.MetricType_SUMMARY: return extractSummary(o, f) case dto.MetricType_UNTYPED: return extractUntyped(o, f) case dto.MetricType_HISTOGRAM: return extractHistogram(o, f) } panic("expfmt.extractSamples: unknown metric family type") } func extractCounter(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Counter == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Counter.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractGauge(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Gauge == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Gauge.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractUntyped(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Untyped == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Untyped.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractSummary(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Summary == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } for _, q := range m.Summary.Quantile { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } // BUG(matt): Update other names to "quantile". lset[model.LabelName(model.QuantileLabel)] = model.LabelValue(fmt.Sprint(q.GetQuantile())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(q.GetValue()), Timestamp: timestamp, }) } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Summary.GetSampleSum()), Timestamp: timestamp, }) lset = make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Summary.GetSampleCount()), Timestamp: timestamp, }) } return samples } func extractHistogram(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Histogram == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } infSeen := false for _, q := range m.Histogram.Bucket { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue(fmt.Sprint(q.GetUpperBound())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") if math.IsInf(q.GetUpperBound(), +1) { infSeen = true } samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(q.GetCumulativeCount()), Timestamp: timestamp, }) } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Histogram.GetSampleSum()), Timestamp: timestamp, }) lset = make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") count := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Histogram.GetSampleCount()), Timestamp: timestamp, } samples = append(samples, count) if !infSeen { // Append an infinity bucket sample. lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue("+Inf") lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: count.Value, Timestamp: timestamp, }) } } return samples }