// Go support for Protocol Buffers - Google's data interchange format // // Copyright 2010 The Go Authors. All rights reserved. // https://github.com/golang/protobuf // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package proto /* * Routines for encoding data into the wire format for protocol buffers. */ import ( "fmt" "log" "os" "reflect" "sort" "strconv" "strings" "sync" ) const debug bool = false // Constants that identify the encoding of a value on the wire. const ( WireVarint = 0 WireFixed64 = 1 WireBytes = 2 WireStartGroup = 3 WireEndGroup = 4 WireFixed32 = 5 ) const startSize = 10 // initial slice/string sizes // Encoders are defined in encode.go // An encoder outputs the full representation of a field, including its // tag and encoder type. type encoder func(p *Buffer, prop *Properties, base structPointer) error // A valueEncoder encodes a single integer in a particular encoding. type valueEncoder func(o *Buffer, x uint64) error // Sizers are defined in encode.go // A sizer returns the encoded size of a field, including its tag and encoder // type. type sizer func(prop *Properties, base structPointer) int // A valueSizer returns the encoded size of a single integer in a particular // encoding. type valueSizer func(x uint64) int // Decoders are defined in decode.go // A decoder creates a value from its wire representation. // Unrecognized subelements are saved in unrec. type decoder func(p *Buffer, prop *Properties, base structPointer) error // A valueDecoder decodes a single integer in a particular encoding. type valueDecoder func(o *Buffer) (x uint64, err error) // A oneofMarshaler does the marshaling for all oneof fields in a message. type oneofMarshaler func(Message, *Buffer) error // A oneofUnmarshaler does the unmarshaling for a oneof field in a message. type oneofUnmarshaler func(Message, int, int, *Buffer) (bool, error) // A oneofSizer does the sizing for all oneof fields in a message. type oneofSizer func(Message) int // tagMap is an optimization over map[int]int for typical protocol buffer // use-cases. Encoded protocol buffers are often in tag order with small tag // numbers. type tagMap struct { fastTags []int slowTags map[int]int } // tagMapFastLimit is the upper bound on the tag number that will be stored in // the tagMap slice rather than its map. const tagMapFastLimit = 1024 func (p *tagMap) get(t int) (int, bool) { if t > 0 && t < tagMapFastLimit { if t >= len(p.fastTags) { return 0, false } fi := p.fastTags[t] return fi, fi >= 0 } fi, ok := p.slowTags[t] return fi, ok } func (p *tagMap) put(t int, fi int) { if t > 0 && t < tagMapFastLimit { for len(p.fastTags) < t+1 { p.fastTags = append(p.fastTags, -1) } p.fastTags[t] = fi return } if p.slowTags == nil { p.slowTags = make(map[int]int) } p.slowTags[t] = fi } // StructProperties represents properties for all the fields of a struct. // decoderTags and decoderOrigNames should only be used by the decoder. type StructProperties struct { Prop []*Properties // properties for each field reqCount int // required count decoderTags tagMap // map from proto tag to struct field number decoderOrigNames map[string]int // map from original name to struct field number order []int // list of struct field numbers in tag order unrecField field // field id of the XXX_unrecognized []byte field extendable bool // is this an extendable proto oneofMarshaler oneofMarshaler oneofUnmarshaler oneofUnmarshaler oneofSizer oneofSizer stype reflect.Type // OneofTypes contains information about the oneof fields in this message. // It is keyed by the original name of a field. OneofTypes map[string]*OneofProperties } // OneofProperties represents information about a specific field in a oneof. type OneofProperties struct { Type reflect.Type // pointer to generated struct type for this oneof field Field int // struct field number of the containing oneof in the message Prop *Properties } // Implement the sorting interface so we can sort the fields in tag order, as recommended by the spec. // See encode.go, (*Buffer).enc_struct. func (sp *StructProperties) Len() int { return len(sp.order) } func (sp *StructProperties) Less(i, j int) bool { return sp.Prop[sp.order[i]].Tag < sp.Prop[sp.order[j]].Tag } func (sp *StructProperties) Swap(i, j int) { sp.order[i], sp.order[j] = sp.order[j], sp.order[i] } // Properties represents the protocol-specific behavior of a single struct field. type Properties struct { Name string // name of the field, for error messages OrigName string // original name before protocol compiler (always set) JSONName string // name to use for JSON; determined by protoc Wire string WireType int Tag int Required bool Optional bool Repeated bool Packed bool // relevant for repeated primitives only Enum string // set for enum types only proto3 bool // whether this is known to be a proto3 field; set for []byte only oneof bool // whether this is a oneof field Default string // default value HasDefault bool // whether an explicit default was provided def_uint64 uint64 enc encoder valEnc valueEncoder // set for bool and numeric types only field field tagcode []byte // encoding of EncodeVarint((Tag<<3)|WireType) tagbuf [8]byte stype reflect.Type // set for struct types only sprop *StructProperties // set for struct types only isMarshaler bool isUnmarshaler bool mtype reflect.Type // set for map types only mkeyprop *Properties // set for map types only mvalprop *Properties // set for map types only size sizer valSize valueSizer // set for bool and numeric types only dec decoder valDec valueDecoder // set for bool and numeric types only // If this is a packable field, this will be the decoder for the packed version of the field. packedDec decoder } // String formats the properties in the protobuf struct field tag style. func (p *Properties) String() string { s := p.Wire s = "," s += strconv.Itoa(p.Tag) if p.Required { s += ",req" } if p.Optional { s += ",opt" } if p.Repeated { s += ",rep" } if p.Packed { s += ",packed" } s += ",name=" + p.OrigName if p.JSONName != p.OrigName { s += ",json=" + p.JSONName } if p.proto3 { s += ",proto3" } if p.oneof { s += ",oneof" } if len(p.Enum) > 0 { s += ",enum=" + p.Enum } if p.HasDefault { s += ",def=" + p.Default } return s } // Parse populates p by parsing a string in the protobuf struct field tag style. func (p *Properties) Parse(s string) { // "bytes,49,opt,name=foo,def=hello!" fields := strings.Split(s, ",") // breaks def=, but handled below. if len(fields) < 2 { fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s) return } p.Wire = fields[0] switch p.Wire { case "varint": p.WireType = WireVarint p.valEnc = (*Buffer).EncodeVarint p.valDec = (*Buffer).DecodeVarint p.valSize = sizeVarint case "fixed32": p.WireType = WireFixed32 p.valEnc = (*Buffer).EncodeFixed32 p.valDec = (*Buffer).DecodeFixed32 p.valSize = sizeFixed32 case "fixed64": p.WireType = WireFixed64 p.valEnc = (*Buffer).EncodeFixed64 p.valDec = (*Buffer).DecodeFixed64 p.valSize = sizeFixed64 case "zigzag32": p.WireType = WireVarint p.valEnc = (*Buffer).EncodeZigzag32 p.valDec = (*Buffer).DecodeZigzag32 p.valSize = sizeZigzag32 case "zigzag64": p.WireType = WireVarint p.valEnc = (*Buffer).EncodeZigzag64 p.valDec = (*Buffer).DecodeZigzag64 p.valSize = sizeZigzag64 case "bytes", "group": p.WireType = WireBytes // no numeric converter for non-numeric types default: fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s) return } var err error p.Tag, err = strconv.Atoi(fields[1]) if err != nil { return } for i := 2; i < len(fields); i++ { f := fields[i] switch { case f == "req": p.Required = true case f == "opt": p.Optional = true case f == "rep": p.Repeated = true case f == "packed": p.Packed = true case strings.HasPrefix(f, "name="): p.OrigName = f[5:] case strings.HasPrefix(f, "json="): p.JSONName = f[5:] case strings.HasPrefix(f, "enum="): p.Enum = f[5:] case f == "proto3": p.proto3 = true case f == "oneof": p.oneof = true case strings.HasPrefix(f, "def="): p.HasDefault = true p.Default = f[4:] // rest of string if i+1 < len(fields) { // Commas aren't escaped, and def is always last. p.Default += "," + strings.Join(fields[i+1:], ",") break } } } } func logNoSliceEnc(t1, t2 reflect.Type) { fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2) } var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem() // Initialize the fields for encoding and decoding. func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lockGetProp bool) { p.enc = nil p.dec = nil p.size = nil switch t1 := typ; t1.Kind() { default: fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1) // proto3 scalar types case reflect.Bool: p.enc = (*Buffer).enc_proto3_bool p.dec = (*Buffer).dec_proto3_bool p.size = size_proto3_bool case reflect.Int32: p.enc = (*Buffer).enc_proto3_int32 p.dec = (*Buffer).dec_proto3_int32 p.size = size_proto3_int32 case reflect.Uint32: p.enc = (*Buffer).enc_proto3_uint32 p.dec = (*Buffer).dec_proto3_int32 // can reuse p.size = size_proto3_uint32 case reflect.Int64, reflect.Uint64: p.enc = (*Buffer).enc_proto3_int64 p.dec = (*Buffer).dec_proto3_int64 p.size = size_proto3_int64 case reflect.Float32: p.enc = (*Buffer).enc_proto3_uint32 // can just treat them as bits p.dec = (*Buffer).dec_proto3_int32 p.size = size_proto3_uint32 case reflect.Float64: p.enc = (*Buffer).enc_proto3_int64 // can just treat them as bits p.dec = (*Buffer).dec_proto3_int64 p.size = size_proto3_int64 case reflect.String: p.enc = (*Buffer).enc_proto3_string p.dec = (*Buffer).dec_proto3_string p.size = size_proto3_string case reflect.Ptr: switch t2 := t1.Elem(); t2.Kind() { default: fmt.Fprintf(os.Stderr, "proto: no encoder function for %v -> %v\n", t1, t2) break case reflect.Bool: p.enc = (*Buffer).enc_bool p.dec = (*Buffer).dec_bool p.size = size_bool case reflect.Int32: p.enc = (*Buffer).enc_int32 p.dec = (*Buffer).dec_int32 p.size = size_int32 case reflect.Uint32: p.enc = (*Buffer).enc_uint32 p.dec = (*Buffer).dec_int32 // can reuse p.size = size_uint32 case reflect.Int64, reflect.Uint64: p.enc = (*Buffer).enc_int64 p.dec = (*Buffer).dec_int64 p.size = size_int64 case reflect.Float32: p.enc = (*Buffer).enc_uint32 // can just treat them as bits p.dec = (*Buffer).dec_int32 p.size = size_uint32 case reflect.Float64: p.enc = (*Buffer).enc_int64 // can just treat them as bits p.dec = (*Buffer).dec_int64 p.size = size_int64 case reflect.String: p.enc = (*Buffer).enc_string p.dec = (*Buffer).dec_string p.size = size_string case reflect.Struct: p.stype = t1.Elem() p.isMarshaler = isMarshaler(t1) p.isUnmarshaler = isUnmarshaler(t1) if p.Wire == "bytes" { p.enc = (*Buffer).enc_struct_message p.dec = (*Buffer).dec_struct_message p.size = size_struct_message } else { p.enc = (*Buffer).enc_struct_group p.dec = (*Buffer).dec_struct_group p.size = size_struct_group } } case reflect.Slice: switch t2 := t1.Elem(); t2.Kind() { default: logNoSliceEnc(t1, t2) break case reflect.Bool: if p.Packed { p.enc = (*Buffer).enc_slice_packed_bool p.size = size_slice_packed_bool } else { p.enc = (*Buffer).enc_slice_bool p.size = size_slice_bool } p.dec = (*Buffer).dec_slice_bool p.packedDec = (*Buffer).dec_slice_packed_bool case reflect.Int32: if p.Packed { p.enc = (*Buffer).enc_slice_packed_int32 p.size = size_slice_packed_int32 } else { p.enc = (*Buffer).enc_slice_int32 p.size = size_slice_int32 } p.dec = (*Buffer).dec_slice_int32 p.packedDec = (*Buffer).dec_slice_packed_int32 case reflect.Uint32: if p.Packed { p.enc = (*Buffer).enc_slice_packed_uint32 p.size = size_slice_packed_uint32 } else { p.enc = (*Buffer).enc_slice_uint32 p.size = size_slice_uint32 } p.dec = (*Buffer).dec_slice_int32 p.packedDec = (*Buffer).dec_slice_packed_int32 case reflect.Int64, reflect.Uint64: if p.Packed { p.enc = (*Buffer).enc_slice_packed_int64 p.size = size_slice_packed_int64 } else { p.enc = (*Buffer).enc_slice_int64 p.size = size_slice_int64 } p.dec = (*Buffer).dec_slice_int64 p.packedDec = (*Buffer).dec_slice_packed_int64 case reflect.Uint8: p.dec = (*Buffer).dec_slice_byte if p.proto3 { p.enc = (*Buffer).enc_proto3_slice_byte p.size = size_proto3_slice_byte } else { p.enc = (*Buffer).enc_slice_byte p.size = size_slice_byte } case reflect.Float32, reflect.Float64: switch t2.Bits() { case 32: // can just treat them as bits if p.Packed { p.enc = (*Buffer).enc_slice_packed_uint32 p.size = size_slice_packed_uint32 } else { p.enc = (*Buffer).enc_slice_uint32 p.size = size_slice_uint32 } p.dec = (*Buffer).dec_slice_int32 p.packedDec = (*Buffer).dec_slice_packed_int32 case 64: // can just treat them as bits if p.Packed { p.enc = (*Buffer).enc_slice_packed_int64 p.size = size_slice_packed_int64 } else { p.enc = (*Buffer).enc_slice_int64 p.size = size_slice_int64 } p.dec = (*Buffer).dec_slice_int64 p.packedDec = (*Buffer).dec_slice_packed_int64 default: logNoSliceEnc(t1, t2) break } case reflect.String: p.enc = (*Buffer).enc_slice_string p.dec = (*Buffer).dec_slice_string p.size = size_slice_string case reflect.Ptr: switch t3 := t2.Elem(); t3.Kind() { default: fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3) break case reflect.Struct: p.stype = t2.Elem() p.isMarshaler = isMarshaler(t2) p.isUnmarshaler = isUnmarshaler(t2) if p.Wire == "bytes" { p.enc = (*Buffer).enc_slice_struct_message p.dec = (*Buffer).dec_slice_struct_message p.size = size_slice_struct_message } else { p.enc = (*Buffer).enc_slice_struct_group p.dec = (*Buffer).dec_slice_struct_group p.size = size_slice_struct_group } } case reflect.Slice: switch t2.Elem().Kind() { default: fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem()) break case reflect.Uint8: p.enc = (*Buffer).enc_slice_slice_byte p.dec = (*Buffer).dec_slice_slice_byte p.size = size_slice_slice_byte } } case reflect.Map: p.enc = (*Buffer).enc_new_map p.dec = (*Buffer).dec_new_map p.size = size_new_map p.mtype = t1 p.mkeyprop = &Properties{} p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp) p.mvalprop = &Properties{} vtype := p.mtype.Elem() if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice { // The value type is not a message (*T) or bytes ([]byte), // so we need encoders for the pointer to this type. vtype = reflect.PtrTo(vtype) } p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp) } // precalculate tag code wire := p.WireType if p.Packed { wire = WireBytes } x := uint32(p.Tag)<<3 | uint32(wire) i := 0 for i = 0; x > 127; i++ { p.tagbuf[i] = 0x80 | uint8(x&0x7F) x >>= 7 } p.tagbuf[i] = uint8(x) p.tagcode = p.tagbuf[0 : i+1] if p.stype != nil { if lockGetProp { p.sprop = GetProperties(p.stype) } else { p.sprop = getPropertiesLocked(p.stype) } } } var ( marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem() unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem() ) // isMarshaler reports whether type t implements Marshaler. func isMarshaler(t reflect.Type) bool { // We're checking for (likely) pointer-receiver methods // so if t is not a pointer, something is very wrong. // The calls above only invoke isMarshaler on pointer types. if t.Kind() != reflect.Ptr { panic("proto: misuse of isMarshaler") } return t.Implements(marshalerType) } // isUnmarshaler reports whether type t implements Unmarshaler. func isUnmarshaler(t reflect.Type) bool { // We're checking for (likely) pointer-receiver methods // so if t is not a pointer, something is very wrong. // The calls above only invoke isUnmarshaler on pointer types. if t.Kind() != reflect.Ptr { panic("proto: misuse of isUnmarshaler") } return t.Implements(unmarshalerType) } // Init populates the properties from a protocol buffer struct tag. func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) { p.init(typ, name, tag, f, true) } func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructField, lockGetProp bool) { // "bytes,49,opt,def=hello!" p.Name = name p.OrigName = name if f != nil { p.field = toField(f) } if tag == "" { return } p.Parse(tag) p.setEncAndDec(typ, f, lockGetProp) } var ( propertiesMu sync.RWMutex propertiesMap = make(map[reflect.Type]*StructProperties) ) // GetProperties returns the list of properties for the type represented by t. // t must represent a generated struct type of a protocol message. func GetProperties(t reflect.Type) *StructProperties { if t.Kind() != reflect.Struct { panic("proto: type must have kind struct") } // Most calls to GetProperties in a long-running program will be // retrieving details for types we have seen before. propertiesMu.RLock() sprop, ok := propertiesMap[t] propertiesMu.RUnlock() if ok { if collectStats { stats.Chit++ } return sprop } propertiesMu.Lock() sprop = getPropertiesLocked(t) propertiesMu.Unlock() return sprop } // getPropertiesLocked requires that propertiesMu is held. func getPropertiesLocked(t reflect.Type) *StructProperties { if prop, ok := propertiesMap[t]; ok { if collectStats { stats.Chit++ } return prop } if collectStats { stats.Cmiss++ } prop := new(StructProperties) // in case of recursive protos, fill this in now. propertiesMap[t] = prop // build properties prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType) || reflect.PtrTo(t).Implements(extendableProtoV1Type) prop.unrecField = invalidField prop.Prop = make([]*Properties, t.NumField()) prop.order = make([]int, t.NumField()) for i := 0; i < t.NumField(); i++ { f := t.Field(i) p := new(Properties) name := f.Name p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false) if f.Name == "XXX_InternalExtensions" { // special case p.enc = (*Buffer).enc_exts p.dec = nil // not needed p.size = size_exts } else if f.Name == "XXX_extensions" { // special case p.enc = (*Buffer).enc_map p.dec = nil // not needed p.size = size_map } else if f.Name == "XXX_unrecognized" { // special case prop.unrecField = toField(&f) } oneof := f.Tag.Get("protobuf_oneof") // special case if oneof != "" { // Oneof fields don't use the traditional protobuf tag. p.OrigName = oneof } prop.Prop[i] = p prop.order[i] = i if debug { print(i, " ", f.Name, " ", t.String(), " ") if p.Tag > 0 { print(p.String()) } print("\n") } if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") && oneof == "" { fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]") } } // Re-order prop.order. sort.Sort(prop) type oneofMessage interface { XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{}) } if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok { var oots []interface{} prop.oneofMarshaler, prop.oneofUnmarshaler, prop.oneofSizer, oots = om.XXX_OneofFuncs() prop.stype = t // Interpret oneof metadata. prop.OneofTypes = make(map[string]*OneofProperties) for _, oot := range oots { oop := &OneofProperties{ Type: reflect.ValueOf(oot).Type(), // *T Prop: new(Properties), } sft := oop.Type.Elem().Field(0) oop.Prop.Name = sft.Name oop.Prop.Parse(sft.Tag.Get("protobuf")) // There will be exactly one interface field that // this new value is assignable to. for i := 0; i < t.NumField(); i++ { f := t.Field(i) if f.Type.Kind() != reflect.Interface { continue } if !oop.Type.AssignableTo(f.Type) { continue } oop.Field = i break } prop.OneofTypes[oop.Prop.OrigName] = oop } } // build required counts // build tags reqCount := 0 prop.decoderOrigNames = make(map[string]int) for i, p := range prop.Prop { if strings.HasPrefix(p.Name, "XXX_") { // Internal fields should not appear in tags/origNames maps. // They are handled specially when encoding and decoding. continue } if p.Required { reqCount++ } prop.decoderTags.put(p.Tag, i) prop.decoderOrigNames[p.OrigName] = i } prop.reqCount = reqCount return prop } // Return the Properties object for the x[0]'th field of the structure. func propByIndex(t reflect.Type, x []int) *Properties { if len(x) != 1 { fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t) return nil } prop := GetProperties(t) return prop.Prop[x[0]] } // Get the address and type of a pointer to a struct from an interface. func getbase(pb Message) (t reflect.Type, b structPointer, err error) { if pb == nil { err = ErrNil return } // get the reflect type of the pointer to the struct. t = reflect.TypeOf(pb) // get the address of the struct. value := reflect.ValueOf(pb) b = toStructPointer(value) return } // A global registry of enum types. // The generated code will register the generated maps by calling RegisterEnum. var enumValueMaps = make(map[string]map[string]int32) // RegisterEnum is called from the generated code to install the enum descriptor // maps into the global table to aid parsing text format protocol buffers. func RegisterEnum(typeName string, unusedNameMap map[int32]string, valueMap map[string]int32) { if _, ok := enumValueMaps[typeName]; ok { panic("proto: duplicate enum registered: " + typeName) } enumValueMaps[typeName] = valueMap } // EnumValueMap returns the mapping from names to integers of the // enum type enumType, or a nil if not found. func EnumValueMap(enumType string) map[string]int32 { return enumValueMaps[enumType] } // A registry of all linked message types. // The string is a fully-qualified proto name ("pkg.Message"). var ( protoTypes = make(map[string]reflect.Type) revProtoTypes = make(map[reflect.Type]string) ) // RegisterType is called from generated code and maps from the fully qualified // proto name to the type (pointer to struct) of the protocol buffer. func RegisterType(x Message, name string) { if _, ok := protoTypes[name]; ok { // TODO: Some day, make this a panic. log.Printf("proto: duplicate proto type registered: %s", name) return } t := reflect.TypeOf(x) protoTypes[name] = t revProtoTypes[t] = name } // MessageName returns the fully-qualified proto name for the given message type. func MessageName(x Message) string { return revProtoTypes[reflect.TypeOf(x)] } // MessageType returns the message type (pointer to struct) for a named message. func MessageType(name string) reflect.Type { return protoTypes[name] }