mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-11-23 08:38:10 +00:00
57 lines
1.9 KiB
Python
57 lines
1.9 KiB
Python
import ecdsa
|
|
import os
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
|
|
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
|
|
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
|
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
|
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
|
|
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
|
|
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
|
|
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)
|
|
generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)
|
|
oid_secp256k1 = (1, 3, 132, 0, 10)
|
|
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1)
|
|
ec_order = _r
|
|
|
|
curve = curve_secp256k1
|
|
generator = generator_secp256k1
|
|
|
|
def random_secret():
|
|
convert_to_int = lambda array: int("".join(array).encode("hex"), 16)
|
|
|
|
# Collect 256 bits of random data from the OS's cryptographically secure random generator
|
|
byte_array = os.urandom(32)
|
|
|
|
return convert_to_int(byte_array)
|
|
|
|
def get_point_pubkey(point):
|
|
if point.y() & 1:
|
|
key = '03' + '%064x' % point.x()
|
|
else:
|
|
key = '02' + '%064x' % point.x()
|
|
return key.decode('hex')
|
|
|
|
def get_point_pubkey_uncompressed(point):
|
|
key = '04' + \
|
|
'%064x' % point.x() + \
|
|
'%064x' % point.y()
|
|
return key.decode('hex')
|
|
|
|
|
|
# Generate a new private key.
|
|
secret = random_secret()
|
|
print "Secret: ", secret
|
|
|
|
# Get the public key point.
|
|
point = secret * generator
|
|
print "EC point:", point
|
|
|
|
print "BTC public key:", get_point_pubkey(point).encode("hex")
|
|
|
|
# Given the point (x, y) we can create the object using:
|
|
point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
|
|
assert point1 == point
|
|
|