mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-11-22 16:18:11 +00:00
1681 lines
73 KiB
Plaintext
1681 lines
73 KiB
Plaintext
[[ch04_keys_addresses]]
|
||
== Keys and Addresses
|
||
|
||
Alice wants to pay Bob, but the thousands of Bitcoin full nodes who
|
||
will verify her transaction don't know who Alice or Bob are--and we want
|
||
to keep it that way to protect their privacy. Alice needs to
|
||
communicate that Bob should receive some of her bitcoins without tying
|
||
any aspect of that transaction to Bob's real-world identity or to other
|
||
Bitcoin payments that Bob receives. The method Alice uses must ensure
|
||
that only Bob can further spend the bitcoins he receives.
|
||
|
||
The original Bitcoin paper describes a very simple scheme for achieving
|
||
those goals, shown in <<pay-to-pure-pubkey>>. A receiver like Bob
|
||
accepts bitcoins to a public key in a transaction that is signed by the
|
||
spender (like Alice). The bitcoins that Alice is spending had been
|
||
previously received to one her public keys, and she uses the
|
||
corresponding private key to generate her signature. Full nodes can
|
||
verify that Alice's signature commits to the output of a hash function
|
||
that itself commits to Bob's public key and other transaction details.
|
||
|
||
[[pay-to-pure-pubkey]]
|
||
.Transaction chain from original Bitcoin paper
|
||
image::images/mbc3_aain01.png["Transaction chain from original Bitcoin paper"]
|
||
|
||
We'll examine public keys, private keys, signatures, and hash functions
|
||
in this chapter, and then use all of them together to describe
|
||
the addresses used by modern Bitcoin software.
|
||
|
||
=== Public Key Cryptography
|
||
|
||
Public key
|
||
cryptography was invented in the 1970s and is a mathematical foundation
|
||
for modern computer and information security.
|
||
|
||
Since the invention of public key cryptography, several suitable
|
||
mathematical functions, such as prime number exponentiation and elliptic
|
||
curve multiplication, have been discovered. These mathematical functions
|
||
are easy to calculate in
|
||
one direction and infeasible to calculate in the opposite direction
|
||
using the computers and algorithms available today.
|
||
Based on these mathematical functions, cryptography enables the creation
|
||
of unforgeable digital signatures. Bitcoin uses
|
||
elliptic curve addition and multiplication as the basis for its cryptography.
|
||
|
||
In Bitcoin, we can use public key cryptography to create a key pair that
|
||
controls access to bitcoins. The key pair consists of a private key
|
||
and a public key derived from the private key. The public key is used to
|
||
receive funds, and the private key is used to sign transactions to spend
|
||
the funds.
|
||
|
||
There is a mathematical relationship between the public and the private
|
||
key that allows the private key to be used to generate signatures on
|
||
messages. These signatures can be validated against the public key without
|
||
revealing the private key.
|
||
|
||
[TIP]
|
||
====
|
||
In some wallet
|
||
implementations, the private and public keys are stored together as a
|
||
_key pair_ for convenience. However, the public key can be calculated
|
||
from the private key, so storing only the private key is also possible.
|
||
====
|
||
|
||
A Bitcoin wallet contains a collection of key
|
||
pairs, each consisting of a private key and a public key. The private
|
||
key (k) is a number, usually derived from a number picked at random.
|
||
From the private key, we
|
||
use elliptic curve multiplication, a one-way cryptographic function, to
|
||
generate a public key (K).
|
||
|
||
.Why Use Asymmetric Cryptography (Public/Private Keys)?
|
||
****
|
||
Why is asymmetric
|
||
cryptography used in Bitcoin? It's not used to "encrypt" (make secret)
|
||
the transactions. Rather, a useful property of asymmetric cryptography
|
||
is the ability to generate _digital signatures_. A private key can be
|
||
applied to a transaction to produce a
|
||
numerical signature. This signature can only be produced by someone with
|
||
knowledge of the private key. However, anyone with access to the public
|
||
key and the transaction can use them to _verify_ the
|
||
signature. This useful property of asymmetric cryptography makes it
|
||
possible for anyone to verify every signature on every transaction,
|
||
while ensuring that only the owners of private keys can produce valid
|
||
signatures.
|
||
****
|
||
|
||
[[private_keys]]
|
||
==== Private Keys
|
||
|
||
A
|
||
private key is simply a number, picked at random. Control
|
||
over the private key is the root of user control over all funds
|
||
associated with the corresponding Bitcoin public key. The private key is
|
||
used to create signatures that are used to spend bitcoins by proving
|
||
control of funds used in a transaction. The private key must remain
|
||
secret at all times, because revealing it to third parties is equivalent
|
||
to giving them control over the bitcoins secured by that key. The private
|
||
key must also be backed up and protected from accidental loss, because
|
||
if it's lost it cannot be recovered and the funds secured by it are
|
||
forever lost too.
|
||
|
||
[TIP]
|
||
====
|
||
A Bitcoin private key is just a number. You can pick your private keys
|
||
randomly using just a coin, pencil, and paper: toss a coin 256 times and
|
||
you have the binary digits of a random private key you can use in a
|
||
Bitcoin wallet. The public key can then be generated from the private
|
||
key. Be careful, though, as any process that's less than completely
|
||
random can significantly reduce the security of your private key and the
|
||
bitcoins it controls.
|
||
====
|
||
|
||
The first and most important step in generating keys is to find a secure
|
||
source of randomness (which computer scientists call _entropy_). Creating a Bitcoin key is almost
|
||
the same as "Pick a number between 1 and 2^256^." The exact method you
|
||
use to pick that number does not matter as long as it is not predictable
|
||
or repeatable. Bitcoin software uses cryptographically secure random
|
||
number generators to produce 256 bits of entropy.
|
||
|
||
More precisely, the private key can be any number between +0+ and +n -
|
||
1+ inclusive, where n is a constant (n = 1.1578 * 10^77^, slightly less
|
||
than 2^256^) defined as the order of the elliptic curve used in bitcoin
|
||
(see <<elliptic_curve>>). To create such a key, we randomly pick a
|
||
256-bit number and check that it is less than +n+. In programming terms,
|
||
this is usually achieved by feeding a larger string of random bits,
|
||
collected from a cryptographically secure source of randomness, into the
|
||
SHA256 hash algorithm, which will conveniently produce a 256-bit value
|
||
that can be interpreted as a number.
|
||
If the result is less than +n+, we have a suitable private key.
|
||
Otherwise, we simply try again with another random number.
|
||
|
||
[WARNING]
|
||
====
|
||
Do not write your own code to create a random
|
||
number or use a "simple" random number generator offered by your
|
||
programming language. Use a cryptographically secure pseudorandom number
|
||
generator (CSPRNG) with a seed from a source of sufficient entropy.
|
||
Study the documentation of the random number generator library you
|
||
choose to make sure it is cryptographically secure. Correct
|
||
implementation of the CSPRNG is critical to the security of the keys.
|
||
====
|
||
|
||
The following is a randomly generated private key (k) shown in
|
||
hexadecimal format (256 bits shown as 64 hexadecimal digits, each 4
|
||
bits):
|
||
|
||
----
|
||
1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD
|
||
----
|
||
|
||
[TIP]
|
||
====
|
||
The size of Bitcoin's private key space, (2^256^) is an unfathomably
|
||
large number. It is approximately 10^77^ in decimal. For comparison, the
|
||
visible universe is estimated to contain 10^80^ atoms.
|
||
====
|
||
|
||
[[elliptic_curve]]
|
||
==== Elliptic Curve Cryptography Explained
|
||
|
||
Elliptic curve cryptography (ECC) is a type of asymmetric
|
||
or public key cryptography based on the discrete logarithm problem as
|
||
expressed by addition and multiplication on the points of an elliptic
|
||
curve.
|
||
|
||
<<ecc-curve>> is an example of an elliptic curve, similar to that used
|
||
by Bitcoin.
|
||
|
||
[[ecc-curve]]
|
||
[role="smallerthirty"]
|
||
.An elliptic curve
|
||
image::images/mbc3_0402.png["ecc-curve"]
|
||
|
||
Bitcoin uses a specific elliptic curve and set of mathematical
|
||
constants, as defined in a standard called +secp256k1+, established by
|
||
the National Institute of Standards and Technology (NIST). The
|
||
+secp256k1+ curve is defined by the following function, which produces
|
||
an elliptic curve:
|
||
|
||
[latexmath]
|
||
++++
|
||
\begin{equation}
|
||
{y^2 = (x^3 + 7)}~\text{over}~(\mathbb{F}_p)
|
||
\end{equation}
|
||
++++
|
||
|
||
or
|
||
|
||
[latexmath]
|
||
++++
|
||
\begin{equation}
|
||
{y^2 \mod p = (x^3 + 7) \mod p}
|
||
\end{equation}
|
||
++++
|
||
|
||
The _mod p_ (modulo prime number p) indicates that this curve is over a
|
||
finite field of prime order _p_, also written as latexmath:[\(
|
||
\mathbb{F}_p \)], where p = 2^256^ – 2^32^ – 2^9^ – 2^8^ – 2^7^ – 2^6^ –
|
||
2^4^ – 1, a very large prime number.
|
||
|
||
Because this curve is defined over a finite field of prime order instead
|
||
of over the real numbers, it looks like a pattern of dots scattered in
|
||
two dimensions, which makes it difficult to visualize. However, the math
|
||
is identical to that of an elliptic curve over real numbers. As an
|
||
example, <<ecc-over-F17-math>> shows the same elliptic curve over a much
|
||
smaller finite field of prime order 17, showing a pattern of dots on a
|
||
grid. The +secp256k1+ Bitcoin elliptic curve can be thought of as a much
|
||
more complex pattern of dots on a unfathomably large grid.
|
||
|
||
[[ecc-over-F17-math]]
|
||
[role="smallersixty"]
|
||
.Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17
|
||
image::images/mbc3_0403.png["ecc-over-F17-math"]
|
||
|
||
So, for example, the following is a point P with coordinates (x,y) that
|
||
is a point on the +secp256k1+ curve:
|
||
|
||
[source, python]
|
||
----
|
||
P =
|
||
(55066263022277343669578718895168534326250603453777594175500187360389116729240,
|
||
32670510020758816978083085130507043184471273380659243275938904335757337482424)
|
||
----
|
||
|
||
<<example_4_1>> shows how you can check this yourself using Python.
|
||
|
||
[[example_4_1]]
|
||
.Using Python to confirm that this point is on the elliptic curve
|
||
====
|
||
[source, pycon]
|
||
----
|
||
Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux
|
||
Type "help", "copyright", "credits" or "license" for more information.
|
||
> p = 115792089237316195423570985008687907853269984665640564039457584007908834671663
|
||
> x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
|
||
> y = 32670510020758816978083085130507043184471273380659243275938904335757337482424
|
||
> (x ** 3 + 7 - y**2) % p
|
||
0
|
||
----
|
||
====
|
||
|
||
In elliptic curve math, there is a point called the "point at infinity,"
|
||
which roughly corresponds to the role of zero in addition. On computers,
|
||
it's sometimes represented by x = y = 0 (which doesn't satisfy the
|
||
elliptic curve equation, but it's an easy separate case that can be
|
||
checked).
|
||
|
||
There is also a pass:[+] operator, called "addition," which has some
|
||
properties similar to the traditional addition of real numbers that
|
||
gradeschool children learn. Given two points P~1~ and P~2~ on the
|
||
elliptic curve, there is a third point P~3~ = P~1~ + P~2~, also on the
|
||
elliptic curve.
|
||
|
||
Geometrically, this third point P~3~ is calculated by drawing a line
|
||
between P~1~ and P~2~. This line will intersect the elliptic curve in
|
||
exactly one additional place. Call this point P~3~' = (x, y). Then
|
||
reflect in the x-axis to get P~3~ = (x, –y).
|
||
|
||
There are a couple of special cases that explain the need for the "point
|
||
at infinity."
|
||
|
||
If P~1~ and P~2~ are the same point, the line "between" P~1~ and P~2~
|
||
should extend to be the tangent on the curve at this point P~1~. This
|
||
tangent will intersect the curve in exactly one new point. You can use
|
||
techniques from calculus to determine the slope of the tangent line.
|
||
These techniques curiously work, even though we are restricting our
|
||
interest to points on the curve with two integer coordinates!
|
||
|
||
In some cases (i.e., if P~1~ and P~2~ have the same x values but
|
||
different y values), the tangent line will be exactly vertical, in which
|
||
case P3 = "point at infinity."
|
||
|
||
If P~1~ is the "point at infinity," then P~1~ + P~2~ = P~2~. Similarly,
|
||
if P~2~ is the point at infinity, then P~1~ + P~2~ = P~1~. This shows
|
||
how the point at infinity plays the role of zero.
|
||
|
||
It turns out that pass:[+] is associative, which means that (A pass:[+]
|
||
B) pass:[+] C = A pass:[+] (B pass:[+] C). That means we can write A
|
||
pass:[+] B pass:[+] C without parentheses and without ambiguity.
|
||
|
||
Now that we have defined addition, we can define multiplication in the
|
||
standard way that extends addition. For a point P on the elliptic curve,
|
||
if k is a whole number, then kP = P + P + P + ... + P (k times). Note
|
||
that k is sometimes confusingly called an "exponent" in this case.
|
||
|
||
[[public_key_derivation]]
|
||
==== Public Keys
|
||
|
||
The public key is calculated from
|
||
the private key using elliptic curve multiplication, which is
|
||
irreversible: _K_ = _k_ * _G_, where _k_ is the private key, _G_ is a
|
||
constant point called the _generator point_, and _K_ is the resulting
|
||
public key. The reverse operation, known as "finding the discrete
|
||
logarithm"—calculating _k_ if you know __K__—is as difficult as trying
|
||
all possible values of _k_, i.e., a brute-force search. Before we
|
||
demonstrate how to generate a public key from a private key, let's look
|
||
at elliptic curve cryptography in a bit more detail.
|
||
|
||
[TIP]
|
||
====
|
||
Elliptic curve multiplication is a type of function that cryptographers
|
||
call a "trap door" function: it is easy to do in one direction
|
||
(multiplication) and impossible to do in the reverse direction
|
||
(division). Someone with a private key can easily create the public
|
||
key and then share it with the world knowing that no one can reverse the
|
||
function and calculate the private key from the public key. This
|
||
mathematical trick becomes the basis for unforgeable and secure digital
|
||
signatures that prove control over bitcoin funds.
|
||
====
|
||
|
||
Starting with a private key in the
|
||
form of a randomly generated number _k_, we multiply it by a
|
||
predetermined point on the curve called the _generator point_ _G_ to
|
||
produce another point somewhere else on the curve, which is the
|
||
corresponding public key _K_. The generator point is specified as part
|
||
of the +secp256k1+ standard and is always the same for all keys in
|
||
bitcoin:
|
||
|
||
[latexmath]
|
||
++++
|
||
\begin{equation}
|
||
{K = k * G}
|
||
\end{equation}
|
||
++++
|
||
|
||
where _k_ is the private key, _G_ is the generator point, and _K_ is the
|
||
resulting public key, a point on the curve. Because the generator point
|
||
is always the same for all bitcoin users, a private key _k_ multiplied
|
||
with _G_ will always result in the same public key _K_. The relationship
|
||
between _k_ and _K_ is fixed, but can only be calculated in one
|
||
direction, from _k_ to _K_. That's why a Bitcoin public key can be
|
||
shared with anyone and does not reveal the user's private key (_k_).
|
||
|
||
[TIP]
|
||
====
|
||
A private key can be converted into a public key, but a public key
|
||
cannot be converted back into a private key because the math only works
|
||
one way.
|
||
====
|
||
|
||
Implementing the elliptic curve multiplication, we take the private key
|
||
_k_ generated previously and multiply it with the generator point G to
|
||
find the public key _K_:
|
||
|
||
[source, python]
|
||
----
|
||
K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G
|
||
----
|
||
|
||
Public key _K_ is defined as a point +K = (x,y)+:
|
||
|
||
----
|
||
K = (x, y)
|
||
|
||
where,
|
||
|
||
x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
|
||
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB
|
||
----
|
||
|
||
To visualize multiplication of a point with an integer, we will use the
|
||
simpler elliptic curve over real numbers—remember, the math is
|
||
the same. Our goal is to find the multiple _kG_ of the generator point
|
||
_G_, which is the same as adding _G_ to itself, _k_ times in a row. In
|
||
elliptic curves, adding a point to itself is the equivalent of drawing a
|
||
tangent line on the point and finding where it intersects the curve
|
||
again, then reflecting that point on the x-axis.
|
||
|
||
<<ecc_illustrated>> shows the process for deriving _G_, _2G_, _4G_, as a
|
||
geometric operation on the curve.
|
||
|
||
[TIP]
|
||
====
|
||
Many Bitcoin implementations use
|
||
the https://oreil.ly/wD60m[libsecp256k1 crytographic
|
||
library] to do the elliptic curve math.
|
||
====
|
||
|
||
[[ecc_illustrated]]
|
||
.Elliptic curve cryptography: visualizing the multiplication of a point G by an integer k on an elliptic curve
|
||
image::images/mbc3_0404.png["ecc_illustrated"]
|
||
|
||
=== Output and Input Scripts
|
||
|
||
Although the illustration from the original Bitcoin paper, <<pay-to-pure-pubkey>>,
|
||
shows public keys (pubkeys) and signatures (sigs) being used directly,
|
||
the first version of Bitcoin instead had payments sent to a field called
|
||
_output script_ and had spends of those bitcoins authorized by a field called _input script_.
|
||
These fields allow additional operations to be performed in addition to
|
||
(or instead of) verifying that a signature corresponds to a public key.
|
||
For example, an output script can contain two public keys and require two
|
||
corresponding signatures be placed in the spending input script.
|
||
|
||
Later, in <<tx_script>>, we'll learn about scripts in detail. For now,
|
||
all we need to understand is that bitcoins are received to an
|
||
output script that acts like a public key, and bitcoin spending is
|
||
authorized by an input script that acts like a signature.
|
||
|
||
[[p2pk]]
|
||
=== IP Addresses: The Original Address for Bitcoin (P2PK)
|
||
|
||
We've established that Alice can pay Bob by assigning some of her
|
||
bitcoins to one of Bob's public keys. But how does Alice get one of
|
||
Bob's public keys? Bob could just give her a copy, but let's look again
|
||
at the public key we worked with in <<public_key_derivation>>. Notice
|
||
that it's quite long. Imagine Bob trying to read that to Alice over the
|
||
phone:
|
||
|
||
----
|
||
x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
|
||
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB
|
||
----
|
||
|
||
Instead of direct public key entry, the earliest version of Bitcoin
|
||
software allowed a spender to enter the the receiver's IP address, as shown in <<bitcoin_01_send>>. This
|
||
feature was later removed--there are many problems
|
||
with using IP addresses--but a quick description of it will help us
|
||
better understand why certain features may have been added to the
|
||
Bitcoin protocol.
|
||
|
||
[[bitcoin_01_send]]
|
||
.Early send screen for Bitcoin via https://oreil.ly/IDV1a[The Internet Archive]
|
||
image::images/mbc3_0405.png["Early Bitcoin send screen"]
|
||
|
||
If Alice entered Bob's IP address in Bitcoin 0.1, her full node would
|
||
establish a connection with his full node and receive a new public key
|
||
from Bob's wallet that his node had never previously given anyone. This
|
||
being a new public key was important to ensure that different
|
||
transactions paying Bob couldn't be connected together by someone
|
||
looking at the blockchain and noticing that all of the transactions paid
|
||
the same public key.
|
||
|
||
Using the public key her node received from Bob's node, Alice's wallet
|
||
would construct a transaction output paying a very simple output script:
|
||
|
||
----
|
||
<Bob's public key> OP_CHECKSIG
|
||
----
|
||
|
||
Bob would later be able to spend that output with an input script consisting
|
||
entirely of his signature:
|
||
|
||
----
|
||
<Bob's signature>
|
||
----
|
||
|
||
To figure out what an output and input script are doing, you can
|
||
combine them together (input script first) and then note that each piece of
|
||
data (shown in angle brackets) is placed at the top of a list of items,
|
||
called a stack. When an operation code (opcode) is encountered, it uses
|
||
items from the stack, starting with the topmost items. Let's look at
|
||
how that works by beginning with the combined script:
|
||
|
||
----
|
||
<Bob's signature> <Bob's public key> OP_CHECKSIG
|
||
----
|
||
|
||
For this script, Bob's signature is put on the stack, then Bob's public
|
||
key is placed on top of it. The +OP_CHECKSIG+ operation consumes two
|
||
elements, starting with the public key and followed by the signature,
|
||
removing them from the stack. It verifies the signature corresponds to
|
||
the public key and also commits to (signs) the various fields in the
|
||
transaction. If the signature is correct, +OP_CHECKSIG+ replaces itself
|
||
on the stack with the value 1; if the signature was not correct, it
|
||
replaces itself with a 0. If there's a nonzero item on top of the stack at the
|
||
end of evaluation, the script passes. If all scripts in a transaction
|
||
pass, and all of the other details about the transaction are valid, then
|
||
full nodes will consider the transaction to be valid.
|
||
|
||
In short, the preceding script uses the same public key and signature
|
||
described in the original paper but adds in the complexity of two script
|
||
fields and an opcode. That seems like extra work here, but we'll begin
|
||
to see the benefits when we look at the following section.
|
||
|
||
This type of output is known today as _pay to public key_, or _P2PK_ for
|
||
short. It was never widely used for payments, and no widely used
|
||
program has supported IP address payments for almost a decade.
|
||
|
||
[[addresses_for_p2pkh]]
|
||
=== Legacy Addresses for P2PKH
|
||
|
||
Entering the IP address of the person you want to pay has a number of
|
||
advantages, but it also has a number of downsides. One particular
|
||
downside is that the receiver needs their wallet to be online at their
|
||
IP address, and it needs to be accessible from the outside world. For
|
||
a lot of people, that isn't an option. They turn their computers off at
|
||
night, their laptops go to sleep, they're behind firewalls, or they're
|
||
using Network Address Translation (NAT).
|
||
|
||
This brings us back to the problem of receivers like Bob having to give
|
||
spenders like Alice a long public key. The shortest version of Bitcoin
|
||
public keys known to the developers of early Bitcoin were 65 bytes, the
|
||
equivalent of 130 characters when written in hexadecimal. However, Bitcoin
|
||
already contains several data structures much larger than 65 bytes
|
||
that need to be securely referenced in other parts of Bitcoin using the
|
||
smallest amount of data that was secure.
|
||
|
||
Bitcoin accomplishes that with a _hash function_, a function that takes
|
||
a potentially large amount of data, scrambles it (hashes it), and outputs a
|
||
fixed amount of data. A cryptographic hash function will always produce
|
||
the same output when given the same input, and a secure function will
|
||
also make it impractical for somebody to choose a different input that
|
||
produces a previously-seen output. That makes the output a _commitment_
|
||
to the input. It's a promise that, in practice, only input _x_ will
|
||
produce output _X_.
|
||
|
||
For example, imagine I want to ask you a question and also give you my
|
||
answer in a form that you can't read immediately. Let's say the
|
||
question is, "in what year did Satoshi Nakamoto start working on
|
||
Bitcoin?" I'll give you a commitment to my answer in the form of
|
||
output from the SHA256 hash function, the function most commonly used in
|
||
Bitcoin:
|
||
|
||
----
|
||
94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e
|
||
----
|
||
|
||
Later, after you tell me your guess to the answer of the question, I can
|
||
reveal my answer and prove to you that my answer, as input to the hash
|
||
function, produces exactly the same output I gave you earlier:
|
||
|
||
----
|
||
$ echo "2007. He said about a year and a half before Oct 2008" | sha256sum
|
||
94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e
|
||
----
|
||
|
||
Now imagine that we ask Bob the question, "what is your public key?" Bob
|
||
can use a hash function to give us a cryptographically secure commitment
|
||
to his public key. If he later reveals his key, and we verify it
|
||
produces the same commitment he previously gave us, we can be sure it
|
||
was the exact same key that was used to create that earlier commitment.
|
||
|
||
The SHA256 hash function is considered to be very secure and produces
|
||
256 bits (32 bytes) of output, less than half the size of original
|
||
Bitcoin public keys. However, there are other slightly less secure hash
|
||
functions that produce smaller output, such as the RIPEMD160 hash
|
||
function whose output is 160 bits (20 bytes). For reasons Satoshi
|
||
Nakamoto never stated, the original version of Bitcoin made commitments
|
||
to public keys by first hashing the key with SHA256 and then hashing
|
||
that output with RIPEMD160; this produced a 20-byte commitment to the
|
||
public key.
|
||
|
||
We can look at that algorithmically.
|
||
Starting with the public key _K_, we compute the SHA256 hash and then
|
||
compute the RIPEMD-160 hash of the result, producing a 160-bit (20-byte)
|
||
number:
|
||
|
||
[latexmath]
|
||
++++
|
||
\begin{equation}
|
||
{A = RIPEMD160(SHA256(K))}
|
||
\end{equation}
|
||
++++
|
||
|
||
where _K_ is the public key and _A_ is the resulting commitment.
|
||
|
||
Now that we understand how to make a commitment to a public key, we need
|
||
to figure out how to use it in a transaction. Consider the following
|
||
output script:
|
||
|
||
----
|
||
OP_DUP OP_HASH160 <Bob's commitment> OP_EQUAL OP_CHECKSIG
|
||
----
|
||
|
||
And also the following input script:
|
||
|
||
----
|
||
<Bob's signature> <Bob's public key>
|
||
----
|
||
|
||
Together, they form the following script:
|
||
|
||
----
|
||
<sig> <pubkey> OP_DUP OP_HASH160 <commitment> OP_EQUALVERIFY OP_CHECKSIG
|
||
----
|
||
|
||
As we did in <<p2pk>>, we start putting items on the stack. Bob's
|
||
signature goes on first; his public key is then placed on top of the
|
||
stack. The +OP_DUP+ operation duplicates the top item, so the top and
|
||
second-to-top item on the stack are now both Bob's public key. The
|
||
+OP_HASH160+ operation consumes (removes) the top public key and
|
||
replaces it with the result of hashing it with +RIPEMD160(SHA256(K))+,
|
||
so now the top of the stack is a hash of Bob's public key. Next, the
|
||
commitment to Bob's public key is added to the top of the stack. The
|
||
+OP_EQUALVERIFY+ operation consumes the top two items and verifies that
|
||
they are equal; that should be the case if the public key Bob provided
|
||
in the input script is the same public key used to create the commitment in
|
||
the output script that Alice paid. If +OP_EQUALVERIFY+ fails, the whole
|
||
script fails. Finally, we're left with a stack containing just Bob's
|
||
signature and his public key; the +OP_CHECKSIG+ opcode verifies they
|
||
correspond with each other and that the signature commits to the
|
||
transaction.
|
||
|
||
Although this process of paying to a public key hash (_P2PKH_) may seem
|
||
convoluted, it allows Alice's payment to
|
||
Bob to contain only a 20 byte commitment to his public key instead of
|
||
the key itself, which would've been 65 bytes in the original version of
|
||
Bitcoin. That's a lot less data for Bob to have to communicate to
|
||
Alice.
|
||
|
||
However, we haven't yet discussed how Bob gets those 20 bytes from his
|
||
Bitcoin wallet to Alice's wallet. There are commonly used encodings for
|
||
byte values, such as hexadecimal, but any mistake made in copying a
|
||
commitment would result in the bitcoins being sent to an unspendable
|
||
output, causing them to be lost forever. In the next section, we'll
|
||
look at compact encoding and reliable checksums.
|
||
|
||
[[base58]]
|
||
=== Base58Check Encoding
|
||
|
||
In order to represent long numbers in a compact way,
|
||
using fewer symbols, many computer systems use mixed-alphanumeric
|
||
representations with a base (or radix) higher than 10. For example,
|
||
whereas the traditional decimal system uses 10 numerals, 0 through 9,
|
||
the hexadecimal system uses 16, with the letters A through F as the six
|
||
additional symbols. A number represented in hexadecimal format is
|
||
shorter than the equivalent decimal representation. Even more compact,
|
||
base64 representation uses 26 lowercase letters, 26 capital letters, 10
|
||
numerals, and 2 more characters such as "+" and "/" to
|
||
transmit binary data over text-based media such as email.
|
||
|
||
Base58 is a similar encoding to
|
||
base64, using upper- and lowercase letters and numbers,
|
||
but omitting some characters that are frequently mistaken for one
|
||
another and can appear identical when displayed in certain fonts.
|
||
Specifically, base58 is base64 without the 0 (number zero), O (capital
|
||
o), l (lower L), I (capital i), and the symbols "+" and
|
||
"/." Or, more simply, it is a set of lowercase and capital letters and
|
||
numbers without the four (0, O, l, I) just mentioned. <<base58alphabet>>
|
||
shows the full base58 alphabet.
|
||
|
||
[[base58alphabet]]
|
||
.Bitcoin's base58 alphabet
|
||
====
|
||
----
|
||
123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz
|
||
----
|
||
====
|
||
|
||
To add extra security against typos or transcription errors, base58check
|
||
includes a _checksum_ encoded in the base58 alphabet. The checksum is an
|
||
additional four bytes
|
||
added to the end of the data that is being encoded. The checksum is
|
||
derived from the hash of the encoded data and can therefore be used to
|
||
detect transcription and typing errors. When presented with
|
||
base58check code, the decoding software will calculate the checksum of
|
||
the data and compare it to the checksum included in the code. If the two
|
||
do not match, an error has been introduced and the base58check data is
|
||
invalid. This prevents a mistyped Bitcoin address from being accepted by
|
||
the wallet software as a valid destination, an error that would
|
||
otherwise result in loss of funds.
|
||
|
||
To convert data (a number) into a base58check format, we first add a
|
||
prefix to the data, called the "version byte," which serves to easily
|
||
identify the type of data that is encoded. For example, the prefix zero
|
||
(0x00 in hex) indicates that the data should be used as the commitment (hash) in
|
||
a legacy P2PKH output script. A list of common version prefixes is shown
|
||
in <<base58check_versions>>.
|
||
|
||
Next, we compute the "double-SHA" checksum, meaning we apply the SHA256
|
||
hash-algorithm twice on the previous result (the prefix concatenated
|
||
with the data):
|
||
|
||
----
|
||
checksum = SHA256(SHA256(prefix||data))
|
||
----
|
||
|
||
From the resulting 32-byte hash (hash-of-a-hash), we take only the first
|
||
four bytes. These four bytes serve as the error-checking code, or
|
||
checksum. The checksum is appended to the end.
|
||
|
||
The result is composed of three items: a prefix, the data, and a
|
||
checksum. This result is encoded using the base58 alphabet described
|
||
previously. <<base58check_encoding>> illustrates the base58check
|
||
encoding process.
|
||
|
||
[[base58check_encoding]]
|
||
.Base58check encoding: a base58, versioned, and checksummed format for unambiguously encoding bitcoin data
|
||
image::images/mbc3_0406.png["Base58CheckEncoding"]
|
||
|
||
In Bitcoin, other data besides public key commitments are presented to the user in
|
||
base58check encoding to make that data compact, easy to read, and easy to detect
|
||
errors. The version prefix in base58check encoding is used to create
|
||
easily distinguishable formats, which when encoded in base58 contain
|
||
specific characters at the beginning of the base58check-encoded payload.
|
||
These characters make it easy for humans to identify the type of data
|
||
that is encoded and how to use it. This is what differentiates, for
|
||
example, a base58check-encoded Bitcoin address that starts with a 1 from
|
||
a base58check-encoded private key wallet import format (WIF) that starts with a 5. Some example
|
||
version prefixes and the resulting base58 characters are shown in
|
||
<<base58check_versions>>.
|
||
|
||
[[base58check_versions]]
|
||
.Base58check version prefix and encoded result examples
|
||
[options="header"]
|
||
[cols="1,1,1"]
|
||
|=======
|
||
|Type| Version prefix (hex)| Base58 result prefix
|
||
| Address for pay to public key hash (P2PKH) | 0x00 | 1
|
||
| Address for pay to script hash (P2SH) | 0x05 | 3
|
||
| Testnet Address for P2PKH | 0x6F | m or n
|
||
| Testnet Address for P2SH | 0xC4 | 2
|
||
| Private Key WIF | 0x80 | 5, K, or L
|
||
| BIP32 Extended Public Key | 0x0488B21E | xpub
|
||
|=======
|
||
|
||
Putting together public keys, hash-based commitments, and base58check
|
||
encoding, we can see the illustration of the conversion of a public key
|
||
into a Bitcoin address in <<pubkey_to_address>>.
|
||
|
||
[[pubkey_to_address]]
|
||
.Public key to Bitcoin address: conversion of a public key into a Bitcoin address
|
||
image::images/mbc3_0407.png["pubkey_to_address"]
|
||
|
||
[[comp_pub]]
|
||
=== Compressed Public Keys
|
||
|
||
//https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2011-November/000778.html
|
||
|
||
|
||
When Bitcoin was first authored, its developers only knew how to create
|
||
65-byte public keys. However, a later developer became aware of an
|
||
alternative encoding for public keys that used only 33 bytes and which
|
||
was backward compatible with all Bitcoin full nodes at the time,
|
||
so there was no need to change the Bitcoin protocol. Those 33-byte
|
||
public keys are known as _compressed public keys_ and the original 65
|
||
byte keys are known as _uncompressed public keys_. Using smaller public keys
|
||
results in smaller transactions, allowing more payments to be made in the same
|
||
block.
|
||
|
||
As we saw in the section <<public_key_derivation>>, a public key is a point (x,y) on an
|
||
elliptic curve. Because the curve expresses a mathematical function, a
|
||
point on the curve represents a solution to the equation and, therefore,
|
||
if we know the _x_ coordinate we can calculate the _y_ coordinate by
|
||
solving the equation y^2^ mod p = (x^3^ + 7) mod p. That allows us to
|
||
store only the _x_ coordinate of the public key point, omitting the _y_
|
||
coordinate and reducing the size of the key and the space required to
|
||
store it by 256 bits. An almost 50% reduction in size in every
|
||
transaction adds up to a lot of data saved over time!
|
||
|
||
Here's the public key generated by the private key we created in
|
||
<<public_key_derivation>>:
|
||
|
||
----
|
||
x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
|
||
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB
|
||
----
|
||
|
||
Here's the same public key shown as a 520-bit number (130 hex digits)
|
||
with the prefix +04+ followed by +x+ and then +y+ coordinates, as +04 x
|
||
y+:
|
||
|
||
++++
|
||
<pre data-type="programlisting">
|
||
K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A↵
|
||
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB
|
||
</pre>
|
||
++++
|
||
|
||
Whereas uncompressed public keys have a prefix of +04+, compressed
|
||
public keys start with either a +02+ or a +03+ prefix. Let's look at why
|
||
there are two possible prefixes: because the left side of the equation
|
||
is __y__^2^, the solution for _y_ is a square root, which can have a
|
||
positive or negative value. Visually, this means that the resulting _y_
|
||
coordinate can be above or below the x-axis. As you can see from the
|
||
graph of the elliptic curve in <<ecc-curve>>, the curve is symmetric,
|
||
meaning it is reflected like a mirror by the x-axis. So, while we can
|
||
omit the _y_ coordinate we have to store the _sign_ of _y_ (positive or
|
||
negative); or in other words, we have to remember if it was above or
|
||
below the x-axis because each of those options represents a different
|
||
point and a different public key. When calculating the elliptic curve in
|
||
binary arithmetic on the finite field of prime order p, the _y_
|
||
coordinate is either even or odd, which corresponds to the
|
||
positive/negative sign as explained earlier. Therefore, to distinguish
|
||
between the two possible values of _y_, we store a compressed public key
|
||
with the prefix +02+ if the _y_ is even, and +03+ if it is odd, allowing
|
||
the software to correctly deduce the _y_ coordinate from the _x_
|
||
coordinate and uncompress the public key to the full coordinates of the
|
||
point. Public key compression is illustrated in <<pubkey_compression>>.
|
||
|
||
Here's the same public key generated in <<public_key_derivation>>, shown as a compressed
|
||
public key stored in 264 bits (66 hex digits) with the prefix +03+
|
||
indicating the _y_ coordinate is odd:
|
||
|
||
----
|
||
K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
|
||
----
|
||
|
||
This compressed public key corresponds to the same private key, meaning
|
||
it is generated from the same private key. However, it looks different
|
||
from the uncompressed public key. More importantly, if we convert this
|
||
compressed public key to a commitment using the HASH160
|
||
function (+RIPEMD160(SHA256(K))+) it will produce a _different_
|
||
commitment than the uncompressed public key, leading to a different
|
||
address. This can be confusing, because it means that a single private
|
||
key can produce a public key expressed in two different formats
|
||
(compressed and uncompressed) that produce two different Bitcoin
|
||
addresses. However, the private key is identical for both Bitcoin
|
||
addresses.
|
||
|
||
[[pubkey_compression]]
|
||
[role="smallerseventy"]
|
||
.Public key compression
|
||
image::images/mbc3_0408.png["pubkey_compression"]
|
||
|
||
Compressed public keys are now the default in almost all Bitcoin
|
||
software, and were made required when using certain new features added
|
||
in later protocol upgrades.
|
||
|
||
However, some software still needs to support uncompressed public keys,
|
||
such as a wallet application importing private keys from an older
|
||
wallet. When the new wallet scans the blockchain for old P2PKH outputs
|
||
and inputs, it needs to know whether to scan the 65-byte keys (and
|
||
commitments to those keys) or 33-byte keys (and their commitments). Failure
|
||
to scan for the correct type can lead to the user not being able to
|
||
spend their full balance. To resolve this issue, when private keys are
|
||
exported from a wallet, the WIF that is used to
|
||
represent them is implemented slightly differently in newer Bitcoin
|
||
wallets, to indicate that these private keys have been used to produce
|
||
compressed public keys.
|
||
|
||
[[addresses_for_p2sh]]
|
||
=== Legacy Pay to Script Hash (P2SH)
|
||
|
||
As we've seen in preceding sections, someone receiving bitcoins (like
|
||
Bob) can require that payments to him contain certain constraints in their
|
||
output script. Bob will need to fulfill those constraints using an
|
||
input script when he spends those bitcoins. In <<p2pk>>, the constraint
|
||
was simply that the input script needed to provide an appropriate
|
||
signature. In <<addresses_for_p2pkh>>, an appropriate public key also needed to be
|
||
provided.
|
||
|
||
In order for a spender (like Alice) to place the constraints Bob wants
|
||
in the output script she uses to pay him, Bob needs to communicate those
|
||
constraints to her. This is similar to the problem of Bob needing to
|
||
communicate his public key to her. Like that problem, where
|
||
public keys can be fairly large, the constraints Bob uses can also be
|
||
quite large--potentially thousands of bytes. That's not only thousands
|
||
of bytes which need to be communicated to Alice, but thousands of bytes
|
||
for which she needs to pay transaction fees every time she wants to spend money to Bob. However, the solution of using hash functions to create
|
||
small commitments to large amounts of data also applies here.
|
||
|
||
The BIP16 upgrade to the Bitcoin protocol in 2012 allows an
|
||
output script to commit to a _redemption script_ (_redeem script_). When
|
||
Bob spends his bitcoins, his input script needs to provide a redeem script
|
||
that matches the commitment and also any data necessary to satisfy the
|
||
redeem script (such as signatures). Let's start by imagining Bob wants
|
||
to require two signatures to spend his bitcoins, one signature from his
|
||
desktop wallet and one from a hardware signing device. He puts those
|
||
conditions into a redeem script:
|
||
|
||
----
|
||
<public key 1> OP_CHECKSIGVERIFY <public key 2> OP_CHECKSIG
|
||
----
|
||
|
||
He then creates a commitment to the redeem script using the same
|
||
HASH160 mechanism used for P2PKH commitments, +RIPEMD160(SHA256(script))+.
|
||
That commitment is placed into the output script using a special
|
||
template:
|
||
|
||
----
|
||
OP_HASH160 <commitment> OP_EQUAL
|
||
----
|
||
|
||
[WARNING]
|
||
====
|
||
When using pay to script hash (P2SH), you must use the specific P2SH template
|
||
with no extra data or conditions in the output script. If the
|
||
output script is not exactly +OP_HASH160 <20 bytes> OP_EQUAL+, the
|
||
redeem script will not be used and any bitcoins may either be unspendable
|
||
or spendable by anyone (meaning anyone can take them).
|
||
====
|
||
|
||
When Bob goes to spend the payment he received to the commitment for his
|
||
script, he uses an input script that includes the redeem script, with it
|
||
serialized as a single data element. He also provides the signatures
|
||
he needs to satisfy the redeem script, putting them in the order that
|
||
they will be consumed by the opcodes:
|
||
|
||
----
|
||
<signature2> <signature1> <redeem script>
|
||
----
|
||
|
||
When Bitcoin full nodes receive Bob's spend, they'll verify that the
|
||
serialized redeem script will hash to the same value as the commitment.
|
||
Then they'll replace it on the stack with its deserialized value:
|
||
|
||
----
|
||
<signature2> <signature1> <pubkey1> OP_CHECKSIGVERIFY <pubkey2> OP_CHECKSIG
|
||
----
|
||
|
||
The script is executed and, if it passes and all of the other
|
||
transaction details are correct, the transaction is valid.
|
||
|
||
Addresses for P2SH are also created with
|
||
base58check. The version prefix is set to 5, which results in an
|
||
encoded address starting with a +3+. An example of a P2SH address is
|
||
+3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM+.
|
||
|
||
[TIP]
|
||
====
|
||
P2SH is not necessarily the same as a multisignature
|
||
transaction. A P2SH address _most often_ represents a multisignature
|
||
script, but it might also represent a script encoding other types of
|
||
transactions.
|
||
====
|
||
|
||
P2PKH and P2SH are the only two script templates used with base58check
|
||
encoding. They are now known as legacy addresses and have become less
|
||
common over time.
|
||
Legacy addresses were supplanted by the bech32 family of addresses.
|
||
|
||
[[p2sh_collision_attacks]]
|
||
.P2SH Collision Attacks
|
||
****
|
||
All addresses based on hash functions are theoretically vulnerable to an
|
||
attacker independently finding the same input that produced the hash
|
||
function output (commitment). In the case of Bitcoin, if they find the
|
||
input the same way the original user did, they'll know the user's private
|
||
key and be able to spend that user's bitcoins. The chance of an attacker
|
||
independently generating the input for an existing commitment is
|
||
proportional to the strength of the hash algorithm. For a secure
|
||
160-bit algorithm like HASH160, the probability is 1-in-2^160^. This is
|
||
a _preimage attack_.
|
||
|
||
An attacker can also try to generate two different inputs (e.g., redeem
|
||
scripts) that produce the same commitment. For addresses created
|
||
entirely by a single party, the chance of an attacker generating a
|
||
different input for an existing commitment is also about 1-in-2^160^ for
|
||
the HASH160 algorithm. This is a _second preimage attack_.
|
||
|
||
However, this changes when an attacker is able to influence the original input
|
||
value. For example, an attacker participates in the creation of a
|
||
multisignature script where tthey don't need to submit their public key until after they learn all of the other partys' public keys.
|
||
In that case, the strength of hash algorithm is reduced to its square
|
||
root. For HASH160, the probability becomes 1-in-2^80^. This is a
|
||
_collision attack_.
|
||
|
||
// bits80=$( echo '2^80' | bc )
|
||
// seconds_per_hour="$(( 60 * 60))"
|
||
// bitcoin-cli getmininginfo | jq "(.networkhashps / $bits80 * $seconds_per_hour)"
|
||
// 0.8899382363032076
|
||
|
||
To put those numbers in context, as of early 2023, all Bitcoin miners
|
||
combined execute about 2^80^ hash functions every hour. They run a
|
||
different hash function than HASH160, so their existing hardware can't
|
||
create collision attacks for it, but the existence of the Bitcoin
|
||
network proves that collision attacks against 160-bit functions like
|
||
HASH160 are practical. Bitcoin miners have spent the equivalent of
|
||
billions of US dollars on special hardware, so creating a collision
|
||
attack wouldn't be cheap, but there are organizations that expect to
|
||
receive billions of dollars in bitcoins to addresses generated by
|
||
processes involving multiple parties, which could make the attack
|
||
profitable.
|
||
|
||
There are well-established cryptographic protocols for preventing
|
||
collision attacks but a simple solution that doesn't require any
|
||
special knowledge on the part of wallet developers is to simply use
|
||
a stronger hash function. Later upgrades to Bitcoin made that possible
|
||
and newer Bitcoin addresses provide at least 128 bits of collision
|
||
resistance. To perform 2^128^ hash operations would take all current
|
||
Bitcoin miners about 32 billion years.
|
||
|
||
Although we do not believe there is any immediate threat to anyone
|
||
creating new P2SH addresses, we recommend all new wallets use newer
|
||
types of addresses to eliminate address collision attacks as a concern.
|
||
****
|
||
|
||
=== Bech32 Addresses
|
||
|
||
In 2017, the Bitcoin protocol was upgraded. When the upgrade is used,
|
||
it prevents transaction
|
||
identifiers (txids) from being changed without the consent of a spending
|
||
user (or a quorum of signers when multiple signatures are required).
|
||
The upgrade, called _segregated witness_ (or _segwit_ for short), also
|
||
provided additional capacity for transaction data in blocks and several
|
||
other benefits. However, users wanting direct access to segwit's
|
||
benefits had to accept payments to new output scripts.
|
||
|
||
As mentioned in <<p2sh>>, one of the advantages of the P2SH output type
|
||
was that a spender (such as Alice) didn't need to know the details of
|
||
the script the receiver (such as Bob) used. The segwit upgrade was
|
||
designed to use this mechanism, allowing users to
|
||
immediately begin accessing many of the new benefits by using a P2SH
|
||
address. But for Bob to gain access to all of the benefits, he would
|
||
need Alice's wallet to pay him using a different type of script. That
|
||
would require Alice's wallet to upgrade to supporting the new scripts.
|
||
|
||
At first, Bitcoin developers proposed BIP142, which would continue using
|
||
base58check with a new version byte, similar to the P2SH upgrade. But
|
||
getting all wallets to upgrade to new scripts with a new base58check
|
||
version was expected to require almost as much work as getting them to
|
||
upgrade to an entirely new address format, so several Bitcoin
|
||
contributors set out to design the best possible address format. They
|
||
identified several problems with base58check:
|
||
|
||
- Its mixed-case presentation made it inconvenient to read aloud or
|
||
transcribe. Try reading one of the legacy addresses in this chapter
|
||
to a friend who you have transcribe it. Notice how you have to prefix
|
||
every letter with the words "uppercase" and "lowercase." Also note
|
||
when you review their writing that the uppercase and lowercase
|
||
versions of some letters can look similar in many people's
|
||
handwriting.
|
||
|
||
- It can detect errors, but it can't help users correct those errors.
|
||
For example, if you accidentally transpose two characters when manually
|
||
entering an address, your wallet will almost certainly warn that a
|
||
mistake exists, but it won't help you figure out where the error is
|
||
located. It might take you several frustrating minutes to eventually
|
||
discover the mistake.
|
||
|
||
- A mixed-case alphabet also requires extra space to encode in QR codes,
|
||
which are commonly used to share addresses and invoices
|
||
between wallets. That extra space means QR codes need to be larger at
|
||
the same resolution or they become harder to scan quickly.
|
||
|
||
- It requires every spender wallet upgrade to support new protocol
|
||
features like P2SH and segwit. Although the upgrades themselves might
|
||
not require much code, experience shows that many wallet authors are
|
||
busy with other work and can sometimes delay upgrading for years.
|
||
This adversely affects everyone who wants to use the new features.
|
||
|
||
The developers working on an address format for segwit found solutions
|
||
for each of these problems in a new address format called
|
||
bech32 (pronounced with a soft "ch", as in "besh thirty-two"). The
|
||
"bech" stands for BCH, the initials of the three individuals who
|
||
discovered the cyclic code in 1959 and 1960 upon which bech32 is based.
|
||
The "32" stands for the number of characters in the bech32 alphabet
|
||
(similar to the 58 in base58check).
|
||
|
||
- Bech32 uses only numbers and a single case of letters (preferably
|
||
rendered in lowercase). Despite its alphabet being almost half the
|
||
size of the base58check alphabet, a bech32 address for a P2WPKH script
|
||
is only slightly longer than a legacy address for an equivalent P2PKH
|
||
script.
|
||
|
||
- Bech32 can both detect and help correct errors. In an address of an
|
||
expected length, it is mathematically guaranteed to detect any error
|
||
affecting four characters or less; that's more reliable than
|
||
base58check. For longer errors, it will fail to detect them less than
|
||
one time in a billion, which is roughly the same reliability as
|
||
base58check. Even better, for an address typed with just a few
|
||
errors, it can tell the user where those errors occurred, allowing them to
|
||
quickly correct minor transcription mistakes. See <<bech32_typo_detection>>
|
||
for an example of an address entered with errors.
|
||
|
||
[[bech32_typo_detection]]
|
||
.Bech32 typo detection
|
||
====
|
||
Address:
|
||
bc1p9nh05ha8wrljf7ru236aw**n**4t2x0d5ctkkywm**v**9sclnm4t0av2vgs4k3au7
|
||
|
||
Detected errors shown in bold. Generated using the
|
||
https://oreil.ly/paWIx[bech32 address decoder demo].
|
||
====
|
||
|
||
- Bech32 is preferably written with only lowercase characters, but those
|
||
lowercase characters can be replaced with uppercase characters before
|
||
encoding an address in a QR code. This allows the use of a special QR
|
||
encoding mode that uses less space. Notice the difference in size and
|
||
complexity of the two QR codes for the same address in
|
||
<<bech32_qrcode_uc_lc>>.
|
||
|
||
[[bech32_qrcode_uc_lc]]
|
||
.The same bech32 address QR encoded in lowercase and uppercase
|
||
image::images/mbc3_0409.png["The same bech32 address QR encoded in lowercase and uppercase"]
|
||
|
||
- Bech32 takes advantage of an upgrade mechanism designed as part of
|
||
segwit to make it possible for spender wallets to be able to pay
|
||
output types that aren't in use yet. The goal was to allow developers
|
||
to build a wallet today that allows spending to a bech32 address
|
||
and have that wallet remain able to spend to bech32 addresses for
|
||
users of new features added in future protocol upgrades. It was
|
||
hoped that we might never again need to go through the system-wide
|
||
upgrade cycles necessary to allow people to fully use P2SH and segwit.
|
||
|
||
==== Problems with Bech32 Addresses
|
||
|
||
Bech32 addresses would have been a success in every area except for one
|
||
problem. The mathematical guarantees about their ability to detect
|
||
errors only apply if the length of the address you enter into a wallet
|
||
is the same length of the original address. If you add or remove any
|
||
characters during transcription, the guarantee doesn't apply and your
|
||
wallet may spend funds to a wrong address. However, even without the
|
||
guarantee, it was thought that it would be very unlikely that a user adding
|
||
or removing characters would produce a string with a valid checksum, ensuring
|
||
users' funds were safe.
|
||
|
||
Unfortunately, the choice for one of the constants in the bech32
|
||
algorithm just happened to make it very easy to add or remove the letter
|
||
"q" in the penultimate position of an address that ends with the letter
|
||
"p." In those cases, you can also add or remove the letter "q" multiple
|
||
times. This will be caught by the checksum some of the time, but it
|
||
will be missed far more often than the one-in-a-billion expectations for
|
||
bech32's substitution errors. For an example, see <<bech32_length_extension_example>>.
|
||
|
||
[[bech32_length_extension_example]]
|
||
.Extending the length of bech32 address without invalidating its checksum
|
||
====
|
||
----
|
||
Intended bech32 address:
|
||
bc1pqqqsq9txsqp
|
||
|
||
Incorrect addresses with a valid checksum:
|
||
bc1pqqqsq9txsqqqqp
|
||
bc1pqqqsq9txsqqqqqqp
|
||
bc1pqqqsq9txsqqqqqqqqp
|
||
bc1pqqqsq9txsqqqqqqqqqp
|
||
bc1pqqqsq9txsqqqqqqqqqqqp
|
||
----
|
||
====
|
||
//from segwit_addr import *
|
||
//
|
||
//for foo in range(0,1000):
|
||
// addr = encode('bc', 1, foo.to_bytes(3,'big'))
|
||
// print(foo, addr)
|
||
|
||
|
||
|
||
For the initial version of segwit (version 0), this wasn't a practical
|
||
concern. Only two valid lengths were defined for v0 segwit outputs: 22
|
||
bytes and 34 bytes. Those correspond to bech32 addresses that are 42 characters
|
||
or 62 characters long, so someone would need to add or remove the letter "q"
|
||
from the penultimate position of a bech32 address 20 times in order to
|
||
send money to an invalid address without a wallet being able to detect
|
||
it. However, it would become a problem for users in the future if
|
||
a segwit-based upgrade were ever to be implemented.
|
||
|
||
==== Bech32m
|
||
|
||
Although bech32 worked well for segwit v0, developers didn't want to
|
||
unnecessarily constrain output sizes in later versions of segwit.
|
||
Without constraints, adding or removing a single "q" in a bech32 address
|
||
could result in a user accidentally sending their money to an
|
||
output that was either unspendable or spendable by anyone (allowing
|
||
those bitcoins to be taken by anyone). Developers exhaustively analyzed the bech32
|
||
problem and found that changing a single constant in their algorithm
|
||
would eliminate the problem, ensuring that any insertion or deletion of
|
||
up to five characters will only fail to be detected less often than one
|
||
time in a billion.
|
||
|
||
//https://gist.github.com/sipa/a9845b37c1b298a7301c33a04090b2eb
|
||
|
||
The version of bech32 with a single different constant is known as
|
||
Bech32 Modified (bech32m). All of the characters in bech32 and bech32m
|
||
addresses for the same underlying data will be identical except for the
|
||
last six (the checksum). That means a wallet will need to know which
|
||
version is in use in order to validate the checksum, but both address
|
||
types contain an internal version byte that makes determining that easy.
|
||
|
||
===== Encoding and Decoding bech32m addresses
|
||
|
||
In this section, we'll look at the encoding and parsing rules for
|
||
bech32m Bitcoin addresses since they encompass the ability to parse
|
||
bech32 addresses and are the current recommended address format for
|
||
Bitcoin wallets.
|
||
|
||
Bech32m addresses start with a Human Readable Part (HRP). There are
|
||
rules in BIP173 for creating your own HRPs, but for Bitcoin you only
|
||
need to know about the HRPs already chosen, shown in
|
||
<<bech32_hrps_for_bitcoin>>.
|
||
|
||
[[bech32_hrps_for_bitcoin]]
|
||
.Bech32 HRPs for Bitcoin
|
||
[cols="1,1"]
|
||
[options="header"]
|
||
|===
|
||
|
||
| HRPs
|
||
| Network
|
||
|
||
| bc
|
||
| Bitcoin mainnet
|
||
|
||
| tb
|
||
| Bitcoin testnet
|
||
|===
|
||
|
||
The HRP is followed by a separator, the number "1." Earlier proposals
|
||
for a protocol separator used a colon but some operating systems and
|
||
applications that allow a user to double-click a word to highlight
|
||
it for copy and pasting won't extend the highlighting to and past a
|
||
colon. A number ensured double-click highlighting would work with any
|
||
program that supports bech32m strings in general (which include other
|
||
numbers). The number "1" was chosen because bech32 strings don't
|
||
otherwise use it in order to prevent accidental transliteration between
|
||
the number "1" and the lowercase letter "l."
|
||
|
||
The other part of a bech32m address is called the "data part." There
|
||
are three elements to this part:
|
||
|
||
Witness version::
|
||
A single byte that encodes as a single character
|
||
in a bech32m Bitcoin address immediately following the separator.
|
||
This letter represents the segwit version. The letter "q" is the
|
||
encoding of "0" for segwit v0, the initial version of segwit where
|
||
bech32 addresses were introduced. The letter "p" is the encoding of
|
||
"1" for segwit v1 (also called taproot) where bech32m began to be
|
||
used. There are seventeen possible versions of segwit and it's
|
||
required for Bitcoin that the first byte of a bech32m data part decode
|
||
to the number 0 through 16 (inclusive).
|
||
|
||
Witness program::
|
||
From 2 to 40 bytes. For segwit v0, this witness program
|
||
must be either 20 or 32 bytes; no other length is valid. For segwit
|
||
v1, the only defined length as of this writing is 32 bytes but other
|
||
lengths may be defined later.
|
||
|
||
Checksum::
|
||
Exactly 6 characters. This is created using a BCH code, a type of
|
||
error correction code (although for Bitcoin addresses, we'll see later
|
||
that it's essential to use the checksum only for error detection--not
|
||
correction).
|
||
//TODO
|
||
|
||
Let's illustrate these rules by walking through an example of creating
|
||
bech32 and bech32m addresses. For all of the following examples, we'll use the
|
||
https://oreil.ly/gpTT6[bech32m reference code
|
||
for Python].
|
||
|
||
We'll start by generating four output scripts, one for each of the
|
||
different segwit outputs in use at the time of publication, plus one for
|
||
a future segwit version that doesn't yet have a defined meaning. The
|
||
scripts are listed in <<scripts_for_diff_segwit_outputs>>.
|
||
|
||
// bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee
|
||
// 2b626ed108ad00a944bb2922a309844611d25468
|
||
//
|
||
// bc1qvj9r9egtd7mu2gemy28kpf4zefq4ssqzdzzycj7zjhk4arpavfhsct5a3p
|
||
// 648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f
|
||
//
|
||
// bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7
|
||
// 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311
|
||
//
|
||
// bc1sqqqqkfw08p
|
||
// O_16 OP_PUSH2 0000
|
||
|
||
[[scripts_for_diff_segwit_outputs]]
|
||
.Scripts for different types of segwit outputs
|
||
[options="header"]
|
||
[cols="1,1"]
|
||
|===
|
||
|
||
|Output type
|
||
|Example script
|
||
|
||
| P2WPKH
|
||
| OP_0 2b626ed108ad00a944bb2922a309844611d25468
|
||
|
||
| P2WSH
|
||
| OP_0 648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f
|
||
|
||
| P2TR
|
||
| OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311
|
||
|
||
| Future Example
|
||
| OP_16 0000
|
||
|===
|
||
|
||
For the P2WPKH output, the witness program contains a commitment constructed in exactly the same
|
||
way as the commitment for a P2PKH output seen in <<addresses_for_p2pkh>>. A public key is passed into a SHA256 hash
|
||
function. The resultant 32-byte digest is then passed into a RIPEMD-160
|
||
hash function. The digest of that function (the commitment) is placed
|
||
in the witness program.
|
||
|
||
For the P2WSH output, we don't use the P2SH algorithm. Instead we take
|
||
the script, pass it into a SHA256 hash function, and use the 32-byte
|
||
digest of that function in the witness program. For P2SH, the SHA256
|
||
digest was hashed again with RIPEMD-160, but that may not be secure in
|
||
some cases; for details, see <<p2sh_collision_attacks>>. A result of
|
||
using SHA256 without RIPEMD160 is that P2WSH commitments are 32 bytes
|
||
(256 bits) instead 20 bytes (160 bits).
|
||
|
||
For the pay-to-taproot (P2TR) output, the witness program is a point on
|
||
the secp256k1 curve. It may be a simple public key, but in most cases
|
||
it should be a public key that commits to some additional data. We'll
|
||
learn more about that commitment in <<taproot>>.
|
||
|
||
For the example of a future segwit version, we simply use the highest
|
||
possible segwit version number (16) and the smallest allowed witness
|
||
program (2 bytes) with a null value.
|
||
|
||
Now that we know the version number and the witness program, we can
|
||
convert each of them into a bech32 address. Let's use the bech32m reference
|
||
library for Python to quickly generate those addresses, and then take a
|
||
deeper look at what's happening:
|
||
|
||
----
|
||
$ github="https://raw.githubusercontent.com"
|
||
$ wget $github//sipa/bech32/master/ref/python/segwit_addr.py
|
||
|
||
$ python
|
||
>>> from segwit_addr import *
|
||
>>> from binascii import unhexlify
|
||
|
||
>>> help(encode)
|
||
encode(hrp, witver, witprog)
|
||
Encode a segwit address.
|
||
|
||
>>> encode('bc', 0, unhexlify('2b626ed108ad00a944bb2922a309844611d25468'))
|
||
'bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee'
|
||
>>> encode('bc', 0,
|
||
unhexlify('648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f'))
|
||
'bc1qvj9r9egtd7mu2gemy28kpf4zefq4ssqzdzzycj7zjhk4arpavfhsct5a3p'
|
||
>>> encode('bc', 1,
|
||
unhexlify('2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311'))
|
||
'bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7'
|
||
>>> encode('bc', 16, unhexlify('0000'))
|
||
'bc1sqqqqkfw08p'
|
||
----
|
||
|
||
If we open the file __segwit_addr.py__ and look at what the code is doing,
|
||
the first thing we will notice
|
||
is the sole difference between bech32 (used for segwit v0) and bech32m
|
||
(used for later segwit versions) is the constant:
|
||
|
||
----
|
||
BECH32_CONSTANT = 1
|
||
BECH32M_CONSTANT = 0x2bc830a3
|
||
----
|
||
|
||
Next we notice the code that produces the checksum. In the final step of the
|
||
checksum, the appropriate constant is merged into the value using an xor
|
||
operation. That single value is the only difference between bech32 and
|
||
bech32m.
|
||
|
||
With the checksum created, each 5-bit character in the data part
|
||
(including the witness version, witness program, and checksum) is
|
||
converted to alphanumeric characters.
|
||
|
||
For decoding back into an output script, we work in reverse. First let's
|
||
use the reference library to decode two of our addresses:
|
||
|
||
----
|
||
>>> help(decode)
|
||
decode(hrp, addr)
|
||
Decode a segwit address.
|
||
|
||
>>> _ = decode("bc", "bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee")
|
||
>>> _[0], bytes(_[1]).hex()
|
||
(0, '2b626ed108ad00a944bb2922a309844611d25468')
|
||
>>> _ = decode("bc", "bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7")
|
||
>>> _[0], bytes(_[1]).hex()
|
||
(1, '2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311')
|
||
----
|
||
|
||
We get back both the witness version and the witness program. Those can
|
||
be inserted into the template for our output script:
|
||
|
||
----
|
||
<version> <program>
|
||
----
|
||
|
||
For example:
|
||
|
||
----
|
||
OP_0 2b626ed108ad00a944bb2922a309844611d25468
|
||
OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311
|
||
----
|
||
|
||
[WARNING]
|
||
====
|
||
One
|
||
possible mistake here to be aware of is that a witness version of `0` is
|
||
for `OP_0`, which uses the byte 0x00--but a witness version of `1` uses
|
||
`OP_1`, which is byte 0x51. Witness versions `2` through `16` use 0x52
|
||
through 0x60, respectively.
|
||
====
|
||
|
||
When implementing bech32m encoding or decoding, we very strongly
|
||
recommend that you use the test vectors provided in BIP350. We also ask
|
||
that you ensure your code passes the test vectors related to paying future segwit
|
||
versions that haven't been defined yet. This will help make your
|
||
software usable for many years to come even if you aren't able to add
|
||
support for new Bitcoin features as soon as they become available.
|
||
|
||
[[priv_formats]]
|
||
==== Private Key Formats
|
||
|
||
The private key
|
||
can be represented in a number of different formats, all of which
|
||
correspond to the same 256-bit number. <<table_4-2>> shows several common
|
||
formats used to represent private keys. Different formats are used in
|
||
different circumstances. Hexadecimal and raw binary formats are used
|
||
internally in software and rarely shown to users. The WIF is used for
|
||
import/export of keys between wallets and often used in QR code
|
||
(barcode) representations of private keys.
|
||
|
||
.Modern Relevancy of Private Key Formats
|
||
****
|
||
Early Bitcoin wallet software generated one or more independent private
|
||
keys when a new user wallet was initialized. When the initial set of
|
||
keys had all been used, the wallet might generate additional private
|
||
keys. Individual private keys could be exported or imported. Any time
|
||
new private keys were generated or imported, a new backup of the wallet
|
||
needed to be created.
|
||
|
||
Later Bitcoin wallets began using deterministic wallets where all
|
||
private keys are generated from a single seed value. These wallets only
|
||
ever need to be backed up once for typical onchain use. However, if a
|
||
user exports a single private key from one of these wallets and an
|
||
attacker acquires that key plus some nonprivate data about the wallet,
|
||
they can potentially derive any private key in the wallet--allowing the
|
||
attacker to steal all of the wallet funds. Additionally, keys cannot be
|
||
imported into deterministic wallets. This means almost no modern
|
||
wallets support the ability to export or import an individual key. The
|
||
information in this section is mainly of interest to anyone needing
|
||
compatibility with early Bitcoin wallets.
|
||
|
||
See <<hd_wallets>> for more information.
|
||
|
||
****
|
||
|
||
[[table_4-2]]
|
||
.Private key representations (encoding formats)
|
||
[options="header"]
|
||
[cols="1,1,1"]
|
||
|=======
|
||
|Type|Prefix|Description
|
||
| Hex | None | 64 hexadecimal digits
|
||
| WIF | 5 | Base58check encoding: base58 with version prefix of 128 and 32-bit checksum
|
||
| WIF-compressed | K or L | As above, with added suffix 0x01 before encoding
|
||
|=======
|
||
|
||
<<table_4-3>> shows the private key generated in several different formats.
|
||
|
||
[[table_4-3]]
|
||
.Example: Same key, different formats
|
||
[options="header"]
|
||
[cols="1,1"]
|
||
|=======
|
||
|Format | Private key
|
||
| Hex | 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
|
||
| WIF | 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
|
||
| WIF-compressed | KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
|
||
|=======
|
||
|
||
All of these representations are different ways of showing the same
|
||
number, the same private key. They look different, but any one format
|
||
can easily be converted to any other format.
|
||
|
||
[[comp_priv]]
|
||
==== Compressed Private Keys
|
||
|
||
The commonly used term "compressed private key" is a misnomer, because when a private
|
||
key is exported as WIF-compressed it is actually one byte _longer_ than
|
||
an "uncompressed" private key. That is because the private key has an
|
||
added one-byte suffix (shown as 01 in hex in <<table_4-4>>), which
|
||
signifies that the private key is from a newer wallet and should only be
|
||
used to produce compressed public keys. Private keys are not themselves
|
||
compressed and cannot be compressed. The term "compressed private key"
|
||
really means "private key from which only compressed public keys should
|
||
be derived," whereas "uncompressed private key" really means "private
|
||
key from which only uncompressed public keys should be derived." You
|
||
should only refer to the export format as "WIF-compressed" or "WIF" and
|
||
not refer to the private key itself as "compressed" to avoid further
|
||
confusion
|
||
|
||
<<table_4-4>> shows the same key, encoded in WIF and WIF-compressed formats.
|
||
|
||
[[table_4-4]]
|
||
.Example: Same key, different formats
|
||
[options="header"]
|
||
[cols="1,1"]
|
||
|=======
|
||
|Format | Private key
|
||
| Hex | 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD
|
||
| WIF | 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
|
||
| Hex-compressed | 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD01
|
||
| WIF-compressed | KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
|
||
|=======
|
||
|
||
Notice that the hex-compressed private key format has one extra byte at
|
||
the end (01 in hex). While the base58 encoding version prefix is the
|
||
same (0x80) for both WIF and WIF-compressed formats, the addition of one
|
||
byte on the end of the number causes the first character of the base58
|
||
encoding to change from a 5 to either a _K_ or _L_. Think of this as the
|
||
base58 equivalent of the decimal encoding difference between the number
|
||
100 and the number 99. While 100 is one digit longer than 99, it also
|
||
has a prefix of 1 instead of a prefix of 9. As the length changes, it
|
||
affects the prefix. In base58, the prefix 5 changes to a _K_ or _L_ as
|
||
the length of the number increases by one byte.
|
||
|
||
Remember, these formats are _not_ used interchangeably. In a newer
|
||
wallet that implements compressed public keys, the private keys will
|
||
only ever be exported as WIF-compressed (with a _K_ or _L_ prefix). If
|
||
the wallet is an older implementation and does not use compressed public
|
||
keys, the private keys will only ever be exported as WIF (with a 5
|
||
prefix). The goal here is to signal to the wallet importing these
|
||
private keys whether it must search the blockchain for compressed or
|
||
uncompressed public keys and addresses.
|
||
|
||
If a Bitcoin wallet is able to implement compressed public keys, it will
|
||
use those in all transactions. The private keys in the wallet will be
|
||
used to derive the public key points on the curve, which will be
|
||
compressed. The compressed public keys will be used to produce Bitcoin
|
||
addresses and those will be used in transactions. When exporting private
|
||
keys from a new wallet that implements compressed public keys, the WIF
|
||
is modified, with the addition of a one-byte suffix +01+ to the private
|
||
key. The resulting base58check-encoded private key is called a
|
||
"compressed WIF" and starts with the letter _K_ or _L_, instead of
|
||
starting with "5" as is the case with WIF-encoded (uncompressed) keys
|
||
from older wallets.
|
||
|
||
=== Advanced Keys and Addresses
|
||
|
||
In the
|
||
following sections we will look at advanced forms of keys and addresses,
|
||
such as vanity addresses and paper wallets.
|
||
|
||
==== Vanity Addresses
|
||
|
||
Vanity addresses are valid Bitcoin
|
||
addresses that contain human-readable messages. For example,
|
||
+1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33+ is a valid address that contains
|
||
the letters forming the word "Love" as the first four base58 letters.
|
||
Vanity addresses require generating and testing billions of candidate
|
||
private keys, until a Bitcoin address with the desired pattern is found.
|
||
Although there are some optimizations in the vanity generation
|
||
algorithm, the process essentially involves picking a private key at
|
||
random, deriving the public key, deriving the Bitcoin address, and
|
||
checking to see if it matches the desired vanity pattern, repeating
|
||
billions of times until a match is found.
|
||
|
||
Once a vanity address matching the desired pattern is found, the private
|
||
key from which it was derived can be used by the owner to spend bitcoins
|
||
in exactly the same way as any other address. Vanity addresses are no
|
||
less or more secure than any other address. They depend on the same
|
||
elliptic curve cryptography (ECC) and SHA as any other address. You can
|
||
no more easily find the private key of an address starting with a vanity
|
||
pattern than you can any other address.
|
||
|
||
Eugenia is a children's
|
||
charity director operating in the Philippines. Let's say that Eugenia is
|
||
organizing a fundraising drive and wants to use a vanity Bitcoin
|
||
address to publicize the fundraising. Eugenia will create a vanity
|
||
address that starts with "1Kids" to promote the children's charity
|
||
fundraiser. Let's see how this vanity address will be created and what
|
||
it means for the security of Eugenia's charity.
|
||
|
||
===== Generating vanity addresses
|
||
|
||
It's important to realize that a Bitcoin address is simply a number
|
||
represented by symbols in the base58 alphabet. The search for a pattern
|
||
like "1Kids" can be seen as searching for an address in the range from
|
||
+1Kids11111111111111111111111111111+ to
|
||
+1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz+. There are approximately 58^29^
|
||
(approximately 1.4 * 10^51^) addresses in that range, all starting with
|
||
"1Kids." <<table_4-11>> shows the range of addresses that have the
|
||
prefix 1Kids.
|
||
|
||
[[table_4-11]]
|
||
.The range of vanity addresses starting with "1Kids"
|
||
|=======
|
||
| *From* | +1Kids11111111111111111111111111111+
|
||
| | +1Kids11111111111111111111111111112+
|
||
| | +1Kids11111111111111111111111111113+
|
||
| | +...+
|
||
| *To* | +1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz+
|
||
|=======
|
||
|
||
Let's look at the pattern "1Kids" as a number and see how frequently we
|
||
might find this pattern in a Bitcoin address (see <<table_4-12>>). An
|
||
average desktop computer PC, without any specialized hardware, can
|
||
search approximately 100,000 keys per second.
|
||
|
||
[[table_4-12]]
|
||
.The frequency of a vanity pattern (1KidsCharity) and average search time on a desktop PC
|
||
[options="header"]
|
||
[cols="1,1,1,1"]
|
||
|=======
|
||
| Length | Pattern | Frequency | Average search time
|
||
| 1 | 1K | 1 in 58 keys | < 1 milliseconds
|
||
| 2 | 1Ki| 1 in 3,364 | 50 milliseconds
|
||
| 3 | 1Kid | 1 in 195,000 | < 2 seconds
|
||
| 4 | 1Kids | 1 in 11 million | 1 minute
|
||
| 5 | 1KidsC | 1 in 656 million | 1 hour
|
||
| 6 | 1KidsCh | 1 in 38 billion | 2 days
|
||
| 7 | 1KidsCha | 1 in 2.2 trillion | 3–4 months
|
||
| 8 | 1KidsChar | 1 in 128 trillion | 13–18 years
|
||
| 9 | 1KidsChari | 1 in 7 quadrillion | 800 years
|
||
| 10 | 1KidsCharit | 1 in 400 quadrillion | 46,000 years
|
||
| 11 | 1KidsCharity | 1 in 23 quintillion | 2.5 million years
|
||
|=======
|
||
|
||
As you can see, Eugenia won't be creating the vanity address
|
||
"1KidsCharity" anytime soon, even if she had access to several thousand
|
||
computers. Each additional character increases the difficulty by a
|
||
factor of 58. Patterns with more than seven characters are usually found
|
||
by specialized hardware, such as custom-built desktops with multiple
|
||
GPUs.
|
||
Vanity searches on GPU systems are many orders of magnitude
|
||
faster than on a general-purpose CPU.
|
||
|
||
Another way to find a vanity address is to outsource the work to a pool
|
||
of vanity miners. A https://oreil.ly/99K81[vanity pool] is a service that
|
||
allows those with fast hardware to earn bitcoin searching for vanity
|
||
addresses for others. For a fee, Eugenia can outsource the search for a
|
||
seven-character pattern vanity address and get results in a few hours
|
||
instead of having to run a CPU search for months.
|
||
|
||
Generating a vanity address is a brute-force exercise: try a random key,
|
||
check the resulting address to see if it matches the desired pattern,
|
||
repeat until successful.
|
||
|
||
===== Vanity address security and privacy
|
||
|
||
Vanity addresses were popular in the
|
||
early years of Bitcoin but have almost entirely disappeared from use as
|
||
of 2023. There are two likely causes for this trend:
|
||
|
||
Deterministic wallets:: As we saw in <<recovery_code_intro>>, it's possible to
|
||
back up every key in most modern wallets by simply writing down a few
|
||
words or characters. This is achieved by deriving every key in the
|
||
wallet from those words or characters using a deterministic algorithm.
|
||
It's not possible to use vanity addresses with a deterministic wallet
|
||
unless the user backs up additional data for every vanity address they
|
||
create. More practically, most wallets using deterministic key
|
||
generation simply don't allow importing a private key or key tweak from
|
||
a vanity generator.
|
||
|
||
Avoiding address reuse:: Using a vanity address to receive multiple
|
||
payments to the same address creates a link between all of those
|
||
payments. This might be acceptable to Eugenia if her nonprofit needs
|
||
to report its income and expenditures to a tax authority anyway.
|
||
However, it also reduces the privacy of people who either pay Eugenia or
|
||
receive payments from her. For example, Alice may want to donate
|
||
anonymously and Bob may not want his other customers to know that he
|
||
gives discount pricing to Eugenia.
|
||
|
||
// https://github.com/MakisChristou/vanitybech
|
||
|
||
We don't expect to see many vanity addresses in
|
||
the future unless the preceding problems are solved.
|
||
|
||
[[paper_wallets]]
|
||
==== Paper Wallets
|
||
|
||
Paper wallets are private keys printed on paper.
|
||
Often the paper wallet also includes the corresponding Bitcoin address
|
||
for convenience, but this is not necessary because it can be derived
|
||
from the private key.
|
||
|
||
[WARNING]
|
||
====
|
||
Paper wallets are an OBSOLETE technology and are dangerous for most
|
||
users. There are many subtle pitfalls involved in generating them, not least of which is the possibility that the generating code is compromised
|
||
with a "back door." Many bitcoins have been stolen this way. Paper
|
||
wallets are shown here for informational purposes only and should not be
|
||
used for storing bitcoin. Use a recovery code to back up your
|
||
keys, possibly with a hardware signing device to store keys and sign transactions. DO NOT
|
||
USE PAPER [.keep-together]#WALLETS.#
|
||
====
|
||
|
||
|
||
Paper wallets come in many designs and sizes, with many different
|
||
features. <<paper_wallet_simple>> shows a sample paper wallet.
|
||
|
||
[[paper_wallet_simple]]
|
||
.An example of a simple paper wallet
|
||
image::images/mbc3_0410.png[]
|
||
|
||
Some are intended to be given as gifts and have seasonal themes, such as
|
||
Christmas and New Year's. Others are designed for storage in a
|
||
bank vault or safe with the private key hidden in some way, either with
|
||
opaque scratch-off stickers, or folded and sealed with tamper-proof
|
||
adhesive foil. Other designs feature additional copies of the key and
|
||
address, in the form of detachable stubs similar to ticket stubs,
|
||
allowing you to store multiple copies to protect against fire, flood, or
|
||
other natural disasters.
|
||
|
||
From the original public-key focused design of Bitcoin to modern addresses
|
||
and scripts like bech32m and pay to taproot--and even addresses for
|
||
future Bitcoin upgrades--you've learned how the Bitcoin protocol allows
|
||
spenders to identify the wallets that should receive their payments.
|
||
But when it's actually your wallet receiving the payments, you're going
|
||
to want the assurance that you'll still have access to that money even
|
||
if something happens to your wallet data. In the next chapter, we'll
|
||
look at how Bitcoin wallets are designed to protect their funds from a
|
||
variety of threats.
|