1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-11-27 02:18:25 +00:00
bitcoinbook/code/ec-math.py
2015-02-23 17:54:19 -05:00

57 lines
1.9 KiB
Python

import ecdsa
import os
from ecdsa.util import string_to_number, number_to_string
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)
generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)
oid_secp256k1 = (1, 3, 132, 0, 10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1)
ec_order = _r
curve = curve_secp256k1
generator = generator_secp256k1
def random_secret():
convert_to_int = lambda array: int("".join(array).encode("hex"), 16)
# Collect 256 bits of random data from the OS's cryptographically secure random generator
byte_array = os.urandom(32)
return convert_to_int(byte_array)
def get_point_pubkey(point):
if point.y() & 1:
key = '03' + '%064x' % point.x()
else:
key = '02' + '%064x' % point.x()
return key.decode('hex')
def get_point_pubkey_uncompressed(point):
key = '04' + \
'%064x' % point.x() + \
'%064x' % point.y()
return key.decode('hex')
# Generate a new private key.
secret = random_secret()
print "Secret: ", secret
# Get the public key point.
point = secret * generator
print "EC point:", point
print "BTC public key:", get_point_pubkey(point).encode("hex")
# Given the point (x, y) we can create the object using:
point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
assert point1 == point